برخی از نتایج روی معکوس درازین مجموع دو ماتریس با شرایط جدید و کاربردهای آن

Document Type : Research Paper

Authors

گروه ریاضی، دانشکده علوم پایه، دانشگاه کردستان، استان کردستان، ایران

10.22072/wala.2020.129338.1291

Abstract

    معکوسهای تعمیم یافته ی عملگرها و ماتریسها مبحث مهمی در جبر خطی می باشد از جمله معکوس درازین عملگرها و ماتریسها همچنین بدست آوردن معکوس درازین مجموع دو عملگر یا دو  ماتریس که با استفاده از ماتریس های بلوکی و اعمال روی آنها فرمول هایی برای معکوس درازین مجموع ارائه می دهند. تا کنون ریاضیدان های بسیاری در این خصوص کار کرده و مقالات زیادی به چاپ رسانده اند از جمله  Hartwig , Martinez, Y.Wei  و دیگر دانشمندان .
    در این مقاله فرمولی برای بدست آوردن معکوس درازین مجموع دو ماتریس با شرایط خاص را ارائه می‌دهیم و در ادامه با استفاده از فرمول‌های بدست آمده و نتایج آنها، معکوس درازین ماتریس‌های بلوکی را با شرایط خاص و متمم شور تعمیم یافته‌ی برابر با صفر بدست می‌آوریم.

Keywords


[1] A. Ben-Israel and T.N.E. Greville, Generalized Inverses: Theory and Applications, second ed., Springer Verlag, New York, 2003.
 
[2] C. Bu, C. Feng and S. Bai, Representations for the Drazin inverses of the100 sum of two matrices and some block matrices, J. Appl. Math. Comput., 218 (2012), 10226--10237.
 
[3] S.L. Campbell, Singular Systems of Differential Equations, Pitman, London, 1980.
 
[4] S.L. Campbell and C.D. Meyer, Generalized Inverse of Linear  Transformations, Pitman, London, 1979, (Dover, New York, 1991).
    
[5] N. Castro-Gonz´alez, E. Dopazo and M.F. Mart´ınez-Serrano,  On the Drazin inverse of the sum of two operators and its application to operator matrices, J. Math. Anal. Appl.,  350 (2008), 207--215.

[6] N. Castro-Gonz´alez,  Additive perturbations results for the Drazin inverse, Linear Algebra Appl., 397 (2005), 279--297.

[7] D.S. Cvetkovi´c-Ili ´c, D.S. Djordjevi´c and Y. Wei,  Additive result for the generalized Drazin inverse in a Banach space, Linear Algebra Appl., 418 (2006), 53--61.
 
[8] R. Yousefi and M. Dana,  Generalizations of Some Conditions for Drazin Inverses of the Sum of Two Matrices, Filomat, 32(18) (2018), 1417--1430.
 
[9] M. Dana and R. Yousefi,  Formulas for the Drazin inverse of matrices with new conditions and its applications, Int. J. Appl. Comput. Math., 4(1) (2018), doi:10.1007/S40819-017-0459-5.
 
[10] J. Ljubisavljevi´c and D.S. Cvetkovi´c-Ili´c,  Additive results for the Drazin inverse of block matrices and applications, J. Comput. Appl. Math., 235 (12) (2011), 3683--3690.
        
[11] M.P. Drazin,  Pseudoinverse in associative rings and semigroups, Am. Math. Mon., 65 (1958), 506--514.

[12] R.E. Hartwig, X. Li and Y. Wei,  Representations for the Drazin inverse of 2×2 block matrix, SIAM J. Matrix Anal. Appl., 27 (2006), 757--771.
     
[13] R.E. Hartwig, G. Wang and Y. Wei, Some additive results on Drazin inverse, Linear Algebra Appl., 322 (2001), 207--217.
 
[14] M.F. Mart´ınez-Serrano and N. Castro-Gonz´alez,  On the Drazin inverse of block matrices and generalized Schur complement, Appl. Math. Comput., 215 (2009), 2733--2740.
 
[15] J. Miao, Results of the Drazin inverse of block matrices, J. Shanghai Norm. Univ., Nat. Sci., 18 (1989), 25--31.
 
[16] H. Yang and X. Liu, The Drazin inverse of the sum of two matrices and its applications, J. Comput. Appl. Math.235 (2011),  1412--1417.
 
[17] X. Liu, L. Xu and Y. Yu, The explicit expression of the Drazin inverse of sums of two matrices and its application, Ital. J. Pure Appl. Math., 33 (2014), 45--62.
 
[18] L. Guo, j. Chen and H. Zou, Representations for the Drazin Inverse of the Sum of Two Matrices and its Applications, Bull. Iran. Math. Soc., 45 (2019), 683--699.
    
[19] X. Liu, The representations for the Drazin inverse of a sum of two matrices involving an idempotent matrix and applications, J. Comput. Anal. Appl., 18(1) (2015), 121--137.
 
[20] Y. Wei, X. Li, F. Bu and F. Zhang, Relative perturbation bounds for the eigenvalues of diagonalizable and singular matrices-application of perturbation theory for simple invariant subspaces, Linear Algebra Appl., 419 (2006), 765--771.
 
[21] X. Chen and R.E. Hartwig,  The group inverse of a triangular matrix, Linear Algebra Appl., 237-238} (1996), 97--108.
 
[22] A. Tajmouati, M. Karmouni and M.B. Mohamed Ahmed, New extensions of cline’s formula for generalized Drazin-Riesz inverses, Revista de la Uni'{o}n Matem'{a}tica Argentina, 60(2) (2019), 567--572.