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1. Introduction

Tensors (multidimensional arrays) have many similarities with matrices and many related re-
sults of matrices such as eigenvalue and eigenvector can be extended to tensors in the multi-linear
algebra. Furthermore, structured matrices such as interval matrices can also be extended to interval
tensors and these are becoming the focus of recent tensor research [1, 14].

During the last three decades the role of compact intervals as independent objects has continu-
ously increased in numerical analysis when verifying or enclosing solutions to various mathemat-
ical problems or when proving that such problems cannot have a solution in a particularly given
domain. This was possible by viewing intervals as extensions of real or complex numbers, and by
introducing interval matrices and interval tensors. Interval analysis was first introduced by Moore
[12, 13]. Since their introduction, interval matrices have been used in some applications such as
dynamical systems, mechanics, and engineering [10, 13, 15, 16]. Interval tensors have been trea-
sured for solving multi-linear systems of equations [1], and this has motivated further research
[14].

The linear complementarity problem (LCP) appears in many optimization and operations re-
search models such as quadratic programming, bimatrix games, or equilibria in specific economies
[3]. Properties of the solution set of interval LCP relate with properties of interval structure ma-
trices, such as R(R0)−matrices and column sufficient matrices [9]. Recently, Song and Qi [18]
extended the linear complementarity problem to the tensor complementarity problem, a special
class of nonlinear complementarity problems, denoted by TCP. During last several years, the TCP
attains much attraction and has been studied extensively with respect to theory, to solution meth-
ods and applications. In recent years, various tensors with special structures have been studied
(for details, see [2, 5, 18, 19]). Song and Qi [17] studied P(P0)−tensors and B(B0)−tensors and
the properties of TCP was studied by Ding, Luo and Qi [5] for wP−tensor. Also, concepts such as
R(R0)-tensor and exceptionally regular tensor have been introduced and considered the solvability
of the TCP [18, 19]. In the theory of TCP, column sufficient tensors were introduced by Chen et
al. [2] to the study unique solution of TCP.

As discussed previously with regard to application of TCP, it is appropriate that we extend the
concept of interval R(R0)−matrices and interval column sufficient matrices to interval R(R0)−tensors
and interval column sufficient tensors. Also, we show that those properties of interval structure
matrices still true for interval structure tensors.

In this paper, we make the following contributions. In Section 2, the basic definitions and
concepts used in this paper are provided. In Section 3, we define important classes of interval
tensors, such as R(R0)-tensor, ER-tensor, wP-tensor, and column sufficient of the interval tensors
and show that some results in [9, 19] hold for these classes of interval tensors as well. Also, the
relationship between these classes of interval tensors and some other structured tensors is shown.

2. Background and basic concepts

We begin this section with some definitions and statements that are needed for the main results
of our work. First, add a comment on the notation that is used. Vectors are written as {x, y, · · · },
matrices correspond to {A, B, · · · } and tensors are written as {A,B, · · · } .Denote [n] = {1, 2, · · · , n}.
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Let R(C) be the set of all real (complex) numbers, and Rn(Cn) be the set of all dimension n real
(complex) vectors. x ≥ 0 (x > 0) means xi ≥ 0 (xi > 0) for all i ∈ [n]. Let Rn

+ = {x ∈ Rn |

x ≥ 0} be the positive cone in Rn. An order m dimension n real tensor A = (ai1i2···im), denoted by
A ∈ Rn1×···×nm , consists of nm entries:

ai1i2···im ∈ R, ∀ i j = 1, · · · , n, j = 1, · · · ,m.

If n1 = · · · = nm = n, then it is saidA is an m-order n-dimensional cubical tensor or for simplicity
just m-order n-dimensional tensor. A vector is a tensor of order 1 and a matrix is a tensor of order
2. A tensorA = (ai1i2···im) ∈ Rn1×···×nm is called nonnegative (positive) if

ai1i2···im ≥ 0 (ai1i2···im > 0), ∀ i j = 1, · · · , n, j = 1, · · · ,m.

A tensorA is said to be symmetric [11] if its entries ai1i2···im are invariant under any permutation of
m indices (ai1i2···im). For more information about basic definitions and properties of tensors refer to
[8, 11]. All the tensors discussed in this paper are real.

For any two tensors, A = (ai1···im), and B = (bi1···im) ∈ Rn1×···×nm of identical order and dimen-
sions, their inner product is defined as

〈A,B〉 =
∑
i1···im

ai1···imbi1···im .

Definition 2.1. If A ∈ Rn1×···×nm is an m-order tensor and B ∈ RJ×nk is a matrix, then A ×k B
denotes the mode-k product ofA with B, this product is of size n1 × · · · × nk−1 × J × nk+1 × · · · × nm

and each element of it is defined as follows

(A×k B)i1,··· ,ik−1, j,ik+1,··· ,im =

nk∑
ik=1

ai1···imb j,ik .

If we do the mode-k product ofA and B for all possible k ∈ [m] as

A×1 B ×2 · · · ×m B,

and B is reduced to some row vector, say xT = (x1, · · · , xn) , the following frequently used notations
are given as below:

Axm ≡ A ×1 xT ×2 · · · ×m xT =

n∑
i1···im=1

ai1···im xi1 · · · xim ∈ R,

Axm−1 ≡ A ×2 xT ×3 · · · ×m xT =

n∑
i2···im=1

ai,i2···im xi2 · · · xim ∈ Rn.

We call a number λ ∈ C an eigenvalue of A if it and a nonzero vector x ∈ Cn are solutions of the
following homogeneous polynomial equations:(

Axm−1
)

i
= λxm−1

i , ∀i = 1, · · · , n, (2.1)
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and call the solution x an eigenvector ofA associated with the eigenvalue λ. If we denote x[m−1] as
a vector in Cn such that its ith component is xm−1

i , then (2.1) can be simply expressed as

Axm−1 = λx[m−1].

The set of all the eigenvalues ofA is called the spectrum ofA. The largest modulus of the elements
in the spectrum ofA is called the spectral radius ofA, denoted as ρ(A).

Let us recall the PerronFrobenius theorem for nonnegative tensors given in [6, 20].

Theorem 2.2. (The PerronFrobenius theorem for nonnegative tensors) IfA is a nonnegative tensor
of order m and dimension n, then ρ(A) is an eigenvalue of A with a nonnegative eigenvector
x ∈ Rn

+.

Interval linear algebra is a mathematical field developed from classical linear algebra. The
only difference is, that we do not work with real numbers but with real closed intervals xI :=[
x, x

]
, where x ≤ x. Sometimes in applications, we do not know some parameters precisely, that

is why we rather use intervals of possible values. When the components of a tensor possess
interval uncertainty, we have an interval tensor. In applied problems in which there is minimal
information about the nature of the tensor coefficient uncertainty, the tensor is an interval. In
[1], Bozorgmanesh et al. introduced interval tensors. An interval tensor is a tensor so that every
element is an interval. An m-order n-dimensional cubical interval tensor is denoted by AI :=[
A,A

]
whereA andA are real tensors, and

AI(i1, · · · , im) =
[
A(i1, · · · , im),A(i1, · · · , im)

]
.

We can also presentAI in the form ofAI =
[
Ac −A∆,Ac +A∆

]
, where

Ac =
1
2

(A +A), A∆ =
1
2

(A−A).

Note that by definition, we have A∆ ≥ 0. The above notations can be also used for interval
matrices and vectors. The set of all interval tensors of size n1 × · · · × nm is denoted by IRn1×···×nm .

Example 2.3. Consider the following 2 × 2 × 2 interval tensor,

AI(:, :, 1) =

(
[2, 20] [14, 100]
[0, 1] [5, 21]

)
, AI(:, :, 2) =

(
3 [−9,−7]

[0, 6] [−3,−2]

)
.

Here, the correspondingAc andA∆ are as follows,

Ac(:, :, 1) =

(
11 57
0.5 13

)
, Ac(:, :, 2) =

(
3 −8
3 −2.5

)
,

A∆(:, :, 1) =

(
9 43

0.5 8

)
, A∆(:, :, 2) =

(
0 1
3 0.5

)
.
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Before ending this section, we present the following definition and result of [1], which will be
used in the sequel.

Definition 2.4. [1, Definition 12] LetAI be an n-dimensional cubical interval tensor. For vectors
y j ∈ Rn, 1 ≤ j ≤ n, define

Ay1y2···ym = Ac − Dy1(A∆ ×m Dy2 ×m−1 Dy3 · · · ×2 Dym), (2.2)

where Dy j is a diagonal matrix having y j on its diagonal, that is, Dy j = diag(y j).

Proposition 2.5. [1, Proposition 3] SupposeAI is defined as before, if for y j ∈ Rn, 1 ≤ j ≤ n , we
have

∣∣∣y j
∣∣∣ = e = (1, 1, · · · , 1)T , then we have,

(
Ay1···ym

)
i1i2···im

=


(
Ac −A∆

)
i1i2···im

i f y1
i1 × · · · × ym

im = 1,(
Ac +A∆

)
i1i2···im

i f y1
i1 × · · · × ym

im = −1.
(2.3)

3. Particular interval tensor classes

In this section, some structure of interval matrices are generalized to interval tensors. Whereas
some of their proofs are similar to their analogous matrix case (see [9]), others will be proved here.

In the following definition, we review the basic definitions of some structure tensors for the
study of some classes of interval tensors.

Definition 3.1. [5, 17, 18, 19] An m-order n-dimensional tensorA is said to be
(1) positive definite (PD), if for any nonzero vector x ∈ Rn,Axm > 0,
(2) positive semidefinite (PSD), if for any vector x ∈ Rn,Axm ≥ 0,
(3) P-tensor, if for each nonzero x ∈ Rn, there exists some index i such that

xi

(
Axm−1

)
i
> 0, (3.1)

(4) P0-tensor, if for each nonzero x ∈ Rn, there exists some index i such that

xi , 0 and xi

(
Axm−1

)
i
≥ 0, (3.2)

(5) wP-tensor, if for each nonzero x ∈ Rn, there exists some index i such that

xm−1
i

(
Axm−1

)
i
> 0, (3.3)

(6) wP0-tensor, if for each nonzero x ∈ Rn, there exists some index i such that

xi , 0 and xm−1
i

(
Axm−1

)
i
≥ 0, (3.4)

(7) semi-positive (SP), if for each x ∈ Rn
+\ {0}, there exists an index i ∈ [n] such that

xi > 0 and
(
Axm−1

)
i
≥ 0,
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(8) strictly semi-positive (SSP), if for each x ∈ Rn
+\ {0}, there exists an index i ∈ [n] such that

xi > 0 and
(
Axm−1

)
i
> 0,

(9) strictly copositive, ifAxm > 0 for all x ∈ Rn
+\ {0} ,

(10) copositive, ifAxm ≥ 0 for all x ∈ Rn
+\ {0} ,

(11) R-tensor, if there exists no (x, t) ∈
(
Rn

+\ {0}
)
× R+ such that

(
Axm−1

)
i
+ t = 0, i f xi > 0,(

Axm−1
)

i
+ t ≥ 0, i f xi = 0,

(3.5)

(12) R0-tensor, if the system (3.5) has no nonzero solution when t = 0, i.e., there exists no x ∈
Rn

+\ {0} such that 
(
Axm−1

)
i
= 0, i f xi > 0,(

Axm−1
)

i
≥ 0, i f xi = 0,

(3.6)

(13) ER-tensor(exceptionally regular tensor), if there exists no (x, t) ∈
(
Rn

+\ {0}
)
× R+ such that

(
Axm−1

)
i
+ txi = 0, i f xi > 0,(

Axm−1
)

i
≥ 0, i f xi = 0.

(3.7)

Lemma 3.2. Clearly, every strictly semi-positive tensor is a semi-positive tensor and every P0-
tensor is certainly semi-positive. When m = 2, an ER-tensor reduces to a matrix, and we call it an
ER-matrix. It is obvious that every R-tensor is an R0-tensor, but the converse does not hold. From
the definition of strictly semi-positive tensor, we can get that the class of strictly semi-positive
tensors is a subset of the class of ER-tensors. Note that the class of ER-tensors is different from
the class of R-tensors [19, Examples 3.1, 3.2].

Now, we recall the following result on the properties of the interval tensor which is important
to obtain some theoretical results in this paper.

Corollary 3.3. [14] Let AI = [A,A] be an m-order n-dimensional interval tensor and x ∈ Rn
+.

Then for each A ∈ [A,A] and each i ∈ {1, · · · , n}, we have
(
Axm−1

)
i
≥

(
Axm−1

)
i

and hence
Axm−1 ≥ Axm−1.

Definition 3.4. [14] Let AI be an m-order n-dimensional interval tensor. AI is said to be an
interval P, P0, PD, PSD, SP, SSP, and (strictly) copositive tensor if every A ∈ AI is a P, P0, PD,
PSD, SP, SSP, and (strictly) copositive tensor.

3.1. Interval wP(wP0)-tensors
Base on interval P(P0)-tensors, we define interval wP(wP0)-tensors, and then we investigate

their properties.
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Definition 3.5. Let AI be an m-order n-dimensional interval tensor. AI is called an interval
wP(wP0)-tensor if everyA ∈ AI is a wP(wP0)-tensor.

Recently, Rahmati et al. [14, Theorem 3.7] proved the following theorem for the P-tensors.
We further present that this result can also be applied to the wP-tensors.

Theorem 3.6. An m-order n-dimensional interval tensorAI is a wP-tensor if and only if for each
z ∈ Z,Az···z is a wP-tensor, where Z denotes the set of all ±1 vectors, i.e., Z = {z ∈ Rn : |z| = e} .

Proof. If AI is a wP-tensor, then each Az···z is a wP-tensor, since Az···z ∈ A
I for each z ∈ Z.

Conversely, let each Az···z be a wP-tensor. Take A ∈ AI , x , 0. Define z = sgn(x) , |x| = Dzx,
Dz = diagz. SinceAz···z is a wP-tensor, there exists an i ∈ {1, · · · , n} such that xm−1

i

(
Az···zxm−1

)
i
> 0.

Then we have

xm−1
i

(
Axm−1

)
i

= xm−2
i

∑
i2···im

(Ac)ii2···im xixi2 · · · xim +
∑
i2···im

(A−Ac)ii2···im xixi2 · · · xim


≥ xm−2

i

∑
i2···im

(Ac)ii2···im xixi2 · · · xim −
∑
i2···im

A∆
ii2···im |xi|

∣∣∣xi2

∣∣∣ · · · ∣∣∣xim

∣∣∣
= xm−2

i

∑
i2···im

(
(Ac)ii2···im − Dz

(
A∆

ii2···im ×m Dz · · · ×2 Dz

))
xixi2 · · · xim


= xm−1

i

(
Az···zxm−1

)
i
> 0.

HenceA is a wP-tensor. This proves thatAI is a wP-tensor.

Proposition 3.7. Let AI be an m-order n-dimensional interval tensor, x ∈ Rn and z = sgn(x).
Then for eachA ∈ AI , we have

xm−1
i

(
Axm−1

)
i
≥ xm−1

i

(
Az···zxm−1

)
i
, ∀i ∈ [n].

Proof. This follows from Theorem 3.6.

The following corollary is a sufficient and necessary condition for an interval tensor to be an
interval wP-tensor.

Corollary 3.8. An m-order n-dimensional interval tensorAI is an interval wP-tensor if and only
if for each nonzero vector x ∈ Rn, and z ∈ Z there exists a positive diagonal matrix Dx and Az···z

such that
〈Dxx[m−1],Az···zxm−1〉 > 0.

Proof. It is similar to the proof of [5, Theorem 2.3].

The proof of the following proposition is similar to the proof of [5, Proposition 3.1].

Proposition 3.9. An interval positive definite tensor is an interval wP-tensor, and an interval
positive semidefinite tensor is an interval wP0-tensor.
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3.2. Interval multi-linear systems
In [1], Bozorgmanesh et. al extended the basic linear interval system to interval multi-linear

systems.
Let Ax = b, A ∈ AI , b ∈ bI where AI is a real interval tensor and bI is a real interval vector.
This system is called an interval multi-linear system. The solution set of this system is defined as
follows,

S
(
AI , bI

)
= {x ∈ Rn| Ax = b,A ∈ AI , b ∈ bI}.

A system is called solvable if it has a solution, and feasible if it has a nonnegative solution. A sys-
tem AI x = bI is said to be weakly solvable (feasible) if some system Ax = b with data A ∈ AI ,
b ∈ bI is solvable (feasible), and it is called strongly solvable (feasible) if each system Ax = b
with dataA ∈ AI , b ∈ bI is solvable (feasible).
To characterization of weakly feasible interval multi-linear systems, we need the following theo-
rem.

Theorem 3.10. [1] Let AI =
[
Ac −A∆,Ac +A∆

]
be a cubical m-order interval tensor and bI =[

bc − bδ, bc + bδ
]

be an interval vector, then the solution set is

S
(
AI , bI

)
= {x ∈ Rn| |Acx(m−1) − bc| ≤ A∆|x|(m−1) + bδ}.

The following theorem is the extension of [7, Theorem 2.13] for the interval tensor case.

Theorem 3.11. A systemAI x = bI is weakly feasible if and only if the system

Axm−1 ≤ b (3.8)

−Axm−1 ≤ −b (3.9)

is feasible.

Proof. If AI x = bI is weakly feasible, then it possesses a nonnegative weak solution x that by
Theorem 3.10 satisfies

|Acx(m−1) − bc| ≤ A∆|x|(m−1) + bδ, (3.10)

thus
−A∆|x|(m−1) − bδ ≤ Acx(m−1) − bc ≤ A∆|x|(m−1) + bδ, (3.11)

which is (3.8), (3.9). Conversely, if (3.8), (3.9) has a nonnegative solution x, then it satisfies (3.10)
and (3.11) and by Theorem 3.10 it is a nonnegative weak solution to AI x = bI which means that
system is weakly feasible.
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3.3. Interval R0-tensor, R-tensor and ER-tensor
Interval R(R0)-matrices were defined by Hladk [9], which arose in connection with the linear

complementarity problems. In this part, we extend this notion to interval R(R0)-tensors. On the
other hand, we introduce the definition of ER-tensor for interval tensors and several of its prop-
erties are presented. Furthermore, the equivalent definition of R0(R)-tensor and ER-tensor are
obtained.

In the first, the principal subtensors [2] are defined as follows:
Let α, β ⊆ [n], β := [n] \ α be an index sets, then the principal subtensors Aα = (aαi1···im) and

Aβα = (aβαi1···im
) is defined as follows,

aαi1···im := ai1···im , i1 · · · im ∈ α,

and
aβαi1···im

:= ai1···im , i1 ∈ β, i2 · · · im ∈ α.

Theorem 3.12. Let A be an n-dimensional cubical tensor. The following two statements are
equivalent.
(a)A is a R0-tensor.
(b) For each index set ∅ , α ⊆ [n], the system

Aαxm−1 = 0,

Aβαxm−1 ≥ 0,
0 , x ≥ 0,

(3.12)

is infeasible, where β := [n] \ α.

Proof. For sufficiency, suppose system (3.12) has solution x for some α ⊆ [n]. Let

zi =

{
xi i ∈ α,
0 i ∈ β.

The vector z is a solution of the system (3.6), which is a contradiction. Conversely, suppose x is a
solution of system (3.6). Define α = {i : xi > 0}, it follows that x satisfies system (3.12).

Next, it can be shown that a result similar to Theorem 3.12 trivially holds for interval R, ER-
tensor.

Theorem 3.13. Let A be an n-dimensional cubical tensor. The following two statements are
equivalent.
(a)A is a R-tensor.
(b) For each index set ∅ , α ⊆ [n], the system

Aαxm−1 + et = 0,

Aβαxm−1 + et ≥ 0,
0 , x ≥ 0, t ≥ 0,

(3.13)

is infeasible, where β := [n] \ α.
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Proof. Similar to the proof of Theorem 3.12.

Theorem 3.14. Let A be an n-dimensional cubical tensor. The following two statements are
equivalent.
(a)A is an ER-tensor.
(b) For each index set ∅ , α ⊆ [n], the system

Aαxm−1 + tx = 0,

Aβαxm−1 ≥ 0,
0 , x ≥ 0, t ≥ 0,

(3.14)

is infeasible, where β := [n] \ α.

Proof. Similar to the proof of Theorem 3.12.

Definition 3.15. Let AI be an m-order n-dimensional interval tensor. AI is called an interval
R0-tensor, R-tensor, and ER-tensor if everyA ∈ AI is a R0-tensor, R-tensor and ER-tensor.

The following proposition is proved using an approach similar to its analogous matrix case [9].

Proposition 3.16. Let AI =
[
A,A

]
be an m-order n-dimensional interval tensor. Then AI is an

interval R0-tensor if and only if the system
Aαxm−1 ≤ 0,

A
α
xm−1 ≥ 0,

Aβαxm−1 ≥ 0,
x > 0,

(3.15)

is infeasible for each admissible α, β.

Proof. AI is not an interval R0-tensor if and only if there are α, β and A ∈ AI such that (3.12) is
feasible. From Theorem 3.11, system (3.12) is feasible for some A ∈ AI if and only if system
(3.15) is feasible, which the statement follows.

Proposition 3.17. LetAI =
[
A,A

]
be an m-order n-dimensional interval tensor. Then

1. AI is an interval R-tensor if and only if the systemAαxm−1 + et ≤ 0, A
α
xm−1 + et ≥ 0,

Aβαxm−1 + et ≥ 0, x > 0, t ≥ 0,

is infeasible for each admissible α, β.
2. AI is an interval ER-tensor if and only if the systemAαxm−1 + tx ≤ 0, A

α
xm−1 + tx ≥ 0,

Aβαxm−1 ≥ 0, x > 0, t ≥ 0,

is infeasible for each admissible α, β.
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Proof. Similar to the proof of Proposition 3.16.

From the definition of interval strictly semi-positive tensors, we can show that this structure
interval tensors are a subset of interval ER-tensors. We discuss the relationship between interval
ER-tensor and related interval tensors.

Proposition 3.18. LetAI be an m-order n-dimensional interval tensor. IfAI is an interval strictly
semi-positive tensor, thenAI is an interval ER-tensor.

Proof. Let AI be an interval strictly semi-positive tensor. By Definition 3.4, every A ∈ AI is an
strictly semi-positive tensor, it follows that for any x ∈ Rn

+\ {0}, there exists an index i ∈ [n] such
that

xi > 0 and
(
Axm−1

)
i
> 0.

That is to say, for any x ∈ Rn
+\ {0} and each A ∈ AI the system (3.7) has no solution. Therefore,

AI is an ER-tensor.

Theorem 3.19. IfAI is an m-order n-dimensional interval wP-tensor, thenAI is an interval ER-
tensor.

Proof. Since AI is an interval wP-tensor, it follows from Theorem 3.6 that for any x ∈ Rn\ {0},
there exists an index i ∈ [n] such that xm−1

i

(
Az···zxm−1

)
i
> 0. In particular, for any x ∈ Rn

+\ {0} ,
there exists an index i0 such that

xm−1
i0

(
Az···zxm−1

)
i0
> 0.

Therefore, xi0 > 0. Furthermore, we get
(
Az···zxm−1

)
i0
> 0. That is to say, for any x ∈ Rn

+\ {0} , there

exists an index i0 such that xi0 > 0 and
(
Az···zxm−1

)
i0
> 0, by Proposition 3.7, for eachA ∈ AI , we

have
xm−1

i

(
Axm−1

)
i
≥ xm−1

i

(
Az···zxm−1

)
i
,

which implies that the system (3.7) has no solution. ThenAI is an ER-tensor.

Remark 3.20. IfAI is an m-order n-dimensional interval positive definite tensor, then from Propo-
sition 3.9,AI is an interval wP-tensor. It is easy to see that an interval strictly copositive tensor is
also an interval strictly semi-positive tensor. Thus, it follows from Proposition 3.18 that the tensors
mentioned above (interval positive definite tensor, interval P−tensor, interval strictly copositive
tensor, interval strictly semi-positive tensor) are all ER-tensors.

Proposition 3.21. Suppose that the tensor AI is an mth-order n-dimensional interval ER-tensor.
Then theAI is an interval R0-tensor.

Proof. Let AI be an interval ER-tensor, then any point (x, t) ∈
(
Rn

+\ {0}
)
×R+ is not a solution of

the system (3.7) for each A ∈ AI . Then the system (3.7) has no nonzero solution when t = 0,
that is, the system (3.6) has no solution x ∈ Rn

+\ {0} for eachA ∈ AI . Therefore,AI is an interval
R0-tensor.
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The following theorem gives the equivalence of three classes of structured tensors within the
semi-positive interval tensors.

Theorem 3.22. If AI is an mth-order n-dimensional interval semi-positive, then the following
results are equivalent.
(i)AI is an interval R0-tensor,
(ii)AI is an interval ER-tensor,
(iii)AI is an interval R-tensor.

Proof. (i) ⇔ (iii) It is obvious that every interval R-tensor is an interval R0-tensor. On the other
hand, it follows from [18, Theorem 3.4] that every semi-positive R0-tensor is a R-tensor. Thus, (i)
holds if and only if (iii) holds.
(i)⇔ (ii) By Proposition 3.21, every interval ER-tensor is an interval R0-tensor. Thus, (i) holds if
(ii) holds. On the other hand, suppose that AI is not an ER-tensor, then for some A ∈ AI there
exists a point (x, t) ∈

(
Rn

+\ {0}
)
× R+ satisfying the system (3.7). Since AI is a R0-tensor, we have

t > 0. Thus, for someA ∈ AI we have(
Axm−1

)
i
+ txi = 0, i f xi > 0.

This implies that for x ∈ Rn
+\ {0}, we have

xi

(
Axm−1

)
i
= −tx2

i < 0,

which contradicts the condition that AI is a semi-positive tensor. Therefore, AI is an ER-tensor.

Corollary 3.23. If AI is an m-order n-dimensional interval P0-tensor, then AI is an interval R0-
tensor iffAI is an interval ER-tensor iffAI is an interval R-tensor.

Proof. Since every interval P0-tensor is an interval semi-positive tensor, the results follow from
Theorem 3.22.

We continue this section with some fundamental notions and properties developed in tensor
analysis which is important to obtain some theoretical results in this paper.

Definition 3.24. [1, 6, 14] LetA be an m-order and n-dimensional cubical tensor, then
(1) A is called an Z-tensor if all of its non-diagonal elements are non-positive. This definition is
equivalent to having A = sI − B, where s > 0, B is a non-negative tensor and I identity tensor,
denoted by I = (Ii1···im), is the tensor with entries

Ii1···im =

{
1, i1 = · · · = im,

0, otherwise.

(2)A is called anM-tensor ifA is anZ-tensor andA = sI−B, s ≥ ρ(B). If s > ρ(B), thenA is
called a strong (nonsingular)M-tensor.
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(3) A tensorA is called semimonotone (an E0-tensor) if for each index set ∅ , α ⊆ {1, 2, 3, · · · , n}
the system

Aαxm−1 < 0, x ≥ 0, (3.16)

is infeasible.
(4) An interval tensor is called an interval Z-tensor,M-tensor and E0-tensor if every tensor in it
isZ-tensor,M-tensor, and E0-tensor, respectively.

In the following, we give necessary and sufficient conditions for an interval tensorAI to be an
interval (strictly) copositive tensor and E0-tensor.

Proposition 3.25. LetAc be an m-order n-dimensional strongM-tensor. Then
(1)AI =

[
A,A

]
is an interval copositive if and only ifA is anM-tensor;

(2)AI =
[
A,A

]
is an interval strictly copositive if and only ifA is an strongM-tensor.

Proof. (1) First, suppose that AI is an interval copositive. If A is not M-tensor, then we have,
A = sI − B, where s > 0 and ρ(B) > s. For the corresponding Perron vector x 	 0 we have
Bxm−1 = ρ(B)xm−1 	 sxm−1, from whichAxm−1 = sxm−1 −Bxm−1 � 0. If xi = 0, then (Bxm−1)i = 0
and so (Axm−1)i = 0. Similarly, if xi > 0, then (Bxm−1)i > sxi and so (Axm−1)i < 0. Hence
Axm < 0,which is a contradiction. Now assume thatA isM-tensor, then it is positive semidefinite
[6] and so it is copositive. By [14, Theorem 3.7] we concludeAI is interval copositive.
(2) Similar argument apply to strict copositivity.

Corollary 3.26. LetAc be an m-order n-dimensional identity tensor. Then
(1)AI is an interval copositive if and only if ρ(A∆) ≤ 1;
(2)AI is an interval strictly copositive if and only if ρ(A∆) < 1.

Proof. By the proposition above, Ac = I is an strongM-tensor. Further, I − A∆ is anM-tensor
if and only if ρ(A∆) ≤ 1.
(2) Similar argument apply to strict copositivity.

Proposition 3.27. LetAc be an m-order n-dimensionalM-tensor. ThenAI =
[
A,A

]
is E0-tensor

if and only ifA is anM-tensor.

Proof. First, suppose that A is an M-tensor. If AI is not E0-tensor, then there is A ∈ AI such
that (3.16) is not established. Since A is anM-tensor, therefore Aα isM-tensor. Hence we can
write it as Aα = sI − B, where s > 0 and B is a non-negative tensor so that s > ρ(B). Assume
that x > 0. From (3.16) we have Bxm−1 > sxm−1, from which ρ(B) > s and is a contradiction.
Now suppose AI is E0-tensor. If A is not anM-tensor. That is, A = sI − B, where s > 0 and
ρ(B) > s. Let x > 0 be the Perron vector corresponding to B, so that Bxm−1 = ρ(B)xm−1 > sxm−1.
Then Axm−1 = sxm−1 − Bxm−1 6 0. Define α = {i : xi > 0} (xα denotes the restriction of a vector
x to the entries indexed by α). Since (Bxm−1)i > (sxm−1)i for all i ∈ [n], we get (Aαxm−1)α < 0 for
xα > 0 which is a contradiction.

Corollary 3.28. LetAc be an m-order n-dimensional identity tensor. ThenAI is interval E0-tensor
if and only if ρ(∆) ≤ 1.
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3.4. Interval column sufficient tensor
In this subsection, we define an interval column sufficient tensor, which is a generalization of

an interval column sufficient matrix.
The column sufficient tensor have been defined and investigated by Chen, Qi and Song [2].

Definition 3.29. [2] An m-order n-dimensional tensorA is called a column sufficient tensor, if for
all x ∈ Rn satisfies

xi

(
Axm−1

)
i
≤ 0, ∀i ∈ [n] =⇒ xi

(
Axm−1

)
i
= 0, ∀i ∈ [n]. (3.17)

Notice that when m = 2, this definition reduces to the notion of column sufficient matrix [4].
LetA be a m-order n-dimentional tensor. For each pair of disjoint index sets I, J ⊆ {1, 2, 3, · · · , n}

whose union is nonempty, we defineAIJ = (aIJ
i1,i2,··· ,im

),

aIJ
i1,i2,··· ,im =


ai1,i2,··· ,im i f i2, i3, · · · , im ∈ I,
ai1,i2,··· ,im i f i2, i3, · · · , im ∈ J,
0 i f i2, i3, · · · , im ∈ K,
−ai1,i2,··· ,im otherwise,

where K = {1, 2, · · · , n} \ (I ∪ J).

Theorem 3.30. LetA be a m-order n-dimentional tensor. The following two statements are equiv-
alent.
(a)A is column sufficient.
(b) For each pair of disjoint sets I, J ⊆ {1, 2, · · · , n}, whose union is nonempty, the system

0 , AIJ xm−1 ≤ 0,
xi > 0 f or i ∈ I ∪ J,
xi = 0 f or i ∈ K,

(3.18)

is infeasible.

Proof. It is similar to the proof of [3, Proposition 3.5.9].

Definition 3.31. An m-order n-dimensional interval tensor [A,A] is said to be an interval column
sufficient tensor if eachA ∈ [A,A] is a column sufficient tensor.

In the following results, some necessary and sufficient conditions for interval column sufficient
tensors are obtained, which is a generalization of [9].

Theorem 3.32. LetAI =
[
A,A

]
be an m-order n-dimensional interval tensor. ThenAI is column

sufficient if and only if the system 
0 , BIJ xm−1 ≤ 0,
xi > 0 f or i ∈ I ∪ J,
xi = 0 f or i ∈ K,

(3.19)



Beheshti, Fathi, Zangiabadi/ Wavelets and Linear Algebra 9(1) (2022) 49- 65 63

has no solution for each sets I, J ⊆ {1, 2, · · · , n} where I ∪ J , ∅, K = {1, 2, · · · , n} \ (I ∪ J) and

BIJ
i1,i2,··· ,im =


Ai1,i2,··· ,im

i f i2, · · · , im ∈ I or i2, · · · , im ∈ J,

0 i f i2, · · · , im ∈ K,

−Ai1,i2,··· ,im otherwise.

Proof. The necessity of the condition is obviously a direct consequence of Theorem 3.30. To
establish its sufficiency, assume that AI is not column sufficient, then by Theorem 3.30, for some
I, J ⊆ {1, 2, · · · , n} where I ∪ J , ∅, K = {1, 2, · · · , n} \ (I ∪ J) the system 3.18 has a solution x∗.
Since BIJ ≤ AIJ and x∗ is nonnegative vector, we can get

BIJ x∗
m−1
≤ AIJ x∗

m−1
≤ 0.

This shows that x∗ is a solution to (3.19), which is a contradiction.

Let S m is the symmetric group of order m and define T as the product of n factors of S m. That
is,

T = {(t1, · · · , tn) | ti ∈ S m,∀i ∈ {1, · · · , n}}.

Rahmati and Tawhid [14], defined a set of tensors

ε := {At ∈ Rn1···nm | t ∈ T },

by

(At)i1···im =

Ai1···im
, sgn(ti1 · · · tim) = 1,

Ai1···im , sgn(ti1 · · · tim) = −1,

where ti1 · · · tim is the product (composition) of permutations ti1 , · · · , tim . For a vector x ∈ Rn, we
define sgn(x) := (t1, · · · , tn) ∈ T by

ti =

{
id, xi ≥ 0,
(1 2), xi < 0,

where id and (1 2) are considered as permutations in S m and sgn(id) = 1 and sgn((1 2)) = −1.
Therefore, |xi| = sgn(ti)xi.

Theorem 3.33. Let AI = [A,A] be an m-order n-dimensional interval tensor. Then AI is an
interval column sufficient tensor if and only if eachAt ∈ ε is column sufficient tensor.

Proof. The necessity of the condition is obviously, because, for every t ∈ T , At ∈ [A,A]. To
prove sufficiency, let A ∈ AI and x ∈ Rn with xi(Axm−1)i ≤ 0, ∀i ∈ [n]. Set t = sign(x), by [14,
Proposition 3.2], we know that xi(Axm−1)i ≥ xi(Atxm−1)i for all i ∈ [n], combining this with the
fact that eachAt is column sufficient, we obtain xi(Axm−1)i = xi(Atxm−1)i = 0 for all i ∈ [n],which
implies thatA is a column sufficent, so isAI .

Corollary 3.34. LetAI = [A,A] be an m-order n-dimensional interval tensor. ThenAI is column
sufficient in Rn

+, ifA is column sufficient in Rn
+.
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Proof. Let x ∈ Rn
+ and t = sign(x) = (id, · · · , id), we have At = A. Therefore, from Theorem

3.33 ,AI is column sufficient in Rn
+.

Theorem 3.35. LetAI =
[
A,A

]
be an m-order n-dimensional interval tensor. ThenAI is interval

column sufficient tensor if and only if tensors of the formAzz···z := AC−Dz(A∆×m Dz×m−1 · · ·Dz×2

Dz), are column sufficient for each z ∈ {±1}n.

Proof. First, suppose that AI is column sufficient, then Azz···z is column sufficient, since Azz···z ∈

AI . Now assume thatAzz···z are column sufficient for each z ∈ {±1}n. IfAI is not column sufficient,
then (3.19) has a solution for certain I and J. We define z by

zi =

{
1 i f i ∈ I,
−1 i f otherwise.

Since (AIJ
zz···z)i1,i2,··· ,im = BIJ

i1,i2,··· ,im
, by Theorem 3.30, Azz···z is not column sufficient, which is a

contradiction.

Theorem 3.36. Any symmetric interval positive semidefinite tensor is an interval column sufficient
tensor.

Proof. LetAI be a symmetric interval positive semidefinite tensor. By the definition of symmetric
interval tensors and [14, Theorem 3.7], Az is a symmetric positive semidefinite tensor, and by [2,
Theorem 1], Az is a column sufficient tensor. Then, Theorem 3.35 shows that AI is an interval
column sufficient tensor.

4. Conclusion

Interval tensors, like interval matrices, can be a useful theoretic and numerical instrument for
getting better results and analysis. In this survey, we extended some classes of interval matrices
to classes of interval tensors, and derive various characterizations, and properties of them. We
established theoretic properties for several interval tensor. It is shown that our definitions also has
connections to the interval positive semi-definite tensors.

References

[1] H. Bozorgmanesh, M. Hajarian and A.Th. Chronopoulos, Interval Tensors and their application in solving multi-
linear systems of equations, Comput. Math. Appl., 79(3) (2020), 697–715.

[2] H. Chen, L. Qi and Y. Song, Column sufficient tensors and tensor complementarity problems, Front. Math. China,
13(2) (2018), 255–276.

[3] R.W. Cottle, J.-Sh. Pang and R.E. Stone, The Linear Complementarity Problem, Society for Industrial and Applied
Mathematics, 2009.

[4] R.W. Cottle, J.-Sh. Pang and V. Venkateswaran, Sufficient matrices and the linear complementarity problem,
Linear Algebra Appl., 114 (1989), 231–249.

[5] W. Ding, Z. Luo and L. Qi., P-Tensors, P0-Tensors, and Tensor Complementarity Problem, arXiv preprint:
arXiv:1507.06731, 2015.

[6] W. Ding, L. Qi and Y. Wei,M-tensors and nonsingularM-tensors, Linear Algebra Appl., 439(10) (2013), 3264–
3278.



Beheshti, Fathi, Zangiabadi/ Wavelets and Linear Algebra 9(1) (2022) 49- 65 65

[7] M. Fiedler, J. Nedoma, J. Ramk, J. Rohn and K. Zimmermann, Linear Optimization Problems with Inexact Data,
Springer, New York, 2006.

[8] M. Heyouni, F. Saberi-Movahed and A. Tajaddini, A tensor format for the generalized Hessenberg method for
solving Sylvester tensor equations, J. Comput. Appl. Math., 377 (2020),112878.

[9] M. Hladk, Stability of the linear complementarity problem properties under interval uncertainty, CEJOR, Cent.
Eur. J. Oper. Res., 29(3) (2021), 875–889.

[10] M. Hladk, D. Daney and E. Tsigaridas, Characterizing and approximating eigenvalue sets of symmetric interval
matrices, Comput. Math. Appl., 62(8) (2011), 3152–3163.

[11] T.G. Kolda and W.B. Brett, Tensor decompositions and applications, SIAM Rev., 51(3) (2009), 455–500.
[12] R.E. Moore, Interval Arithmetic and Automatic Error Analysis in Digital Computing (Ph.D. thesis), Stanford

Univ Calif Applied Mathematics And Statistics Labs, 1962.
[13] R.E. Moore, R.B. Kearfott and M.J. Cloud, Introduction to Interval Analysis, SIAM, Philadelphia, PA, 2009.
[14] S. Rahmati and M.A. Tawhid, On intervals and sets of hypermatrices (tensors), Front. Math. China, 15(6) (2020),

1175–1188.
[15] J. Rohn, Bounds on eigenvalues of interval matrices, ZAMM, Z. Angew. Math. Mech., 78(3) (1998), 24–27.
[16] S.M. Rump., Fast interval matrix multiplication, Numer. Algorithms, 61(1) (2012), 1–34.
[17] Y. Song and L. Qi, Properties of some classes of structured tensors, J. Optim. Theory Appl., 165(3) (2015),

854–873.
[18] Y. Song and L. Qi, Properties of tensor complementarity problem and some classes of structured tensors,

arXiv:1412.0113v1, 2014.
[19] Y. Wang, Zh.-H. Huang and X.-L. Bai, Exceptionally Regular Tensors and Tensor Complementarity Problems,

Optimization Methods and Software, 31(4) (2016), 815–828.
[20] Y. Yang and Q. Yang, Further results for PerronFrobenius theorem for nonnegative tensors, SIAM J. Matrix Anal.

Appl., 31(5) (2010), 2517–2530.
[21] L. Zhang, L. Qi and G. Zhou, M-tensors and some applications, SIAM J. Matrix Anal. Appl., 35(2) (2014),

437–452.


	Introduction
	Background and basic concepts
	Particular interval tensor classes 
	Interval wP(wP0)-tensors
	Interval multi-linear systems
	 Interval R0-tensor, R-tensor and ER-tensor
	Interval column sufficient tensor

	Conclusion

