On Some Special Classes of Sonnenschein Matrices

Document Type: Research Paper

Authors

1 Vali-e-Asr University of Rafsanjan

2 Vali-e-Asr University

10.22072/wala.2018.92609.1193

Abstract

‎In this paper we consider the special classes of Sonnenschein matrices‎, ‎namely the Karamata matrices $K[\alpha,\beta]=\left(a_{n,k}\right)$ with the entries‎
‎\[{a_{n,k}} = \sum\limits_{v = 0}^k {\left( \begin{array}{l}‎
‎n\\‎
‎v‎
‎\end{array} \right){{\left( {1‎ - ‎\alpha‎ - ‎\beta } \right)}^v}{\alpha ^{n‎ - ‎v}}\left( \begin{array}{l}‎
‎n‎ + ‎k‎ - ‎v‎ - ‎1\\‎
‎\,\,\,\,\,\,\,\,\,\,k‎ - ‎v‎
‎\end{array} \right)‎
‎{\beta ^{k‎ - ‎v}}},\] and calculate their row and column sums and give some applications of these sums‎.

Keywords


[1] R.P. Agnew, Euler  transformations, Amer.  J. Math., 66 (1944), 313-338.


[2] B. Altay, F. Bac{s}ar and M. Mursaleen, On the Euler sequence spaces which include the spaces $ell_p$ 

      and $ell_infty$ I, Inform. Sci., 176 (2006), 1450-1462.


[3] B. Bajsnski, Sur une classe generale de procedes de summations du type d'Euler-Borel, Acad. Serbe Sci. 

      Publ. Inst. Math., 10 (1995), 131-152.


[4] J. Boos, Classical and Modern Methods in Summability, Oxford University Press Inc., New York, 2000.

[5] M. Bac{s}arır, M. Ozturk and E.E. Kara, Some topological and geometric properties of generalized Euler

     sequence space, Math. Slovaca, 60(3) (2010), 385–398.

[6] M. Bac{s}arır, E.E. Kara and c{S}. Konaca,  On some new weighted Euler sequence spaces and compact

     operators, Math. Inequal. Appl., 17(2) (2014), 649-664.

[7] H. Frederick, Inclusion theorems for Sonnenschein matrices, Proc. Amer. Math. Soc., 21}(3) (1969),

     513-519.

[8] E.E. Kara and M. Bac{s}arır,  On compact operators and some Euler B$^{m}$-difference sequence spaces,

     J. Math. Anal. Appl., 379 (2011), 499-511.

[9] J. Sonnenschein, Sur  les  series  divergentes, Acad.  Roy.  Belg.  Bull.  Cl.  Sei., 35 (1949),  594-601.

[10] P.  Vermes,  Series  to  series  transformations  and  analytic  continuation  by  matrix methods, Amer. J.

       Math., 71 (1949),  541-562.