[1] J. W. Demmel, Applied Numerical Linear Algebra, SIAM, Philadelphia, 1997.
[2] J.W. Demmel, On condition numbers and the distance to the nearest ill-posed problem, Numer.Math., 51 (1987),
251–289.
[3] I. Gohberg, P. Lancaster and L. Rodman, Matrix Polynomials, Academic Press, New York, 1982.
[4] T. Kaczorek, Polynomial and Rational Matrices: Applications in Dynamical Systems Theory, Springer-Verlag,
London, 2007.
[5] P. Lancaster, Lambda-Matrices and Vibrating Systems, Dover Publications, 2002.
[6] J.M. Gracia, Nearest matrix with two prescribed eigenvalues, Linear Algebra Appl., 401 (2005), 277-294.
[7] R.A. Lippert, Fixing two eigenvalues by a minimal perturbation, Linear Algebra Appl., 406 (2005) 177-200.
[8] A.N. Malyshev, A formula for the 2-norm distance from a matrix to the set of matrices with a multiple eigen-
value, Numer. Math., 83 (1999) 443-454.
[9] A.S. Markus, Introduction to the Spectral Theory of Polynomial Operator Pencils, Amer. Math., Society, Provi-
dence, RI, Translations of Mathematical Monographs, Vol. 71, 1988.
[10] J. Nocedal, S.J. Wright, Numerical Optimization, second edition, Springer Series in Operation Research and
Financial Engineering, 2006.
[11] N. Papathanasiou, P. Psarrakos, The distance from a matrix polynomial to matrix polynomials with a prescribed
multiple eigenvalue, Linear Algebra Appl., 429 (2008), 1453-1477.
[12] A. Ruhe, Properties of a matrix with a very ill-conditioned eigenproblem, Numer. Math., 15 (1970), 57–60.
[13] J.H. Wilkinson, The Algebraic Eigenvalue Problem, Claredon Press, Oxford, 1965.
[14] J.H. Wilkinson, Note on matrices with a very ill-conditioned eigenproblem, Numer. Math., 19 (1972), 175–178.
[15] J.H. Wilkinson, On neighbouring matrices with quadratic elementary divisors, Numer. Math., 44 (1984), 1–21.
[16] J.H. Wilkinson, Sensitivity of eigenvalues, Util. Math., 25 (1984), 5–76.
[17] J.H. Wilkinson, Sensitivity of eigenvalues II, Util. Math., 30 (1986), 243–286.