مسأله گسترش و خواص جدیدی از $K$-قاب ها

Document Type : Research Paper

Authors

1 گروه علوم پایه، موسسه آموزش عالی خراسان، مشهد، ایران

2 گروه ریاضی محض، دانشکده علوم ریاضی، دانشگاه فردسی مشهد، ایران

10.22072/wala.2019.108035.1224

Abstract


    در این مقاله قصد داریم مفهوم گسترش هر دنباله بسل دلخواه در فضای هیلبرت تفکیک‌پذیر
    $ \mathcal{H} $
    را به یک
    $K$-قاب چسبان برای
    $ \mathcal{H} $
    بیان و بررسی ‌کنیم. همچنین گسترش دنباله های بسل به قابهای
    $ K $
    - دوگان را مورد مطالعه قرار می‌دهیم. به خصوص، مشخصه‌ای را بیان می‌کنیم که بتوان با افزودن خانواده متناهی از بردارها به دنباله‌های بسل آنها را به قابهای
    $ K $
    -دوگان تبدیل نمود.

Keywords


[1] F. Arabyani and A.A. Arefijamaal, Some constructions of K-frames and their duals, Rocky Mt. J. Math., 47(6) (2017), 1749--1764.

[2] D. Baki'{c} and T. Beri'{c},  Finite extensions of Bessel sequences, Banach J. Math. Anal., 9(4) (2015), 1--13.

[3] B.A. Barnes, Majorization, Range inclusion, and factorization for bounded linear operators, Proc. Am. Math. Soc., 133(1) (2004), 155--162.

[4] J.J. Benedetto and M.W. Frazier, Wavelets, Mathematics and Applications, CRC Press, Inc., Florida, 1994.

[5] H. Bolcskei, F. Hlawatsch and H.G. Feichtinger, Frame-theoretic analyssis of over-sampled filter banks, IEEE Trans. Signal Process., 46(1) (1998), 3256--3268.

[6] P.G. Casazza and N. Leonhard, Classes of finite equal norm Parseval frames, Contemp. Math., 451(1) (2008), 11--31.

[7] O. Christensen, H.O. Kim and R.Y. Kim, Extensions of Bessel sequences to dual pairs of frames, Appl. Comput. Harmon. Anal., 34(1) (2013), 224--233.

[8] O. Christensen, An Introduction to Frames and Riesz Bases, Birkh$ddot{a}$user, Boston, 2016.

[9] I. Daubechies, A. Grossmann and Y. Meyer, Painless non-orthogonal expansions, J. Math. Phys., 27(1) (1986), 1271--1283.

[10] I. Deepshikhal and L.K. Vashisht, Extension of Bessel sequences to dual frames in Hilbert spaces, Sci. Bull., Ser. A, Appl. Math. Phys., 79(2) (2017), 71--82.

[11] R.J. Duffin and A.C. Schaeffer, A class of nonharmonic Fourier series, Trans. Am. Math. Soc., 72 (1952),
 341--366.

[12] Y.C. Eldar, Sampling with arbitrary sampling and reconstruction spaces and oblique dual frame vectors, J. Fourier. Anal. Appl., 9(1) (2003), 77--96.

[13] Y.C. Eldar and T. Werther, General framework for consistent sampling in Hilbert spaces, Int. J. Wavelets Multiresolut. Inf. Process., 3(3) (2005), 347--359.

[14] H.G. Feichtinger and K. Gr$ddot{o}$chenig, A Unified Approach to Atomic Decompositions via Integrable Group Representations, In: Proc. Conf. Function Spaces and Applications, Lecture Notes in Math., 1302, Springer, Berlin-Heidelberg-New York, 1988.

[15] P.J.S.G. Ferreira, Mathematics for Multimedia Signal Processing II: Discrete Finite Frames and Signal Reconstruction, In: Byrnes, J.S. (ed.) Signal processing for multimedia, IOS Press, Amsterdam, 1999.

[16] L. Gu{a}vruc{t}a, Frames for operators, Appl. Comput. Harmon. Anal., 32(1) (2012), 139--144.

[17] K. Gr$ddot{o}$chenig, Describing functions: Atomic decompositions versus frames, Monatsh. Math., 112(1) (1991), 1--42.

[18] D.F. Li and W.C. Sun, Expansion of frames to tight frames, Acta Math. Sin., Engl. Ser., 25 (2009), 287--292.

[19] M. Pawlak and U. Stadtmuller, Recovering band-limited signals under noise, IEEE Trans. Inf. Theory, 42 (1994), 1425--1438.

[20] Zh.Q. Xiang and Y.M. Li, Frame sequences and dual frames for operators, Sci. Asia, 42 (2016), 222--230.

[21] X. Xiao, Y. Zhu and L. Gu{a}vruc{t}a, Some properties of K-frames in Hilbert spaces, Result. Math., 63(3-4) (2013), 1243--1255.

[22] R. Young, An Introduction to Nonharmonic Fourier Series, Academic Press., New York, 1980.