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Abstract
In this paper, the space c(I) is introduced and some of its prop-
erties examined. Then with the help of a diameter norm on the
space c0(I), a norm is defined on the space c(I) called as D-
norm, which is an extension of the d−norm. It is also shown
that the D- norm is equivalent to the supremum norm. The ex-
treme points of the unit ball of the spaces c0(I) and c(I) are also
specified. In addition we find some orthogonal vectors in the
space c(I).
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1. Introduction

The norm ‖ · ‖D was used by Hagler in [5] to construct a separable Banach space X with
non-separable dual such that l1 does not embed in X and every weakly normalized null sequence
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in X has a subsequence equivalent to the canonical basis of c0. In paper [1], Bayati considered a
natural preorder on c0(I) and defined a norm on c0(I), where I is assumed to be an infinite set.

The large volume of researches dealing with extreme points makes it apparent that this area
is an important segment of functional analysis. Extreme points have been studied since the early
part of the 19th century. In recent years mathematicians have dealt with extreme points in infinite
dimensional spaces. These studies have led to useful theorems concerning the isometric and iso-
morphic properties of Banach spaces. The study of such properties is one of the most active areas
in functional analysis. In [4], Gerald characterized the extreme points of the unit ball in some well
known Banach spaces, he showed that the set of extreme points of the unit ball of c0 is empty.

The present study is thus aimed to examine the properties of c(I) by difining D-norm on c(I)
which is extension of the d−norm. The extreme points of the unit balls of the spaces c0(I) and c(I)
are also specified and, in addition we find some orthogonal vectors in space c(I).

Definition 1.1. [1]. Let I be an infinite set (with a discrete topology) the point l ∈ R is called the
limit of f : I → R and is denoted by

lim
i∈I

f (i) = l,

(or more briefly lim f = l) if for each neighbor V of l there exists a finite set F ⊆ I such that
f (i) ∈ V, for all i ∈ I \ F.

It can be easily verified that lim f is unique if it exists. The notation of c(I) is used for the set
of all functions f : I → R for which lim f exists. We define a norm on c(I), where I is assumed
to be an infinite set, that is equivalent to ‖ · ‖∞. The set of all bounded functions f : I → R is
denote by l∞(I), thus c(I) ⊆ l∞(I). It can be shown that c(I) is a Banach space with the norm
‖ f ‖∞ = sup{| f (i)| : i ∈ I}. The notation c0(I) is used for the set of all functions f : I → R with
lim f = 0. Then c0(I) is a vector space, thus, it is a subspace of c(I). We define e : I → R by
e(i) = 1 for all i ∈ I and ei : I → R by ei( j) = δi j, the Kroneckers delta.

For a non-empty subset C of metric space (X, d) the diameter of C is denoted by diam(C) and
defined as diam(C) = sup{d(x, y); x, y ∈ C}.
Also, we put

c1(I) = { f ∈ c(I) : ∃ l ∈ R and finite set F ⊂ I such that f (i) = l ∀i ∈ I \ F}.

To simplify notations, diam( f ), inf( f ) and sup( f ) are employed instead of
diam(Im( f )), inf{ f (i) : i ∈ I}, sup{ f (i) : i ∈ I}.

Definition 1.2. [2]. Let X be a real Banach space. For any two elements x, y ∈ X, x is said to be
orthogonal to y in the sense of Birkhoff-James, written as x ⊥B y, if

‖ x ‖≤ ‖x + λy‖,

for all λ ∈ R.

Definition 1.3. [4]. Let K be a convex set. Then a point x ∈ K is said to be an extreme point of K
if whenever y, z ∈ K with x = αy + (1 − α)z, 0 < α < 1, then x = y = z. The set of extreme points
of K will be denoted by extK.
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The unit ball of a space X is U(X) := {x ∈ X : ‖x‖ ≤ 1}.

Lemma 1.4. [4]. Let K be a convex subset of a vector space X and x ∈ K. x < extK if and only if
there exist v,w ∈ K, with x = ( 1

2 )(v + w) and x , v or x , w

Lemma 1.5. [4]. If x ∈ extU(X), then ‖x‖ = 1.

Definition 1.6. [1]. The d−norm on c0(I) is defined as ‖ f ‖d := diam( f ), for all f ∈ c0(I).

It can be easily verified that the d−norm is a norm on c0(I), if I is an infinite set. Moreover,
since ‖ · ‖∞ ≤ ‖ · ‖d ≤ 2‖ · ‖∞, two norms ‖ · ‖d and ‖ · ‖∞, are equivalent. Also, notice that,
‖ f ‖d := sup( f ) − inf( f ).

Example 1.7. Suppose f : [0, 1]→ R and

f (i) =

 i if i ∈ {1,
1
2
, . . .}

0 otherwise
,

then lim f = 0, since for each ε > 0, there exists M ∈ N such that ε > 1
M . Consider F =

{1, 1
2 , . . . ,

1
M }, then for all i ∈ [0, 1] \ F, we wil have

| f (i)| ≤ i <
1
M

< ε.

Example 1.8. Suppose g : R2 → R and

g(i, j) =

 1 +
1
i

+
1
j

(i, j) ∈ N × N

1 otherwise
,

this function has no limit on R2, since, given m ∈ N, if we put ε =
1
m

and

F = {(m, 1), (m, 2), . . .},

then F is an infinite set and for each finite set H ⊂ R2, R2 \ H, contains infinitely many points of

F and ‖g(i, j) − 1‖ =
1
i

+
1
j
≥

1
m

for all (i, j) ∈ F.

2. Main results

In this section, some theorems are proposed to represent the properties of members of c(I).
The extreme points of the unit balls of the spaces c0(I) and c(I) are also specified. In addition we
find some orthogonal vectors in c(I). Throughout this section, consider I as an infinite set (with a
discrete topology) and R as the set of the real numbers.

Theorem 2.1. Suppose f : I −→ R. Then the limit of f on I exists if and only if for each ε > 0
there exists a finite subset F ⊂ I such that diam f (I \ F) ≤ ε.
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Proof. Let lim f = l, then for each ε > 0, there exists a finite subset F ⊂ I such that for each
i ∈ I \ F, we have

| f (i) − l| <
ε

2
, (2.1)

let i, j ∈ I \ F. Then by (2.1)

| f (i) − f ( j)| = | f (i) − l + l − f ( j)| ≤ | f (i) − l| + | f ( j) − l| <
ε

2
+
ε

2
= ε,

which concludes that diam f (I \ F) ≤ ε. Conversely, suppose for each ε > 0, there exists a finite
subset F ⊂ I such that diam f (I \ F) ≤ ε. Clearly, the function f is bounded on I. Let (in)n∈N ⊆ I
be an infinite sequence. Then { f (in)} is a real bounded sequence, so there exists a subsequence of
{ f (in)}n∈N which converges to l. Without loss of generality, it can be assumed that limn→∞ f (in) = l.
Then for each ε > 0, there is N ∈ N such that for all n > N,

| f (in) − l| <
ε

2
. (2.2)

On the other hand for ε > 0, there exists a finite subset H ⊂ I such that diam f (I \ H) ≤ ε
2 then for

i, j ∈ I \ H, we have
| f (i) − f ( j)| ≤ diam f (I \ F) ≤

ε

2
. (2.3)

For each ε > 0, we consider G = H, since G is a finite set, we can choose n > N such that
in ∈ I \G, then according to inequalities (2.2) and (2.3), for each i ∈ I \G, we will have

| f (i) − l| = | f (i) − f (in) + f (in) − l| ≤ | f (i) − f (in)| + | f (in) − l| ≤
ε

2
+
ε

2
= ε.

Then lim f = l.

Theorem 2.2. Suppose f : I −→ R, then lim f = l on I if and only if for any infinite subset D of
I, f |D has a limit on D and

lim
i∈D

f = l.

Proof. Suppose lim f = l, then for each ε > 0, there exists a finite subset F ⊂ I such that for each
i ∈ I \ F,

| f (i) − l| < ε. (2.4)

For each ε > 0, put G = F ∩D, then D \G ⊆ I \ F and inequality (2.4) for all i ∈ D \G. Therefore

lim
i∈D

f = l.

Conversely, since for each infinite subset of I there exists a limit and I is its subset, so it is true for
I.

Example 2.3. Let f : R −→ R and

f (i) =

{
1 i ∈ Q
0 i < Q ,
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we have f |Q = 1 and f |Qc = 0, so

lim
i∈Q

f = 1 , lim
i∈Qc

f = 0.

According to the preceding theorem, this function has no limit on R.

Theorem 2.4. lim f = l if and only if there exists a sequence (in)n∈N ⊂ I, such that limn→∞ f (in) = l
and f (i) = l for all i ∈ I \ {i1, i2, . . .}.

Proof. Suppose lim f = l. For each n ∈ N, let εn =
1
n

, then there exists a finite subset Fn ⊂ I such

that | f (i) − l| <
1
n

for all i ∈ I \ Fn. We put F =
⋃

n∈N Fn, then

| f (i) − l| <
1
n
,∀i ∈ I \ F,∀n ∈ N,

therefore
f (i) ∈

⋂
n∈N

(l −
1
n
, l +

1
n

) = {l}.

That is, f (i) = l for all i ∈ I \F. Since F is a countable set, it can be assumed that F = {i1, i2, . . .} =

(in)n∈N. For each ε > 0, there exists N ∈ N such that 1
N < ε. Also, there exists a finite subset FN ⊂ I

such that for all i ∈ I \ FN , we have

| f (i) − l| <
1
N
< ε, (2.5)

without loss of generality, it can be assumed that FN = {i1, i2, . . . , iN}, thus, F \ FN ⊂ I \ FN .
Inequality (2.5) is established for all in ∈ F \ FN , so for each n > N, we have

| f (in) − l| < ε.

Therefore, limn→∞ f (in) = l.
Conversely, suppose that there exists a sequence (in)n∈N ⊂ I such that

lim
n→∞

f (in) = l,

and f (i) = l for all i ∈ I \{i1, i2, . . .}. Then for each ε > 0 there exists N ∈ N such that for all n > N,

| f (in) − l| < ε.

Consider F = {i1, i2, . . .} and H = {i1, i2, . . . , iN}, then for all i ∈ I \ H, if i ∈ I \ F we will have
f (i) = l, so | f (i) − l| = 0 < ε, and if i ∈ F \ H we have n > N then | f (in) − l| < ε. Consequently,
for each i ∈ I \ H, we have

| f (i) − l| < ε.

So it can be conclude that lim f = l.
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Lemma 2.5. If lim f = l and ϕ : I −→ I is an injective function. Then, lim f ◦ ϕ = l.

Proof. Since lim f = l, for each ε > 0, there exists a finite subset F ⊂ I such that for all i ∈ I \ F,

| f (i) − l| < ε. (2.6)

Pick H := ϕ−1(F) then H is finite. For all i ∈ I \ H, we have ϕ(i) < F, therefore by (2.6),

| f ◦ ϕ(i) − l| = | f (ϕ(i)) − l| < ε,

which means that lim f ◦ ϕ = l.

In the previous lemma, the injective condition is necessary. Because for example if we consider
ϕ : [0, 1]→ [0, 1] and define

ϕ(i) =

 1 if i ∈ {1,
1
2
, . . .}

i otherwise
,

and define f : [0, 1]→ R by

f (i) =

 i if i ∈ {1,
1
2
, . . .}

0 otherwise
,

then

f ◦ ϕ(i) =

 1 if i ∈ {1,
1
2
, . . .}

0 otherwise
,

so, lim f = 0, but lim f ◦ ϕ does not exist.

Theorem 2.6. (c(I), ‖ · ‖∞) is a Banach space.

Proof. Since c(I) ⊆ l∞(I) it is sufficient to show that c(I) is closed in l∞(I). Let ( fn)n∈N ⊂ c(I) be
a sequence converging to f ∈ l∞(I). Then for each n ∈ N there exists ln ∈ R such that lim fn = ln.
First, it is shown that (ln)n∈N is a Cauchy sequence. Clearly for n,m ∈ N

|ln − lm| = | lim fn − lim fm| = | lim( fn − fm)| 6 ‖ fn − fm‖∞.

Thus, (ln)n∈N is a Cauchy sequence, so there exists l ∈ R such that lim ln = l. Then, for each ε > 0
there is N2 ∈ N such that for all n ≥ N2

|ln − l| <
ε

3
. (2.7)

We show that that lim f = l. For each ε > 0 there is N1 ∈ N such that for all n ≥ N1 we have

‖ fn − f ‖∞ <
ε

3
. (2.8)

On the other hand lim fn = ln, so for each ε > 0 there exists a finite subset Fn ⊂ I such that for all
i ∈ I \ Fn we have

| fn(i) − ln| <
ε

3
, (2.9)
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By (2.7), (2.8), and (2.9) it can be shown that for sufficiently large n ∈ N and i ∈ I \ Fn

| f (i) − l| 6 | f (i) − fn| + | fn(i) − ln| + |ln − l|

≤
ε

3
+
ε

3
+
ε

3
= ε,

then, lim f = l. So, c(I) is complete with the norm ‖ · ‖∞ and it is a Banach space.

Definition 2.7. For f ∈ c(I) define ‖ f ‖D = ‖ f − (lim f )e ‖d + | lim f | which is called the D-norm
on c(I), such that, e(i) = 1 for all i ∈ I. The D-norm on c(I) is an extension of the d−norm on
c0(I).

Lemma 2.8. The D-norm is a norm on c(I).

Proof. For each f ∈ c(I), if ‖ f ‖D = 0, then ‖ f − (lim f )e‖d + | lim f | = 0, so ‖ f − (lim f )e‖d = 0
and | lim f | = 0. Since f − (lim f )e ∈ c0(I) and ‖ · ‖d is a norm on c0(I), then f = 0. Also, for every
f , g ∈ c(I), we have

‖ f + g‖D = ‖( f + g) − (lim( f + g))e‖d + | lim( f + g)|
= ‖( f − (lim f )e) + (g − (lim g)e)‖d + | lim f + lim g|
≤ ‖ f − (lim f )e‖d + ‖g − (lim g)e‖d + | lim f | + | lim g|
≤ ‖ f ‖D + ‖g‖D.

Finally, for each r ∈ R and f ∈ c(I), we have ‖r f ‖D = |r|‖ f ‖D. Therefore ‖ · ‖D is a norm on
c(I).

Theorem 2.9. (c(I), ‖ · ‖D) is a Banach space.

Proof. For each f ∈ c(I), we have f − (lim f )e ∈ c0(I) and

‖ · ‖∞ ≤ ‖ · ‖d ≤ 2‖ · ‖∞,

then
‖ f − (lim f )e‖∞ ≤ ‖ f − (lim f )e‖d ≤ 2‖ f − (lim f )e‖∞.

On the other hand, we have | lim f | ≤ ‖ f ‖∞, therefore,

‖ f ‖D = ‖ f − (lim f )e‖d + | lim f | ≤ 2‖ f − (lim f )e‖∞ + ‖ f ‖∞
≤ 2‖ f ‖∞ + 2‖(lim f )e‖∞ + ‖ f ‖∞
≤ 2‖ f ‖∞ + 2‖ f ‖∞ + ‖ f ‖∞ = 5‖ f ‖∞.

Also

‖ f ‖∞ = ‖ f − (lim f )e + (lim f )e‖∞ ≤ ‖ f − (lim f )e‖∞ + ‖(lim f )e‖∞
≤ ‖ f − (lim f )e‖d + | lim f |
= ‖ f ‖D,

thus
‖ f ‖∞ ≤ ‖ f ‖D ≤ 5‖ f ‖∞.

Consequently, two norms are equivalent, so c(I) is a Banach space.
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Lemma 2.10. The space c1(I) is dense in c(I) with the D-norm.

Proof. It is sufficient to show that c1(I) is dense in c(I) with respect to the norm ‖ · ‖∞. Let
f ∈ c(I), then there exists l ∈ R such that lim f = l. Therefore, for all n ∈ N there exists a finite
subsets Fn such that for all i ∈ I \ Fn,

| f (i) − l| <
1
n
, (2.10)

Define

fn(i) =

{
f (i) i ∈ Fn

l i < Fn
,

then fn ∈ c1(I). We show that ‖ fn − f ‖∞ → 0 as n → ∞. If i ∈ I, then, i ∈ Fn or i ∈ I \ Fn. In the
first case, we have fn(i) = f (i); then, | fn(i) − f (i)| = 0 < ε. Secondly, according to (2.10),

| f (i) − fn(i)| = | f (i) − l| <
1
n
, ∀i ∈ I \ Fn.

Therefore,

‖ fn − f ‖∞ = sup
i∈I
| fn(i) − f (i)| <

1
n
.

That is ‖ fn − f ‖∞ → 0 as n→ ∞, which implies that c1(I) is dense in c(I).

It can be easily indicated that ‖ f ‖D = diam( f ) + | lim f |, then

‖ f ‖∞ ≤ ‖ f ‖D ≤ 3‖ f ‖∞.

If f ∈ c(I) define ‖ f ‖ = diam( f ) + ‖ f ‖∞, it is easily indicated that ‖ · ‖ is a norm on c(I) and it is
equivalent with the D− norm.

In the following, the extreme points of the unit balls of c0(I) and c(I) are determined. Also
some orthogonal vectors are obtained in c(I).

Lemma 2.11. For f ∈ c0(I) we have f ∈ extU(c0(I)) if and only if there exists a non-empty finite
subset F ⊂ I such that

f = ±
∑
i∈F

ei.

Proof. Let f ∈ ext U(c0(I)). We claim that there is no i ∈ I such that,

inf( f ) < f (i) < sup( f ). (2.11)

Suppose there exists i0 ∈ I such that inf( f ) < f (i0) < sup( f ). We put 0 < α < min{sup( f ) −
f (i0), f (i0) − inf( f )} and

g(i) =

{
f (i0) + α i = i0

f (i) i , i0
, h(i) =

{
f (i0) − α i = i0

f (i) i , i0
. (2.12)



Taheri, Bayati Eshkaftaki/ Wavelets and Linear Algebra 9(1) (2022) 37- 48 45

Because g(i0) , h(i0), we have g , h. On the other hand,

inf( f ) ≤ f (i0) ≤ f (i0) + α ≤ f (i0) + sup( f ) − f (i0) = sup( f ),

and
sup( f ) ≥ f (i0) ≥ f (i0) − α ≥ f (i0) + inf( f ) − f (i0) = inf( f ).

Then, inf( f ) ≤ g(i0) ≤ sup( f ) and inf( f ) ≤ h(i0) ≤ sup( f ). Therefore

‖ f ‖d = ‖g‖d = ‖h‖d = 1,

and f = 1
2 (g + h), that g, h ∈ U(c0(I)). This is a contradiction, thus the function f takes at most

two values. This shows that there exists a set F ⊂ I such that

f (i) =

{
α i ∈ F
β i ∈ I \ F .

We claim that only one of the two sets F or I \ F can be infinite. Suppose F and I \ F are infinite.
Since lim f = 0 then by Theorem (2.2), we have

lim
i∈F

f (i) = α = 0, lim
i∈I\F

f (i) = β = 0,

that is f = 0, which is impossible. Without loss of generality, we assume that F is finite, thus I \F
is infinite. Then based on Theorem (2.2) we will have β = 0. On the other hand f , 0, then the set
F is non-empty. So the function f will be as follows:

f (i) =

{
α i ∈ F
0 i ∈ I \ F .

Since f ∈ ext U(c0(I)), we have ‖ f ‖d = 1. Consequently |α| = 1, hence

f = ±
∑
i∈F

ei.

Conversely, assume that f =
∑

i∈F ei for some finite set F ⊂ I. Then clearly ‖ f ‖d = 1. Suppose
f = 1

2 (g + h) , and
‖g‖d, ‖h‖d ≤ 1.

In this case, for each i ∈ F, g(i) + h(i) = 2 and for each i ∈ I \ F, f (i) + g(i) = 0. We claim that for
each i ∈ F, g(i) = h(i) = 1 and for each i ∈ I \ F, f (i) = g(i) = 0. Suppose there exists i0 ∈ F such
that g(i0) > 1 or h(i0) > 1. Considering lim g = 0, we have inf(g) ≤ 0 ≤ sup(g) , then

‖g‖d = sup(g) − inf(g) > g(i0) − 0 > 1.

That is a contradiction. Similarly, for the case h(i0) > 1, a contradiction is obtained. So for each
i ∈ F,

g(i) = h(i) = 1.
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If j0 ∈ I \ F, exists such that g( j0) = −h( j0) , 0, now if g( j0) < 0, then

‖g‖d = sup(g) − inf(g) ≥ 1 − g( j0) > 1,

which is a contradiction. In the case of g( j0) > 0, we have h( j0) < 0. Similar to the previous case
it can be shown ‖h‖d > 1, so g = h. Consequently f =

∑
i∈F ei ∈ ext U(c0(I)). Similarly, we deduce

that, f = −
∑

i∈F ei ∈ ext U(c0(I)).

Theorem 2.12. f ∈ ext U(c(I)) if and only if there exists a non-empty finite F ⊂ I such that
f = ±

∑
i∈F ei or f = ±e.

Proof. We first show that ±e ∈ ext U(c(I)). Suppose g, h ∈ U(c(I)) such that e = 1
2 (g + h) and

‖h‖D, ‖g‖D ≤ 1. Therefore, h + g = 2e. We claim that g(i) = h(i) = 1, for each i ∈ I. Assuming
there exists i0 ∈ I such that g(i0) > 1 or h(i0) > 1, then we have ‖g‖D ≥ ‖g‖∞ ≥ g(i0) > 1. That is
a contradiction. Similarly the case where h(i0) > 1, also leads to a contradiction. So, g = h which
concludes that e ∈ ext U(c(I)). Similarly, we deduce that, −e ∈ ext U(c(I)).

If F ⊂ I is finite and f =
∑

i∈F ei, we show that f ∈ ext U(c(I)). Suppose f = 1
2 (g + h), where

g, h ∈ c(I) and ‖h‖D, ‖g‖D ≤ 1. Then for all i ∈ F, we get

g(i) + h(i) = 2,

and for each i ∈ I \ F, we conclude g(i) + h(i) = 0. We show that h(i) = g(i) = 1, for all i ∈ F, and
h(i) = g(i) = 0, for all i ∈ I \ F. Otherwise, there exists i0 ∈ F such that g(i0) > 1 or h(i0) > 1.
Then ‖g‖D ≥ ‖g‖∞ ≥ g(i0) > 1 or ‖h‖D = ‖h‖∞ ≥ h(i0) > 1. This is a contradiction. Thus for each
i ∈ F, we have

g(i) = h(i) = 1. (2.13)

Now it is enough to show g(i) = h(i) = 0, for each i ∈ I \ F. Suppose i0 ∈ I \ F, such that
g(i0) = −h(i0) , 0. If g(i0) < 0, then

‖g‖D = diam(g) + | lim g| ≥ 1 − g(i0) > 1.

If g(i0) > 0 then ‖h‖D > 1 which is a contradiction. Thus, for each i ∈ I \ F,

g(i) = h(i) = 0. (2.14)

Based on (2.13) and (2.14), we have g = h. So, f =
∑

i∈F ei ∈ ext U(c(I)), and similarly, we deduce
that −

∑
i∈F ei ∈ ext U(c(I)).

Conversely, if f ∈ ext U(c(I)). Then as in Lemma (2.11), we see that f takes at most two
values, that is there exists a finite set F ⊂ I and real numbers of α, β such that |α| ≤ 1, |β| ≤ 1 and

f (i) =

{
α i ∈ F
β i < F .

In the following, it will be demonstrated that either α = β = ±1 or α = ±1, β = 0. If β = 1,
then ‖ f ‖D = 1 = β − α + β; we conclude, α = 1. In the same way, β = −1 implies that α = −1. In
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the case that α = ±1, we show that either β = 0 or β = ±1. Assuming α = 1 and 0 < β < 1, we put
0 < α0 < min{1 − β, β} and

g(i) =

{
1 i ∈ F

β + α0 i < F , h(i) =

{
1 i ∈ F

β − α0 i < F .

So, ‖g‖D = 1 − β − α0 + β + α0 = 1, ‖h‖D = 1 − β + α0 + β − α0 = 1, and f = 1
2 (g + h), which

is a contradiction. For the case that α = 1 and β < 0, we have diam( f ) = 1 − β > 1 which is
a contradiction. Consequently, if α = 1 then β = 0 or β = 1. Similarly, it can be shown that if
α = −1 then β = 0 or β = −1.

Now, it suffices to show that if 0 ≤ |α| < 1 and 0 < |β| < 1 then f < ext U(c(I)). Suppose
0 < β ≤ α < 1, and f ∈ ext U(c(I)), then we have

1 = ‖ f ‖D = α − β + β.

So, α = 1, which is a contradiction. let 0 ≤ α ≤ β < 1, and f ∈ ext U(c(I)). Then there exists
n ∈ N such that α ≤ n−1

n+1 , and 1 = ‖ f ‖D = β − α + β = 2β − α. So, n+1
n β ≥ α + 2

nβ, β = α+1
2 . Putting

g(i) =


α +

2
n
β i ∈ F

n + 1
n

β i < F

, h(i) =


α −

2
n
β i ∈ F

n − 1
n

β i < F

.

Thus, ‖g‖D =
n + 1

n
β − α −

2
n
β +

n + 1
n

β = 2β − α = 1, ‖h‖D = 1, and f = 1
2 (g + h), h , g,

which is a contradiction. With a similar argument for state −1 < α < 0 < β < 1, we can show that
f < ext U(c(I)). If −1 < α < β < 0, −1 < β < α < 0 or −1 < β < 0 < α < 1, than f < ext U(c(I)).
Because if we have f ∈ ext U(c(I)), then − f ∈ ext U(c(I)), and by the previous argument, we
come to a contradiction. So we have f = ±e or f = ±

∑
i∈F ei for non-empty finite F ⊂ I.

Example 2.13. Let I = N. Then, by the previous theorem, and Lemma (2.11), we have ei =

(0, . . . , 1, 0, . . .) ∈ ext U(c0(N)) , ei ∈ ext U(c(N)) and (1, 1, . . .) ∈ ext U(c(N)), which c(N) = c0 =

{(xn)n∈N : limn→∞ xn = 0}.

Finally, we identify some orthogonal elements in the Banach space c(I). For example if i , j,
then ei is orthogonal to e j, because ‖ei‖D = 1 and for every λ ∈ R, we have

(ei + λe j)(r) =


1 r = i
λ r = j
0 r , i, j

.

Assuming λ ≥ 1, we have ‖ei +λe j‖D = λ. Consequently 1 = ‖ei‖D ≤ ‖ei +λe j‖D. If 0 ≤ λ < 1,then
we have 1 = ‖ei‖D ≤ ‖ei + λe j‖D = 1. Now if λ < 0 then inf(ei + λe j) = λ, which, implies that
1 = ‖ei‖D ≤ 1 − λ = ‖ei + λe j‖D.

If there exists i ∈ I sach that min( f ) < f (i) < max( f ), then f is orthogonal to ei, because for
every r ∈ I and any λ ∈ R.
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( f + λei)(r) =

{
f (i) + λ r = i
f (r) r , i .

If f (i) + λ > max( f ), then max( f ) < max( f + λei) and min( f ) = min( f + λei), on the other hand,

lim f = lim( f + λei),

and hence
‖ f ‖D ≤ ‖( f + λei)‖D.

If f (i) + λ < min( f ) then min( f ) > min( f + λei) and max( f ) = max( f + λei). Therefore

‖ f ‖D ≤ ‖( f + λei)‖D.

If min( f ) ≤ f (i) + λ ≤ max( f ), since min( f ) < f (i) < max( f ), we have

max( f ) = max( f + λei),min( f ) = min( f + λei)

and consequently
‖ f ‖D = ‖( f + λei)‖D.

According to the above relations, the function f is orthogonal to ei. Also the function f is orthog-
onal to the element u in the linear space of

{ei : min( f ) < f (i) < max( f )}.

Indeed, if α1, α2, . . . , αk ∈ R and u = α1ei1 + α2ei2 + · · · + αkeik . Then for each λ ∈ R and r ∈ I, we
have

( f + λu)(r) =

{
f (r) + λαr r = ir

f (r) r , ir
.

If there exists ir ∈ I such that f (ir + λαr) > max( f ) or f (ir + λαr) < min( f ), then max( f + λu) >
max( f ) or min( f +λu) < min( f ). In such cases, it can be similarly shown that min( f ) = min( f +λu)
or max( f ) = max( f + λu). So in these cases ‖ f ‖D ≤ ‖( f + λu)‖D and so f is orthogonal to u. In the
case of min( f ) ≤ f (ir) + λαr ≤ max( f ), it can be concluded that the function f is orthogonal to u.
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