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1. Introduction

Preserving problems on operator algebras have attracted attention of many mathematicians in
the last decades. These problems concern the question of characterizing the form of all maps
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on operator algebras that leave invariant a certain property, and many results exposing the alge-
braic structure of such maps are obtained. Recently, some preserver problems concern the certain
properties of different types of products of operators (cf. [2-12]).

Let B8(X) denote the algebra of all bounded linear operators on a complex Banach space X.
Let A € B(X). Recall that x € X is a fixed point of A, whenever we have Ax = x. It is clear that
the set of all fixed points of A is a subspace of X. Denote by F(A) and dim F(A) the set of all fixed
points of A and the dimension of F(A), respectively.

We say that a map ¢ on B(X) is preserving the fixed points of the operation **’ of operators if
F(A = B) C F(¢(A) = ¢(B)), for every A, B € B(X).

Authors in [9] characterized the forms of surjective maps on B(X) which preserve the dimen-
sion of fixed points of products of operators, in both directions. More precisely, it was shown
that if ¢ : B(X) — B(X) is a surjective map which satisfies dim F(AB) = dim F(¢(A)p(B)), for
every A, B € B(X), then there exists an invertible operator § € B(X) such that ¢(A) = SAS~! or
#(A) = —SAS~! for all A € B(X). Authors in [10], considered the maps ¢ : B(X) — B(X) and
¢ M, > M, satistying F(A + B) = F(¢(A) + ¢(B)) and dim F(A + B) = dim F(¢(A) + ¢(B)),
respectively. Moreover, authors in [11], considered the forms of surjective maps on B(X) which
preserve the fixed points of triple Jordan products of operators, in both directions, i.e., F(ABA) =
F(p(A)p(B)p(A)).

The Jordan product of A, B € B(X) is defined as A o B = AB + BA. The aim of this paper
is to continue these works by studying surjective additive maps on B(X) which preserve the fixed
points of Jordan products of operators. The complete form of our main result is as following:

Main Theorem. Let X be a complex Banach space with dim X > 2 and let ¢ : B(X) — B(X)
be a surjective additive map which satisfies

F(A o B) C F(¢(A) o ¢(B)),

for every A, B € B(X). Then ¢(A) = A, for every A € B(X) or, ¢p(A) = —A, for every A € B(X).

2. Proofs

Denote by X* the dual space of X. For every nonzero x € X and f € X*, the symbol x ® f
stands for the rank-one linear operator on X defined by (x ® f)y = f(y)x for any y € X. Note
that every rank-one operator in B(X) can be written in this way. The rank-one operator x ® f is
idempotent (resp. nilpotent) if and only if f(x) = 1 (resp. f(x) = 0). Moreover, it is easy to check
that F(x ® f) =< x > if and only if f(x) = 1 and F(x ® f) = {0} if and only if f(x) # 1. In order
to prove the main theorem, we need some auxiliary propositions and lemmas.

Proposition 2.1. Let A € B(X). If F(A o B) = {0}, for every B € B(X), then A = 0.

Proof. Let x € X be arbitrary. If x and Ax are linearly independent, then we can find a functional
f such that f(x) = 0 and f(Ax) = 1. Hence by setting B = x ® f we get a contradiction, because

AoB)x=Ax® f+xQ fA)x =x
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which implies that F(A o B) # {0}. Therefore, x and Ax are linearly dependent, for every x € X
which by Theorem 2.3 in [1] A = A, for some scalar A. If 4 # 0, setting B = %I implies

-1
X=F)=FQlo %1),

which is a contradiction and this completes the proof. ]

Proposition 2.2. Let A, C € B(X) and rankA > 2. If F(A o B) C F(C o B), for every rank-at-most-
two operator B, then A = C.

Proof. If A is scalar, then A = al for some scalar @ # 0. For any nonzero x and functional f with
f(x) = 5~ wehave x € F(Aox® f), 50 (Cx® f +x® fC)x = 5:-Cx + f(Cx)x = x, giving that x and
Cx are linearly dependent and thus C = SI. It is then easy to see that 8 = « forcing that C = A.

Let now A be non-scalar and additionally assume that there exists an x, such that Ax ¢<
x,Cx >. Then we can fix a functional f satisfying f(x) = f(Cx) = 0 and f(Ax) = 1. Observe
that (Ao x® f)x = xso, x € F(C o x® f), a contradiction with (C o x ® f)x = 0. It follows
that Ax e< x,Cx > for every x € X. If dimX > 3, then by Lemma 2.4 in [6], it follows that
A = al + BC for some scalars «,. Since A is not scalar, 8 # 0 and so, C = al + bA for some
scalars a, b. For every rank-one nilpotent x ® f, such that x and y := Ax are linearly independent
and f(x) =0, f(y) = 1 we have x € F(A o x® f). Therefore, (Cx® f +x® fC)x = f(Cx)x = x, SO
f(Cx) =1, giving further that b = 1. We next show that a = 0. Let us choose functionals g, i such
that g(x) = g(y) = 1, h(x) = 0 and h(y) = —1. Setting B = x® g + y ® h gives that x € F(A o B).
Then, x = C o Bx = (2a + 1)x, giving a = 0 as desired.

It remains to verify the two-dimensional case. Then we can assume that A and C are 2 X 2
complex matrices with A invertible. With no loss of generality we may assume that A is upper
triangular with nonzero (possibly equal) diagonal entries A;,4,. Let Ey; and E», be standard
matrix units. By choosing B; = ZLA/E ij» J = 1,2, and further computing and comparing the fixed
points of Ao Bjand C o Bj, j = 1,2, we easily obtain that C = A. ]

Lemma 2.3. ¢ is injective.

Proof. Let ¢(A) = 0. Thus F(¢(A) o T) = {0}, for every T € B(X). Since ¢ is surjective, from
assumption we obtain F (A o B) = {0}, for every B € B(X). By Proposition 2.1, A = 0. U

Lemma 2.4. Let 0 # N = x® f, for some x € X and f € X" such that f(x) = 0. Then x ¢ F(¢(N).

Proof. Let P = x ® g, for some g € X* such that g(x) = 1. Hence Q = P + nN is an idempotent
operator, for every n € N U {0} and so

1
F(EQO Q)=FQ)=<x>.
On the other hand

1 1
F(5Q00) C F(54(Q) 0 ¢(Q)) = F($(Q)") = F([$(P) + np(N)]*),
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for every n € N U {0}. Therefore, we obtain [¢(P) + n¢(N)]*x = x and then

[(P)* + n*$(N)? + n(@(P)P(N) + p(N)$(P))]x = x

for more than two values of n. The coefficient at n> must be zero and so ¢(N)*>x = 0. From this,
we infer that x ¢ F(N), because, otherwise, ¢(N)x = x, then ¢(N)*x = ¢(N)x = x and so x = 0,
which is a contradiction. O]

Lemma 2.5. ¢(I) =1 or ¢(I) = —1.

Proof. Let ¢(A) = I and x € X. Assume that x and Ax are linearly independent. Thus there exists
a functional f such that f(x) = 0 and f(Ax) = 2. We have

1 1 1
[zZAo(x® Hlx=[zAx® f+ =x® fAlx = x
2 2 2
and then

1 1
X € F(@(5A4) 0 ¢(x® f)) = F(5 0 p(x® f)) = F($(x ® [))

which by Lemma 2.4 is a contradiction. Therefore, x and Ax are linearly dependent for every
x € X and then A = Al, for some scalar 4. We have

X=FQ o %1) CFp'Do ¢(%1))

1
= F(¢p(A™' Do 3= F(¢(A™' D)

and then ¢(A~'I) = I. This together with ¢(Al) = I and Lemma 2.3 implies A-'/ = Al and then
A =1or —1. This completes the proof. O]

Remark 2.6. Without losing any generality (replacing ¢ by —¢ if needed) we assume that ¢(/) = 1.
Thus we have

(D F(A) € F(¢(A)),

for every A € B(X).

Lemma 2.7. ¢(A) = A, for every rank-one operator A.

Proof. Let A = xQ f, for some x € X and f € X*. Unitality of ¢ together with (1) implies
kerA=F({ —-A)C F(I - ¢(A)) = ker ¢(A)

and then ker f C ker ¢(A). Injectivity of ¢ yields that ker f = ker ¢(A), because if ker f is a proper
subset of ker ¢(A), then since ker f is a maximal subspace of X, ker ¢(A) = X and so ¢(A) = 0,
which is in contrast to injectivity of ¢. So ker f = ker ¢(A) implies that ¢(A) = y ® f, for some
y € X. The rest of the proof is divided into three cases.
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Case 1. If f(x) = 1, then < x >= F(A) C F(¢(A)) which implies that ¢(A)x = yf(x) =y = x.
Hence ¢(A) = A.
Case 2. If f(x) = 0, then there exits a functional g such that g(x) = 1 and then by Case 1

xR (f+2)=xQ(f +9).
On the other hand

Px®(f+8) =d(x®f) +dp(x®g) = p(x® f) + x®g.

Thus p(x® ) = x® f.

Case 3. Let f(x) = a # 0, 1. First we show that x and y are linearly dependent. Otherwise
there exists a functional g such that g(x) = 1 and g(y) = 0. Let ¢((1 —a)x® g) = w ® g, for some
w e X. Since (f + (1 —a)g)x = 1, we have

<x>=Fxe((f+(1-a)yg)

=Fx®f+(1-a)x®g) CFHYRf+wRg)

which implies that (y ® f + w ® g)x = x and then ay + w = x. Hence g(w) = 1 which is a
contradiction, because if g(w) = 1, then from Case 1, w® g = ¢(w ® g) and injectivity of ¢ follows
that (1 —a)x® g =w® g and so (1 — a)x = w. Thus (1 — a)g(x) = g(w) and then a = 0, which is
not correct.

Therefore, x and y are linearly dependent and so ¢(x ® f) = a’x ® f, for some scalar a’. Let u
be a vector such that f(#) = 0. By Case 2 and the first part of Case 3, there exists a scalar b’ such
that

puf)=¢(u+x)® f-x®f)

and so
u f=b'u+x)@ f—a'x® f.

Thus
W fHx=b'u+x)@f—d'x® fx

which implies that au = ab’(u + x) — aa’x and then 0 = (b’ — 1)u + (b’ — a’)x. 1t is clear that x
and u are linearly independent, because otherwise, from f(u) = 0 we obtain f(x) = 0 which is a
contradiction. This together with the last relation implies »* = 1 and b’ = @’ and so a’ = 1. This
completes the proof. O

Proof of Main Theorem. The assertion immediately follows by Lemma 2.7, additivity of ¢
and Proposition 2.2.
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