Banach Pair Frames

Document Type: Research Paper

Authors

1 Department of Basic Sciences, Ilam University, Ilam, Iran

2 Vali-e-Asr university

10.22072/wala.2017.60236.1107

Abstract

In this article, we consider pair frames in Banach spaces and   introduce Banach pair frames. Some various concepts in the frame theory such as frames, Schauder frames, Banach frames and atomic decompositions are considered as   special kinds of (Banach) pair frames.  Some frame-like inequalities  for (Banach)  pair frames are presented. The elements that participant  in the construction of (Banach) pair frames are characterized. It is shown that a Banach space  $\mathrm{X}$ has a Banach pair frame with respect to  a Banach scalar sequence space $\ell$, when  it  is precisely isomorphic to a complemented subspace of $\ell$.
It is shown that  if we are allowed to  choose the scalar sequence space, pair frames and Banach pair frames with respect to the chosen scalar sequence space denote the same concept.

Keywords


[1] A. Aldroubi, Q. Sun and W. Tang, $p$-frames and shift invariant subspaces of $L^p$, J. Fourier Anal. Appl., 7(1) (2001), 1-22.
[2] P. Balazs, Basic definition and properties of Bessel multipliers, J. Math. Anal. Appl., 325(1) (2007),  571-585.
[3] P. Balazs and T.S. Diana, Representation of the inverse of a frame multiplier, J. Math. Anal. Appl., 422(2) (2015), 981-994.  
[4] D. Carando, S. Lassalle and P. Schmidberg, The reconstruction formula for Banach frames and duality, J. Approx. Theory, 163(5) (2011),  640-651.
[5] P.G. Casazza, The art of frame theory, Taiwanese J. Math., 4(2) (2000), 129-201.
[6] P.G. Casazza, O. Christensen and D. Stoeva, Frame expansions in separable Banach spaces, J. Math. Anal. Appl., 307(2) (2005), 710-723.
[7] P.G. Casazza, S.J. Dilworth, E. Odell, Th. Schlumprecht and A. Zsak, Coefficient quantization for frames in Banach spaces, J. Math. Anal. Appl., 348(1) (2008), 66-86.
[8] P.G. Casazza, D. Han and D.R. Larson,  Frames for Banach spaces, Contemp. Math., 247 (1999), 149-182.
[9] O. Christensen, An Introduction to Frames and Riesz Bases, Birkh"auser, 2008.
[10] O. Christensen and R.S. Laugesen, Approximately dual frame pairs in Hilbert spaces and applications to Gabor frames, Sampl. Theory Signal Image Process., 9(1-3) (2010), 77-89.
[11] O. Christensen and D.T. Stoeva, $p$-frames in separable Banach spaces, Adv. Comput. Math., 18(2-4) (2003),  117-126.
[12] J.B. Conway, A Course in Functional Analysis, Springer-Verlag, 1990 (2nd Ed).
[13] I. Daubechies, A. Grossmann and Y. Meyer, Painless non-orthogonal expansions, J. Math. Phys., 27(5) (1986), 1271-1283.
[14] R.J. Duffin and A.C. Schaeffer, A Class of nonharmonic Fourier series, Trans. Amer. Math. Soc., 72(2) (1952), 341-366.
[15] H.G. Feichtinger and K. Gröchenig, A unified approach to atomic decompositions via integrable group representations, In book: Function spaces and applications, Springer Berlin Heidelberg, (1988), 52-73.
[16] A. Fereydooni and A. Safapour, Pair frames, Result. Math., 66(1) (2014), 247-263.
[17] A. Fereydooni, A. Safapour and A. Rahimi, Adjoint of pair frames, Sci. Bull., Ser. A, Appl. Math. Phys., 74(2) (2012), 131-140.
[18] C. Fern'{a}ndez,  A. Galbis and E. Primo, Unconditionally convergent multipliers and Bessel sequences,  arXiv:1603.03216 [math.FA], (2016).  
[19] D. Gabor, Theory of communication, Journal of Institution of Electrical Engineers, 93(3) (1946), 429-457.
[20] K. Gr"ochenig, Describing functions: Atomic decompositions versus frames, Monatsh. Math.112(1)  (1991),  1-42.
[21] D. Han and D.R. Larson, Frames, bases and group representations, Mem. Am. Math. Soc., 697(697) (2000).
[22] P.K. Jain, S.K. Kaushik and L.K. Vashisht, Banach frames for conjugate Banach spaces, Z. Anal. Anwend.23(4) (2004), 713-720.  
[23] L.V. Kantorovich and  G.P. Akilov, Functional Analysis in Normed Spaces, Pergamon, 1964.
[24] M. Mirzaee Azandaryani and A. Fereydooni, Pair frames in Hilbert $C^ast-$modules, Proceedings Mathematical Sciences, 128(2) (2018).
[25] D.T. Stoeva, Frames and Bases in Banach Spaces, PhD thesis, 2005.
[26] D.T. Stoeva  and  P. Balazs, Canonical forms of unconditionally convergent multipliers, J. Math. Anal. Appl., 399(1)  (2013), 252-259.  
[27] D.T. Stoeva and P. Balazs, Invertibility of multipliers, Appl. Comput. Harmon. Anal., 33(2) (2012),  292-299.    
[28] R. Young, An Introduction to Nonharmonic Fourier Series, Academic Press, New York, 1980.