%0 Journal Article
%T Additive maps preserving the fixed points of Jordan products of operators
%J Wavelet and Linear Algebra
%I Vali-e-Asr university of Rafsanjan
%Z 2383-1936
%A Hosseinzadeh, Roja
%D 2022
%\ 11/01/2022
%V 9
%N 1
%P 31-36
%! Additive maps preserving the fixed points of Jordan products of operators
%K Preserver problem
%K Fixed point
%K Jordan product
%R 10.22072/wala.2022.540575.1349
%X Let $\mathcal{B(X)}$ be the algebra of all bounded linear operators on a complex Banach space $\mathcal{X}$. In this paper, we determine the form of a surjective additive map $\phi: \mathcal{B(X)} \rightarrow \mathcal{B(X)}$ preserving the fixed points of Jordan products of operators, i.e., $F(AoB) \subseteq F(\phi(A) o\phi(B))$, for every $A,B \in \mathcal{B(X)}$, where $AoB=AB+BA$, and $F(A)$ denotes the set of all fixed points of operator $A$.
%U http://wala.vru.ac.ir/article_697932_5239814b6e4a1f9ff9f18b7a715520e0.pdf