Let $A=U|A|$ be the polar decomposition of an operator $A$ on a Hilbert space $mathscr{H}$ and $lambdain(0,1)$. The $lambda$-Aluthge transform of $A$ is defined by $tilde{A}_lambda:=|A|^lambda U|A|^{1-lambda}$. In this paper we show that emph{i}) when $mathscr{N}(|A|)=0$, $A$ is self-adjoint if and only if so is $tilde{A}_lambda$ for some $lambdaneq{1over2}$. Also $A$ is self adjoint if and only if $A=tilde{A}_lambda^ast$, emph{ii}) if $A$ is normaloid and either $sigma(A)$ has only finitely many distinct nonzero value or $U$ is unitary, then from $A=ctilde{A}_lambda$ for some complex number $c$, we can conclude that $A$ is quasinormal, emph{iii}) if $A^2$ is self-adjoint and any one of the $Re(A)$ or $-Re(A)$ is positive definite then $A$ is self-adjoint, emph{iv}) and finally we show that $$opnorm{|A|^{2lambda}+|A^ast|^{2-2lambda}oplus0}leqopnorm{|A|^{2-2lambda}oplus|A|^{2lambda}}+ opnorm{tilde{A}_lambdaoplus(tilde{A}_lambda)^ast}$$ where $opnorm{cdot}$ stand for some unitarily invariant norm. From that we conclude that $$||A|^{2lambda}+|A^ast|^{2-2lambda}|leqmax(|A|^{2lambda},|A|^{2-2lambda})+|tilde{A}_lambda|.$$