[1] M.R. Abdollahpour, Dilation of dual $g$-frames to dual g-Riesz bases, Banach J. Math. Anal., 9(1) (2015), 54--66.
[2] M.R. Abdollahpour and M.H. Faroughi, Continuous g-frames in Hilbert spaces, Southeast Asian Bull. Math., 32(1) (2008), 1--19.
[3] M.R. Abdollahpour and Y. Khedmati, On some properties of continuous g-frames and Riesz-type continuous g-frames, Indian Journal of Pure and Applied Mathematics, 48(1) (2017), 59--74.
[4] S.T. Ali, J.P. Antoine and J.P. Gazeau, Continuous frames in Hilbert space, Ann. Phys., 222(1) (1993), 1--37.
[5] O. Christensen, An Introduction to Frames and Riesz Bases, Applied and Numerical Harmonic Analysis, Boston: Birkh{"a}user, (2016).
[6] R.J. Duffin and A.C. Schaeffer, A class of nonharmonic Fourier series, Trans. Am. Math. Soc., 72(2) (1952), 341--366.
[7] J.P. Gabardo and D. Han, Frames associated with measurable space, Adv. Comput. Math., 18(2) (2003), 127--147.
[8] X. Guo, Constructions of frames by disjoint frames, Numer. Funct. Anal. Optim., 35(5) (2014), 576--587.
[9] X. Guo, Characterizations of disjointness of g-frames and constructions of g-frames in Hilbert spaces, Complex Anal. Oper. Theory, 8(7) (2014), 1547--1563.
[10] D. Han and D. Larson, Frames, bases and group representations, Mem. Am. Math. Soc., 697 (2000), 149--182.
[11] W. Sun, G-frames and g-Riesz bases, J. Math. Anal. Appl., 322(1) (2006), 437--452.
[12] Z.Q. Xiang, New characterizations of Riesz-type frames and stability of alternate duals of continuous frames, Adv. Math. Phys., 2013(697) (2013), 1--11.