[1] A. Abdulle and A. Blumenthal, Stabilized multilevel Monte Carlo method for stiff stochastic differential equations, J. Comput. Phys., 251 (2013), 445-460.
[2] E. Babolian and F. Fattahzadeh, Numerical solution of differential equations by using Chebyshev wavelet operational matrix of integration, Appl. Math. Comput., 188(1) (2007), 417-426.
[3] E. Babolian and A. Shahsavaran, Numerical solution of nonlinear Fredholm integral equations of the second kind using Haar wavelets, J. Comput. Appl. Math., 225(1) (2009), 87-95.
[4] M.A. Berger and V.J. Mizel, Volterra equations with Ito integrals I, J. Integral Equations, 2(3) (1980), 187-245.
[5] K. Bittner, Wilson bases on the interval, Advances in Gabor Analysis, Birkhäuser Boston, (2003) 197-221.
[6] K. Bittner, Linear approximation and reproduction of polynomials by wilson bases, J. Fourier Anal. Appl., 8(1) (2002), 85-108.
[7] K. Bittner, Biorthogonal wilson Bases, Proc. SPIE Wavelet Applications in Signal and Image Processing VII, 3813 (1999), 410-421.
[8] Y. Cao, D. Gillespie and L. Petzod, Adaptive explicit-implicit tau-leaping method with automatic tau selection, J. Chem. Phys., 126(22) (2007), 1-9.
[9] C. Cattani and A. Kudreyko, Harmonic wavelet method towards solution of the Fredholm type integral equations of the second kind, Appl. Math. Comput., 215(12) (2010), 4164-4171.
[10] J.C. Cortes, L. Jodar and L. Villafuerte, Numerical solution of random differential equations: a mean square approach, Math. Comput. Modelling, 45(7-8) (2007), 757-765.
[11] I. Daubechies, Ten Lectures on Wavelets, SIAM, Philadelphia, 1992.
[12] I. Daubechies, S. Jaffard and J.L. Journe, A simple wilson orthonormal basis with exponential decay, SIAM J. Math. Anal., 22(2) (1991), 554--573.
[13] H.G. Feichtinger and T. Strohmer (eds.), Advances in Gabor analysis, Springer Science and Business Media, Davis, U.S.A, 2012.
[14] M.H. Heydari, M.R. Hooshandasl, F.M. Maalek Ghaini and C. Cattani, A computational method for solving stochastic It^{o} Volterra integral equations based on stochastic operational matrix for generalized hat basis functions, J. Comput. Phys., 270(1) (2014), 402-415.
[15] M.H. Heydari, M.R. Hooshmandasl, A. Shakiba and C. Cattani, Legendre wavelets Galerkin method for solving nonlinear stochastic integral equations, Nonlinear Dyn., 85(2) (2016), 1185-1202.
[16] M.H. Heydari, C. Cattani, M.R. Hooshandasl, F.M. Maalek Ghaini, An efficient computational method for solving nonlinear stochastic It^{o} integral equations: Application for stochastic problems in physics, J. Comput. Phys., 283 (2015), 148-168.
[17] M.H Heydari, M.R. Hooshmandasl and F. Mohammadi, Legendre wavelets method for solving fractional partial differential equations with Dirichlet boundary conditions, Appl. Math. Comput., 234 (2014), 267-276.
[18] M.H. Heydari, M.R. Hooshmandasl, F.M.M. Ghaini and F. Fereidouni, Two-dimensional Legendre wavelets for solving fractional poisson equation with Dirichlet boundary conditions, Eng. Anal. Bound. Elem., 37(11) (2013), 1331-1338.
[19] M.H. Heydari, M.R. Hooshmandasl and F.M. Maleak Ghaini, A good approximate solution for linear equation in a large interval using block pulse functions, J. Math. Ext., 7(1) (2013), 17-32.
[20] M.H. Heydari, M.R. Hooshmandasl, F.M. Maalek Ghaini and M. Li, Chebyshev wavelets method for solution of nonlinear fractional integro-differential equations in a large interval, Adv. Math. Phys., 2013 (2013), DOI. 10.1155/2013/482083.
[21] H. Holden, B. Oksendal, J. Uboe and T. Zhang, Stochastic Partial Differential Equations, second ed., Springer, New york, 1998.
[22] S.K. Kaushik and S. Panwar, An interplay between gabor and wilson frames, J. Funct. Spaces Appl., 2013 (2013), DOI. 10.1155/2013/610917.
[23] M. Khodabin, K. Malekinejad, M. Rostami and M. Nouri, Interpolation solution in generalized stochastic exponential population growth model, Appl. Math. Modelling, 36(3) (2012), 1023-1033.
[24] M. Khodabin, K. Malekinejad, M. Rostami and M. Nouri, Numerical approach for solving stochastic Volterra-Fredholm integral equations by stochastic operational matrix, Comput. Math. Appl., 64(6) (2012), 1903-1913.
[25] M. Khodabin, K. Malekinejad, M. Rostami and M. Nouri, Numerical solution of stochastic differential equations by second order Runge- Kutta methods, Appl. Math. Modelling, 53 (2011), 1910-1920.
[26] P.E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations, Springer, Berlin, 1999.
[27] J.J. Levin and J.A. Nohel, On a system of integro-differential equations occurring in reactor dynamics, J. Math. Mech., 9 (1960), 347-368.
[28] K. Maleknejad, M. Khodabin and M. Rostami, Numerical solutions of stochastic Volterra integral equations by a stochastic operational matrix based on block pulse functions, Math. Comput. Modelling, 55(3-4) (2012), 791-800.
[29] K. Maleknejad, M. Khodabin and M. Rostami, A numerical method for solving m-dimensional stochastic Ito-Volterra integral equations by stochastic operational matrix, Comput. Math. Appl., 63(1) (2012), 133-143.
[30] J.J. Levin and J.A. Nohel, On a system of integro differential equations occurring in reactor dynamics, J. Math. Mech., 9(3) (1960), 347-36.
[31] F. Mohammadi, A Chebyshev wavelet operational method for solving stochastic Volterra-Fredholm integral equations, Int. J. Appl. Math. Res., 4(2) (2015), 217-227.
[32] F. Mohammadi, A wavelet-based computational method for solving stochastic It^{o}-Volterra integral equations, J. Comput. Phys., 298(1) (2015), 254-265.
[33] B.KH. Mousavi, A. Askari hemmat and M. H. Heydari, An application of Wilson system in numerical solution of Fredholm integral equations, PJAA, 2 (2017), 61-72.
[34] B. Oksendal, Stochastic Differential Equations, fifth ed. in: An introduction with Applications, Springer, New York, 1998.
[35] E. Platen and N. Bruti-Liberati, Numerical Solution of Stochastic Differential Equations with Jumps in Finance, Springer, Berlin, 2010.
[36] S. Yousefi and A. Banifatemi, Numerical solution of Fredholm integral equations by using CAS wavelets, Appl. Math. Comput., 183(1) (2006), 458-463.