p-adic Shearlets

Document Type: Research Paper


1 Depatrment of pure Mathematics, Faculty of Mathematics and Computer, Shahid Bahonar University of Kerman

2 Depatrment of Mathematics Graduate University of Advanced Technology



The field $Q_{p}$ of $p$-adic numbers is defined as the completion of the field of the rational numbers $Q$ with respect to the  $p$-adic norm $|.|_{p}$. In this paper, we study the continuous and discrete $p-$adic shearlet systems on $L^{2}(Q_{p}^{2})$. We also suggest discrete $p-$adic shearlet frames. Several examples are provided.


[1] S. Albeverio, S. Evdokimov and M. Skopina, $p-$adic multiresolution analysis and wavelet frames, J. Fourier Anal. Appl., 16(5) (2010), 693-714.
[2] S. Albeverio, S. Evdokimov, and M. Skopina, $p$-adic nonorthogonal wavelet bases, Proc. Steklov Inst. Math., 265 (2009), 1-12.
[3] S. Dahlke, G. Kutyniok, P. Maass, C. Sagiv, H.G. Stark and G. Teschke, The uncertainty principle associate with the continuous shearlet transform, Int. J. Wavelets Multiresolut. Inf. Process., 6(2) (2008), 157-181.
[4] S. Dahlke, G. Kutyniok, G. Steidl, and G. Teschke, Shearlet coorbit spaces and associated Banach frames,
 Appl. Comput. Harmon. Anal., 27(2) (2009), 195-–214.
[5] G.B. Folland, A Course in Abstract Harmonic Analysis, CRC Press LLC, 1995.
[6] G. Gripenberg, A necessary and sufficient condition for the existence of a father wavelet, Stud. Math., 114(3) (1995), 207-226.
[7] K. Hensel, $ddot{U}$ber eine neue Begr$ddot{u}$ndung der theorie der algebraischen zahlen, Jahresber. Dtsch. Math.-Ver., 6(3) (1897), 83-88.
[8] A.Yu. Khrennikov and V.M. Shelkovich, Non-Haar $p-$adic wavelets and pseudo-differential operators, Dokl. Akad. Nauk, Ross. Akad. Nauk, 418(23) (2008), 167--170; English transl. in Dokl. Math. 77(1) (2008), 42--45.
[9] A.Yu. Khrennikov, V.M. Shelkovich and M. Skopina, $p-$adic refinable functions and MRA-based wavelets,
J. Approx. Theory, 161(1) (2009), 226-238.
[10] E.J. King and M.A. Skopina, Quincunx multiresolution analysis for $L2(Q_2^2)$, $p$-Adic Numbers Ultrametric Anal. Appl., 2(3) (2010), 222-231.
[11] S.V. Kozyrev, $p-$Adic pseudodifferential operators and $p-$adic wavelets, Theor. Math. Phys., 138(3) (2004), 322-332.
[12] S.V. Kozyrev, Wavelet theory and $p-$adic spectral analysis, Russ. Acad. Sci., Izv., Math., 66(2) (2002), 149--158.
[13] G. Kutyniok and D. Labate, Construction of regular and irregular shearlet frames, Journal of Wavelet Theory and Applications, 1(1) (2007), 1-12.
[14] G. Kutyniok and D. Labate, Shearlets: Multiscle Analysis for Multivariate Data, Birkhauser, Boston, 2012.
[15] D. Labate, W.Q. Lim, G. Kutyniok and G. Weiss, Sparse multidimensional representation using shearlets,
Proc. SPIE 5914, Wavelets XI, 59140U, doi: 10.1117/12.613494, 2005.
[16] V. Shelkovich and M. Skopina, $p$-adic Haar multiresolution analysis and pseudo-differential, J. Fourier Anal. Appl., 15(3) (2009), 366-393.
[17] M.H. Taibleson, Fourier Analysis on Local Fields, Princeton University Press, Princeton, 1975.
[18] V.S. Valdimirov, I.V. Volovich and E.I. Zelenov, $p$-adic Analysis and Mathematical Physics}, World Scientic, Singapore, 1994.