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1. Introduction

In matrix theory, majorization plays a significant role. The best general reference on this
subject is Inequalities: Theory of majorization and its applications by A. W. Marshall, 1. Olkin,
and B. C. Arnold [8]. Some kinds of majorization with their linear preservers can be found in
[1]-[2] and [4]-[6].

Let V be a finite-dimensional real vector space, O(V) the orthogonal group acting on V and G
a closed subgroup of O(V). The group G induces an equivalence relation on V, defined by x ~ y
if and only if y = gx for some g € G. The equivalence classes of this relation are called the orbits
of G. For each y € V the orbit of y is Og(y) = {gy | g € G}. A vector x is G-majorized by y,
denoted by x <¢ y, if x € Conv(Og(y)), where the notation Conv(A) is the convex hull of a set A.
The group majorization <; generates an equivalence relation ~; on V defined as follows. x ~g y
if and only if x <5 y <¢ x. In [3], A. Giovagnoli and H. P. Wynn observed that x ~; y if and
only if y = gx for some g € G. The classical majorization is a vector pre-ordering on R" induced
by the permutation group. In [9], M. Soleymani and A. Armandnejad introduced the concept of
even majorization, and they characterized the linear preservers and strong linear preservers of this
concept on M, ..

In the peresent paper, let V = R” with the standard inner product and G = {PC | P € P,,C €
C,,det(C) = 1}, where P, is the group of n-by-n permutation matrices and C, is the group of
n-by-n diagonal orthogonal matrices. Notice that C, = {diag(A;,...,4,) | 4; € {1,-1},1 <i < n}.
<¢ will display with <,,,.. In [7, Section 6], M. Niezgoda proved for any x,y € R" we have x <, y
if and only if

> g < > e forall i (1 < < n—2),
k=1

k=1

n—1 n—1

D Wl + sing(Dlxl < D Wl + sing)
k=1 k=1
n—1 n—1

D Wl = sing(0lxl < D Il = sing) vl
k=1 k=1

where |x| = (|x1], [x2l, . . ., [xa]), sign(x) = sgn(I1,Z, x;) and by (x|, [z, . - »
|xl;,))" we denote the entries of a vector x = (xi, x2,. .., x,)" € R" arranged in decreasing order.
Now, we generalize this concept on matrices.

Definition 1.1. For X, Y € M,,,,, X is said to be Miranda-Thompson majorized by Y (denoted by
X <,y Y) if there exists some D € Conv(G) such that X = DY. Thatis, X = Zf-‘zl A;P;C;Y, where
PieP,,CieC,,det(C;))=1,4;>0,foreachi (1 <i<k),and Y5 A = 1.

The present paper continues in three further sections. Section 2 presents the structure of all
linear preservers of <,, on R2. The third section contains the structure of all linear functions
T : R" — R”" preserving Miranda-Thompson majorization. Section 4 states all linear preservers
of <,,, from M,,,,, to M, ,..
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2. Miranda-Thompson majorization on R? and its linear preservers

This section studies facts of Miranda-Thompson majorization that are necessary for studying
the linear preservers of this concept. Also, we characterize the structure of all linear preservers of
2
<, on R=.

Lemma 2.1. Let P € P, and C € C,. Then there exists some C, € C,, such that PC = C.P.

Proof. Let C = [C;;] and 6 be the corresponding permutation with P. Put J = {1 < j < n |
Cjj = —1}and J, = {6, | j € J}. Now, we define C, := diag(d,,...,d,) € C,, where d;; =
*1 .lf .1 ¢ 1. We observe that PC = C,. P, as desired. ]
-1 if i e€],.
In the following lemma, we express linear preservers of Miranda-Thompson majorization 7 :
R? — R2. Suppose that ¢; is the i unit vector.

Lemma 2.2. Let T : R? — R? be a linear function. Then T preserves <, if and only if there exist
PeP, acR? and s € {1,-1)} such that T()v‘) = xa + syPa for all (;‘) e R
Proof. 1t is obvious the proof of sufficient condition.

For the converse, we prove the necessity of the condition. Assume that 7" preserves <,,. Let

[T] = Z; Zi), where [T] is the matrix representation of 7 on the standard basis {e;, e»} on R2.
For each (f) (;‘) e R?, we have (f) ~mt (;C) if and only if (j) € {(;C) —(;‘), (i ) —(i)}. We conclude

from e, ~,, e, that Te, ~,,; Te;, hence (Zi) ~mt (Z;), and finally that (Z:) € {(“‘), —(“‘), (“2), —(“2)}.

a a ap ai
Ifa = (Z;), then for some 2 X 2 permutation matrix P T(f) = x(Z;) + yPC (Z;) = xa + yPCa =
{ xa+yPa if C=+I

xa—yPa if C=-I" and the proof is complete. -

Lemma 2.3. Let T, and T, be two linear preservers of <., on R>. If T\ + T, preserves <,
then there exist some a,b € R>, P € P,, and s € {1,-1} such that Tl(;f) = xa + syPa and

T2( ) = xb + syPb for all( ) € R

y y
Proof. As T, T», and T + T, preserve <,,, on R?>, Lemma 2.2 ensures that for each (j) e R?> we
have Tl( ) = xa+s;yPa, Tz()f) = xb+ s,yP,b, and (T + T2)( ) = xc+ syPc, for some a, b, ¢ € R?,

Py, P, P) € IP,, and s1, 52, s € {—1, 1}. It suffices to show that) we can choose equal s, and s, also
equal the permutations P; and P,. We observe that x(a + b) + y(s;P1a + s,P,b) = xc + y(sPc),
forall x,y e R. If x = 1landy = 0, thena + b = ¢. Choose x = 0 and y = 1. It follows that
ssi(PP)a+ ss;(PPy)b =a+b. Puta=(“).b = ('), #; = 55, and Q; = PP;, fori = 1,2. So we
prove that if 1,0 a + t,0,b = a + b, where #{,1, € {—1,1} and Q, O, € P, then we can choose
equal #; and 1, also equal Q; and Q,. Given that t; # r, or Q; # Q,, we consider three cases.
Case(1). Q1 =0, =Iandt; #t,. If t; = -1, = 1, then b = 0, and so we can selectt; =1, = 1. In
the same way, if t{ = —f, = —1, thena = 0, and choose t; =1, = 1.
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0

Case(2). 0, = 0, = (l (1)) andt; # b, If t;, = -, = 1, thena = (Z:) and b = (_b}jl) If

tp =—t, =—1,thena = (_‘la‘l) and b = (1;:) We can choose Q) = O, =Tandt =1, = 1.
01
1 0

(_bbll), and hence 1,0,b = 1;0b. It implies that we can choose Q; = O, = I and

=t =1 1If 4 = -, = -1, thena = (_"a‘l) So we have r;0a = r,(0»a. Thus, we can select

Case(3). O # Q,. Without loss of generality, assume that Q; = [ and Q, = ( ) Ift, = -, =1,

—
=
(@]
=
=x
Il

0,=0,= ((1) (1)) andty =tb=1.Ifty =1, = 1, then b = (Z;), and it shows that we can choose

01=0,=11ft) =1, = —1, thena = (Zi) and so we can choose Q) = O, = ((1) (1)) U

Let T preserve <, on R2. Thatis, [T] = [a | sPa], where a = (Z;) e R?, s € {-1,1}, and
Pe ]P)z.
(1) If |ay| # |laz|; We say T is of the first type. In this case, s and P are unique. So in the previous
lemma if s and P are related to T, then s and P are related to 7, too.
Notice that if |a;| = |ay|, then T'(e;) = T(ey) or T(e;) = =T (ey).

2)Ifa; = —a, # 0; We say T is of the second type. Then [T] = a ! !

1(_1 _l)or [T]=a (_11 _11)

s and P are not unique. Because we can replace —s and ((1) (1)) P with s and P.

1

(3)Ifa; = a, # 0; We say T is of the third type, and [T] = a; (i i) or [T] = a; (1

j) Only s

1S unique.
3. Miranda-Thompson majorization on R” (rn > 3) and its linear preservers

This section contains all linear preservers of <,,, from R” to R".
Let || . || be the Euclidean norm. In the following theorem the structure of linear functions
T : R" — R" preserving Miranda-Thompson majorization will be characterized.

Theorem 3.1. Let T : R" — R" be a linear function whenever n > 3. Then T preserves <, if and
only if there exista € R, P € P,, and C € C, such that [T] = aPC.

Proof. First, assume that [T] = aPC, for some a € R, P € P,, and C € C,. Let x,y € R” such that
y ~m X. It implies that there exist some Q € P, and D € C,, where det(D) = 1 such that y = QDx.
We observe that Ty = (aPC)y = (PCQDCP")(aPCx). Lemma 2.1 ensures that CQ = QC, for
some C; € C,. So Ty = (PQC;DCP")Tx. As C,DC € C,, there is some C, € C, such that
(Ci:DC)P' = P'C,. Then Ty = (PQP'C»,)Tx. Since PQP' € P, and C, € C,, we deduce that
Ty ~,; Tx. Therefore, T preserves ~,,. Now, let x,y € R” such that y <, x. So there exist
some P; € P,, C; € C,, det(C;) =1, 1; > 0, foreach i (1 < i < k), and Zf.‘zl A; = 1 such that
y = le A;P;Cix. We have Ty = T(Zf:1 ALPCix) = le A, T(P;Cix). We proved that for each i
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(1 < i < k) there exist some Q; € P,, and D; € C,, det(D;) = 1 such that T(P,C;x) = Q;,D;Tx. It
follows that 7'y = Zf;l A;0;D;Tx, and hence Ty <,,, T x.

Next, assume that T preserves <,,. If T = 0, then there is no thing to prove. Let T # 0,
and A = [T] = [A/Ay/.../A,]l. So Tx = Ax for all x € R". Suppose that A;, is a row of
A which has the maximum Euclidean norm. That is, || A; [|<|| 4;, || for each i (1 < i < n).
Let P € P,, C € C,, and det(C) = 1. Consider x = Afo and y = PCA?O. As x ~,; y, we see
that Tx ~,, Ty. It shows that Ty = QDTx for some Q € P,, D € C,, where det(D) = 1. So
Ty = QD[A/A,] ... /A,l]A;) = 0D <AL A, >,..., 4, <A, A, >), where A; € {—1, 1} for all
Jj=1,...,n. Selecting positive or negative depends on D. On the other hand, we have

Ty =[A/Ay] ... [AJPCA] = (< AL A C'P' >,..., <A, A, C'P' >). 3.D

Let 6 be the corresponding permutation with Q. If §, = iy; By calculating 7 component, we
observe that < A,,A;,C'P' >= + < As,, Ajy >= + < Aj),Ajy >= + || A, [P or < A, A,,C'P' >= — <
As, A, >= — < A, A, >= — || A, |I> . The Cauchy-Schwarz inequality states that || A;, ||°= | <
AL A CP > <AL ITAGCP = AL I AG TISIEAG T 1A 1= Aq (2. So

| <AL AC'P > =l Al ITA,CP (3.2)

Then there exists some 2 € R\ {0} such that PCA] = AA;. By putting this relation in 3.2 we
conclude that 4 = 1 or 4 = —1. Thus GA;0 = {QDA§O | O € P,,D € C,,det(D)=1} C
{LAL ..., A} | |4l = 1,1 < i < n}. Right-hand set has at most 2n elements, and so GA}

has at most 2n elements, too. So A;, has exactly a non-zero component, namely a. It follows that
GA;O ={LA}, ..., LA, | |4l =1,1 <i<n},and hence A = aPC, for some P € P,, C € C,. O

Lemma 3.2. Let Ty and T, be two linear preservers of <., on R" where n > 3. If T\ + T, preserve
<> then there exist some ay,ar € R, P € P,, C € C, such that |T,] = o, PC and |T»] = a, PC.

Proof. AsT,, T, and T + T, preserve <,,, Theorem 3.1 ensures that there exist some a, @, a3 €
R, Py,P,,P; € P, C;,C,,C5 € C, such that [T|] = a1 P,Cy, [T2] = auP>C5, and [T + T,] =
a3 P3C5. We want to show that P; = P, and we can choose C; = C,. If @1 = 0 or a, = 0, there is
nothing to prove. Assume that a; and @, are nonzero. For all i = 1,2, 3, let C; = diag(c;, . .., Cin),
where ¢;; € {~1, 1}, for each j (1 < j < n). We have

a1 PiCix + ar,P,Crx = as P3Csx, (33)

for all x € R".
If P; # P,; Then there exist some 7, 5, k, [ (1 < r,5,k,l <n), k # [ such that Pie, = ¢, # ¢; = Pse,
and Ps;e, = e,;. By putting x = e, in the relation 3.3 we have c,a;e; + c2,a06; = c3,a3¢,. Since
k # 1, the vector cj,ae; + c-@ze; has two non-zero components. On the other hand, the vector
c3razeg has at most a non-zero component, which is a contradiction. It means that P, = P,, and
we have

a1Cy + arCy = a/3C3, (34)

and so @1C1j + @2C2j = @3C3j, for each ] (1 < ] < I’Z) It follows that a; + (C]jCzj)a’z = a’3(C1jC3j),
and hence |a; + (c1jc2j)as| = |as, for each j (1 < j < n). We observe that

lay + (cijcrj)as| = lay + (crica)asl, (3.5)
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for each j (1 < j < n). Now, if cj1cp; = 1, as ay,a; # 0, then |a; + @3] # |@; — @3], and hence
3.5 ensures that ¢;jcy; = cyica, for each j (1 < j < n). Thus, ¢jco; = 1 or ¢yjc0; = —1, for each
j (1 < j < n). In the first case we have C; = C,, as desired, and in the second case we see that
C, = —C,, and so Thx = a,P,Cyx = (—a,)PCx. By changing a, to —a, we can assume that
C, = C,, and the proof is complete. ]

4. Miranda-Thompson majorization on M,,, and its linear preservers

In this section, we characterize the linear preservers of Miranda-Thompson majorization on
M,

The following sense is useful for finding the structure of linear preservers of Miranda-Thompson
majorization.
For each i,j (1 < i,j < n), consider the embedding E; : R" — M,,, and the projection
E':M,,, - R™ where E;(x) = xe;. and E'(X) = Xe;. It is easy to show that for every linear func-
tion T : My = M, TX =T[X, | Xp | ... | Xu] = X5 TX5 | 20 ToXg | e | 2 ToiXs
where T;; = E'TE; : R" — R™.

We claim that for each i, j (1 < i,j < n) E' and E; preserve <,,,. Let x € R", X € M, ,,, and
D € Conv(G). We see

E;Dx = Dxej- = DE;x

and
E'DX = DXe; = DE'X.

Then E' and E; preserve <.
Now, suppose that T preserves <,,,. So TDE jx = D'TE ;x, for some D" € Conv(G). Then

T;;Dx = ETE;Dx = ETDE;x = ED'TE;x = D'E'TE;x = D'Tyx,

and hence T;; preserves <.
The following lemma characterizes linear preservers of <,,, on My,.

Theorem 4.1. Let T : M,,, = M, be a linear function. Then T preserves <, if and only if there
exist Ay,..., A, € My, s € {-1,1}, and P € P, such that TX = Z;f:][x]jAj + sx2;PA;] for all
X = [x;j] € My,

Proof. If: It is easy to see.
Only if: Let T preserve <,,. We consider two steps.
Step 1. At least one of Tj; is of the first type. Suppose that T, is of the first type and [7),,] = [a |
sPa), where s € {1,—1}, P € P, a € R%. We claim that for each i, j (1 < i, j < n) there exist some
a;; € R? such that
[Ti;] = [a;; | sPa;;]. “4.1)

For each i (1 < i < n), since (T); + T))x = (T x(e; + €}))e,,, we deduce that T),, + T ; preserves <.
Similarly, T, + T}, preserves <,,,. So Lemma 3.2 ensures that 7'; and T;, satisfy in 4.1. Moreover,
we prove that if k # p and [ # ¢, then T}, satisfies in 4.1, too.
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If one of T, or Ty, is of the first type, then Ty, satisfies in 4.1, because of the uniqueness of s and
P.

If both T, and T}, are not of the first type; As T, is of the first type, then at least one of the
mappings Ty, + Tyy + Ty or =T, — Ty, + T is of the first type. We have [T, + Ty, + Tyl = [apg +
arg+ap | sP(ayg+arg+ap)) and [—(T g+ Tig) + Tyl = [—(apg +ary) +ap | —sP(apg+arg+ay)]. As
(Tpg+Tig+ Tyt Ti)x = (T (xeg+xe)))(ep+er) and (—(Tpg+Tig)+ Tt Tr)x = (T (—xe+xe)))(ep+ex)
for all x € R™. So both mappings (T',; + Tig + Tp1) + Ty and (=T g — Ty + Tp1) + Ty preserve <.
It implies that T, satisfies in 4.1.

Step 2. None of T;; are not of the first type. So if T;; # 0, then Tj; is of the second type or
the third type. Hence T;j(e;) = Tjj(e1) or T;j(e2) = —T;jj(er). 1f both mapping T, and T}, are of
a type, then it is easy to show that T,(e;) = T,,(e;) if and only if Ty(e;) = Ty(e). Now, we
choose s € {1, 1} such that if T;; is of the third type, then T;;(e;) = sT;j(e;). After selecting s, we
choose the permutation P € P? such that if T;; is of the second type, then T;j(e;) = sPT;;(e;). Put
a;; = Tjj(er), foreach i, j (1 < i, j < n). So [T};] = [a;; | sPa;j], for each i, j (1 < i, j < n).

NOW, we have TX = T[Xl | R | Xn] = [Z?:l lexj | cen | Z?:l Tanj] = [Z?Zl[alj | SP(llj]Xj |
- Z,}:l[anj | sPa,;l1X;] = [Z?:](xljalj+sx2jpalj) [...] Z?:l(xljanj'l'sxszanj)] = Z?:l(xlej'i'
sxp;PA;), where A; = [ay;| ... | a,j] € My, foreach j (1 < j < n). O

In the following theorem, we characterize linear preservers of Miranda-Thompson majoriza-
tion T : M,,, — M,,, whenever m > 3. Note that the case m = 1 for every linear function
holds.

Theorem 4.2. Let T : M,,,, —» M,,,, be a linear function whenever m > 3. Then T preserves <,
if and only if there exist A € M,,, P € P,,, and C € C,, such that TX = PCXA forall X e M,,, .

Proof. Suppose that TX = PCXA, forsome A € M,,, P € P, and C € C,,. It is a simple matter to
prove that T' preserves <.

Assume that T preserves <,,, and m > 3. For T = 0, it is clear. Let T # 0. Since T pre-
serves <,,, we see that T;; preserves <,, forall i, j (1 <i,j < n). AsT # 0, there exist some 7, s
(I < r,s <n)suchthat T,;, # 0. Lemma 3.1 ensures that there exist some a,;, € R, P € P,,, and
C € C,, such that T, ,x = a,,PCx, for all x € R™. We claim that for each k, [ (1 < k, [ < n) there is
some ay; € R such that Ty;x = a PCx, for all x € R™.

We divide the proof into three stages.

Step 1. k =rand !/ # s. Foreach x €e R", let X = [X; | ... | X,], as follows. For each j (1 < j < n)
X; = ’5 lfijfzosv’vl . We have T,.x + Tx = (T[X, | ... | X,De, for all x € R™. So T, + Ty,

preserves <,,, and hence Lemma 3.2 ensures that there is some a,; € R such that 7,;x = a,,PCx,
for all x € R™.

_ m _ xif j=s
Step2. k# rand [ =s. Let x € R”, and X; = { 0 if ow.
X =[X;]|...] X,]. Weobserve that T,,;x + Tysx = (T[X; | ... | X,]D(e, + ;) for all x € R™.
For each x,y € R", if x <,; y, then [X; | ... | X,,] < [Y1 | ... | Y,u]. As T preserves <,

TIX;|...| X < TLY1|...]Y,], and hence T, + T, preserves <,,. It implies that there is some
ais € R such that Ty ,x = a PCx, for all x € R™, because of Lemma 3.2.

, for each j (1 < j < n). Consider
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Step 3. k # rand [ # s. From the previous steps, there are some a,;, a;; € R such that 7, x = a,,PCx
and Tysx = ai,PCx for all x € R™. If T,; # 0 (or Ty; # 0), then step 2 (step 1) ensures that there
is some a; € R such that Ty x = aPCx for all x € R™, by choosing [ instead of s (k instead of

r). If T,; = Ty, = 0; For each x € R" define X = [X; | ... | X,] € M,,,, X; = )(C) lfiJf:oi;vl , for
each j (1 < j<n). Weseethat T,;x + Tyyx = (T[X; | ... | X,])(e, + ) for all x € R™, and then

T,s + Ty, preserves <,,. Since T,, # 0, Lemma 3.2 ensures that there is some a;; € R such that
Tix = auPCx for all x € R™,

SoTX =TIXy | ... | X = X TyX; |- | 2oy TojXi] = (22 a1 ;PCX; | .o | 2y anPCX;] =
PC[Z?:] Cl]ij | N | Z;:] Clanj] = PCXA, where A = [Clij] S Mn. O
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