A-B-imprimitivity bimodule frames

Document Type: Research Paper


Vali-e-Asr University of Rafsanjan



Frames in Hilbert bimodules are a special case of frames in Hilbert C*-modules. The paper considers A-frames and B-frames and their relationship in a Hilbert A-B-imprimitivity bimodule. Also, it is given that every frame in Hilbert spaces or Hilbert C*-modules is a semi-tight frame. A relation between A-frames and K(H_B)-frames is obtained in a Hilbert A-B-imprimitivity bimodule. Moreover, the last part of the paper investigates dual of an A-frame and a B-frame and presents a common property for all duals of a frame in a Hilbert A-B-imprimitivity bimodule.


[1]  A. Alijani, Dilations of *-Frames and their operator Duals, Preprint.
[2] A. Alijani and M.A. Dehghan, *-Frames in Hilbert C^*-modules, U.P.B. Sci. Bull., Ser. A, 73(4) (2011), 89-106.
[3] P. Casazza, D. Han and D. Larson, Frames for Banach spaces, Contemp. Math., 247 (1999), 149-181.
[4] P.G. Casazza and G. Kutyniok, Frames of subspaces, Contemp. Math., 345 (2004), 87-113.
[5] M. Frank and D.R. Larson, Frames in Hilbert C^*-modules and C^*-algebra, J. Oper. Theory, 48 (2002), 273-314.
[6] E.C. Lance, Hilbert $C^*$-modules, A Toolkit for Operator Algebraists, University of Leeds, Cambridge University Press}, 1995.
[7] G.J. Morphy, C^*-Algebras and Operator Theory, San Diego, California, Academic Press, 1990.
[8] L. Raeburn and D.P. Williams, Morita Equivalence and Continuous-Trace C^*-Algebras, Matemathical Surveys and Monographs, 1998.
[9] W. Sun, G-frames and g-Riesz bases, J. Math. Anal. Appl., 322(1) (2006), 437-452.
[10] N.E. Wegge Olsen, K-Theory and $C^*$-Algebras, A Friendly Approch, Oxford University Press, Oxford, England, 1993.