On the characterization of subrepresentations of shearlet group

Document Type: Research Paper

Authors

Department of Pure Mathematics, Ferdowsi University of Mashhad, Mashhad, Islamic Republic of Iran

Abstract

We regard the shearlet group as a semidirect product group and show that its standard representation is,typically, a quasiregu- lar representation. As a result we can characterize irreducible as well as square-integrable subrepresentations of the shearlet group.

Keywords


 [1] G.S. Alberti, F. De Mari, E. De Vito and L. Mantovani, Reproducing Subgroups of S p(2, R). Part II: Admissible
Vectors, Monatsh. Math., 173(3)(2014), 261-307.
[2] S.T. Ali, J.P. Antoine, and J.P. Gazeau, Coherent States, Wavelets and Their generalizations. New York.
Springer-Verlag, 2000.
[3] J.P. Antoine, P. Carrette, R. Murenzi, and B. Piette, Image analysis with two-dimensional continuous wavelet
transform, Signal Process. 31(1993), 241-272.
[4] A.A. Arefijamaal, R.A. Kamyabi-Gol, A characterization of square integrable representat-ions associated with
CWT. J. Sci. Islam. Repub. Iran 18(2)(2007), 159-166.
[5] R.H. Bamberger and M.J.T. Smith, A filter bank for the directional decomposition of images: theory and design,
IEEE Trans. Signal Process., 40(1992) , 882-893.
[6] E.J. Candes and D.L. Donoho, ` New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities, Comm. Pure and Appl. Math., 56 (2004), 216-266.
[7] S.H.H. Chowdhurya, S.T. Ali, All the groups of signal analysis from the (1+1)-affine Galilei group, J. Mathematical Physics, 52 (2011), 103-504.
[8] S. Dahlke, G. Kutyniok, P. Maass, C. Sagiv, H.-G. Stark, and G. Teschke, The uncertainty principle associated
with the continuous shearlet transform, Int. J. Wavelets Multiresolut. Inf. Process. 6 (2008), 157-181.
[9] S. Dahlke, G. Kutyniok, G. Steidl, and G. Teschke, Shearlet coorbit spaces and associated Banach frames.
Appl. Comput. Harm. Anal., 27(2) (2009), 195-214.
[10] S. Dahlke, G. Steidl, and G. Teschke, The continuous shearlet transform in arbitrary space dimensions. J.
Fourier Anal. Appl., 16(2010), 340-354.
[11] G.B. Folland, Real Analysis, John wiley, 1999.
[12] H. Fuhr, ¨ Abstract harmonic analysis of continuous wavelet transforms, vol. 1863 Lecture Notes in Mathematics.
Springer -Verlag, 2005.
[13] K. Guo, W.-Q Lim, D. Labate, G.Weiss and E. Wilson,Wavelets with composite dilations, Electron. Res. Announc. Amer. Math. Soc., 10(2004), 78-87.
[14] R.A. Kamyabi-Gol, V. Atayi, Abstract shearlet transform, preprint.
[15] N. Kingsbury, Complex wavelets for shift invariant analysis and filtering of signals, Appl. Computat. Harmon.
Anal., 10(2001), 234-253.
[16] N. Kingsbury, Image processing with complex wavelets, Phil. Trans. Royal Society London A, 357(1999), 2543-
2560.
[17] D. Labate, W.-Q. Lim, G. Kutyniok, and G. Weiss, Sparse multidimensional representation using shearlets,
Wavelets XI (San Diego, CA, 2005), 254-262, SPIE Proc. , 5914, Bellingham, WA., 2005.
[18] E.P. Simoncelli, W.T. Freeman, E.H. Adelson, D.J. Heeger, Shiftable multiscale transforms, IEEE Trans. Inform.
Theory, 38 (1992), 587-607.