Wavelets and Linear Algebra

http://wala.vru.ac.ir

Additive maps preserving the fixed points of Jordan products of operators

Roja Hosseinzadeh ${ }^{\text {a,* }}$
${ }^{a}$ Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, P. O. Box 47416-1468, Babolsar, Iran.

Article Info

Article history:
Received 10 October 2021
Accepted 17 October 2022
Available online 16 November 2022
Communicated by Abbas Salemi

Keywords:

Preserver problem,
Fixed point, Jordan product.

2010 MSC:
46J10, 47B48.

Abstract

Let $\mathcal{B}(\mathcal{X})$ be the algebra of all bounded linear operators on a complex Banach space \mathcal{X}. In this paper, we determine the form of a surjective additive map $\phi: \mathcal{B}(\mathcal{X}) \rightarrow \mathcal{B}(\mathcal{X})$ preserving the fixed points of Jordan products of operators, i.e., $F(A \circ B) \subseteq$ $F(\phi(A) \circ \phi(B)$), for every $A, B \in \mathcal{B}(\mathcal{X})$, where $A \circ B=A B+B A$, and $F(A)$ denotes the set of all fixed points of operator A. (C) (2022) Wavelets and Linear Algebra

1. Introduction

Preserving problems on operator algebras have attracted attention of many mathematicians in the last decades. These problems concern the question of characterizing the form of all maps

[^0]on operator algebras that leave invariant a certain property, and many results exposing the algebraic structure of such maps are obtained. Recently, some preserver problems concern the certain properties of different types of products of operators (cf. [2-12]).

Let $\mathcal{B}(\mathcal{X})$ denote the algebra of all bounded linear operators on a complex Banach space \mathcal{X}. Let $A \in \mathcal{B}(\mathcal{X})$. Recall that $x \in \mathcal{X}$ is a fixed point of A, whenever we have $A x=x$. It is clear that the set of all fixed points of A is a subspace of \mathcal{X}. Denote by $F(A)$ and $\operatorname{dim} F(A)$ the set of all fixed points of A and the dimension of $F(A)$, respectively.

We say that a map ϕ on $\mathcal{B}(\mathcal{X})$ is preserving the fixed points of the operation ' $*$ ' of operators if $F(A * B) \subseteq F(\phi(A) * \phi(B))$, for every $A, B \in \mathcal{B}(\mathcal{X})$.

Authors in [9] characterized the forms of surjective maps on $\mathcal{B}(\mathcal{X})$ which preserve the dimension of fixed points of products of operators, in both directions. More precisely, it was shown that if $\phi: \mathcal{B}(\mathcal{X}) \longrightarrow \mathcal{B}(\mathcal{X})$ is a surjective map which satisfies $\operatorname{dim} F(A B)=\operatorname{dim} F(\phi(A) \phi(B))$, for every $A, B \in \mathcal{B}(\mathcal{X})$, then there exists an invertible operator $S \in \mathcal{B}(\mathcal{X})$ such that $\phi(A)=S A S^{-1}$ or $\phi(A)=-S A S^{-1}$ for all $A \in \mathcal{B}(\mathcal{X})$. Authors in [10], considered the maps $\phi: \mathcal{B}(\mathcal{X}) \rightarrow \mathcal{B}(\mathcal{X})$ and $\phi: \mathcal{M}_{n} \rightarrow \mathcal{M}_{n}$ satisfying $F(A+B)=F(\phi(A)+\phi(B))$ and $\operatorname{dim} F(A+B)=\operatorname{dim} F(\phi(A)+\phi(B))$, respectively. Moreover, authors in [11], considered the forms of surjective maps on $\mathcal{B}(\mathcal{X})$ which preserve the fixed points of triple Jordan products of operators, in both directions, i.e., $F(A B A)=$ $F(\phi(A) \phi(B) \phi(A))$.

The Jordan product of $A, B \in \mathcal{B}(\mathcal{X})$ is defined as $A \circ B=A B+B A$. The aim of this paper is to continue these works by studying surjective additive maps on $\mathcal{B}(\mathcal{X})$ which preserve the fixed points of Jordan products of operators. The complete form of our main result is as following:

Main Theorem. Let \mathcal{X} be a complex Banach space with $\operatorname{dim} \mathcal{X} \geq 2$ and let $\phi: \mathcal{B}(\mathcal{X}) \rightarrow \mathcal{B}(\mathcal{X})$ be a surjective additive map which satisfies

$$
F(A \circ B) \subseteq F(\phi(A) \circ \phi(B)),
$$

for every $A, B \in \mathcal{B}(\mathcal{X})$. Then $\phi(A)=A$, for every $A \in \mathcal{B}(\mathcal{X})$ or, $\phi(A)=-A$, for every $A \in \mathcal{B}(\mathcal{X})$.

2. Proofs

Denote by \mathcal{X}^{*} the dual space of \mathcal{X}. For every nonzero $x \in \mathcal{X}$ and $f \in \mathcal{X}^{*}$, the symbol $x \otimes f$ stands for the rank-one linear operator on \mathcal{X} defined by $(x \otimes f) y=f(y) x$ for any $y \in \mathcal{X}$. Note that every rank-one operator in $\mathcal{B}(\mathcal{X})$ can be written in this way. The rank-one operator $x \otimes f$ is idempotent (resp. nilpotent) if and only if $f(x)=1$ (resp. $f(x)=0$). Moreover, it is easy to check that $F(x \otimes f)=<x>$ if and only if $f(x)=1$ and $F(x \otimes f)=\{0\}$ if and only if $f(x) \neq 1$. In order to prove the main theorem, we need some auxiliary propositions and lemmas.

Proposition 2.1. Let $A \in \mathcal{B}(\mathcal{X})$. If $F(A \circ B)=\{0\}$, for every $B \in \mathcal{B}(\mathcal{X})$, then $A=0$.
Proof. Let $x \in \mathcal{X}$ be arbitrary. If x and $A x$ are linearly independent, then we can find a functional f such that $f(x)=0$ and $f(A x)=1$. Hence by setting $B=x \otimes f$ we get a contradiction, because

$$
(A \circ B) x=(A x \otimes f+x \otimes f A) x=x
$$

which implies that $F(A \circ B) \neq\{0\}$. Therefore, x and $A x$ are linearly dependent, for every $x \in \mathcal{X}$ which by Theorem 2.3 in [1] $A=\lambda I$, for some scalar λ. If $\lambda \neq 0$, setting $B=\frac{\lambda^{-1}}{2} I$ implies

$$
\mathcal{X}=F(I)=F\left(\lambda I \circ \frac{\lambda^{-1}}{2} I\right),
$$

which is a contradiction and this completes the proof.
Proposition 2.2. Let $A, C \in \mathcal{B}(\mathcal{X})$ and $\operatorname{rank} A \geq 2$. If $F(A \circ B) \subseteq F(C \circ B)$, for every rank-at-mosttwo operator B, then $A=C$.

Proof. If A is scalar, then $A=\alpha I$ for some scalar $\alpha \neq 0$. For any nonzero x and functional f with $f(x)=\frac{1}{2 \alpha}$ we have $x \in F(A \circ x \otimes f)$, so $(C x \otimes f+x \otimes f C) x=\frac{1}{2 \alpha} C x+f(C x) x=x$, giving that x and $C x$ are linearly dependent and thus $C=\beta I$. It is then easy to see that $\beta=\alpha$ forcing that $C=A$.

Let now A be non-scalar and additionally assume that there exists an x, such that $A x \notin<$ $x, C x>$. Then we can fix a functional f satisfying $f(x)=f(C x)=0$ and $f(A x)=1$. Observe that $(A \circ x \otimes f) x=x$ so, $x \in F(C \circ x \otimes f)$, a contradiction with $(C \circ x \otimes f) x=0$. It follows that $A x \in<x, C x>$ for every $x \in \mathcal{X}$. If $\operatorname{dim} \mathcal{X} \geq 3$, then by Lemma 2.4 in [6], it follows that $A=\alpha I+\beta C$ for some scalars α, β. Since A is not scalar, $\beta \neq 0$ and so, $C=a I+b A$ for some scalars a, b. For every rank-one nilpotent $x \otimes f$, such that x and $y:=A x$ are linearly independent and $f(x)=0, f(y)=1$ we have $x \in F(A \circ x \otimes f)$. Therefore, $(C x \otimes f+x \otimes f C) x=f(C x) x=x$, so $f(C x)=1$, giving further that $b=1$. We next show that $a=0$. Let us choose functionals g, h such that $g(x)=g(y)=1, h(x)=0$ and $h(y)=-1$. Setting $B=x \otimes g+y \otimes h$ gives that $x \in F(A \circ B)$. Then, $x=C \circ B x=(2 a+1) x$, giving $a=0$ as desired.

It remains to verify the two-dimensional case. Then we can assume that A and C are 2×2 complex matrices with A invertible. With no loss of generality we may assume that A is upper triangular with nonzero (possibly equal) diagonal entries λ_{1}, λ_{2}. Let E_{11} and E_{22} be standard matrix units. By choosing $B_{j}=\frac{1}{2 \lambda_{j}} E_{j j}, j=1,2$, and further computing and comparing the fixed points of $A \circ B_{j}$ and $C \circ B_{j}, j=1,2$, we easily obtain that $C=A$.

Lemma 2.3. ϕ is injective.
Proof. Let $\phi(A)=0$. Thus $F(\phi(A) \circ T)=\{0\}$, for every $T \in \mathcal{B}(\mathcal{X})$. Since ϕ is surjective, from assumption we obtain $F(A \circ B)=\{0\}$, for every $B \in \mathcal{B}(\mathcal{X})$. By Proposition 2.1, $A=0$.
Lemma 2.4. Let $0 \neq N=x \otimes f$, for some $x \in \mathcal{X}$ and $f \in \mathcal{X}^{*}$ such that $f(x)=0$. Then $x \notin F(\phi(N)$.

Proof. Let $P=x \otimes g$, for some $g \in X^{*}$ such that $g(x)=1$. Hence $Q=P+n N$ is an idempotent operator, for every $n \in \mathbb{N} \cup\{0\}$ and so

$$
F\left(\frac{1}{2} Q \circ Q\right)=F(Q)=\langle x\rangle .
$$

On the other hand

$$
F\left(\frac{1}{2} Q \circ Q\right) \subseteq F\left(\frac{1}{2} \phi(Q) \circ \phi(Q)\right)=F\left(\phi(Q)^{2}\right)=F\left([\phi(P)+n \phi(N)]^{2}\right),
$$

for every $n \in \mathbb{N} \cup\{0\}$. Therefore, we obtain $[\phi(P)+n \phi(N)]^{2} x=x$ and then

$$
\left[\phi(P)^{2}+n^{2} \phi(N)^{2}+n(\phi(P) \phi(N)+\phi(N) \phi(P))\right] x=x
$$

for more than two values of n. The coefficient at n^{2} must be zero and so $\phi(N)^{2} x=0$. From this, we infer that $x \notin F(N)$, because, otherwise, $\phi(N) x=x$, then $\phi(N)^{2} x=\phi(N) x=x$ and so $x=0$, which is a contradiction.

Lemma 2.5. $\phi(I)=I$ or $\phi(I)=-I$.
Proof. Let $\phi(A)=I$ and $x \in \mathcal{X}$. Assume that x and $A x$ are linearly independent. Thus there exists a functional f such that $f(x)=0$ and $f(A x)=2$. We have

$$
\left[\frac{1}{2} A \circ(x \otimes f)\right] x=\left[\frac{1}{2} A x \otimes f+\frac{1}{2} x \otimes f A\right] x=x
$$

and then

$$
x \in F\left(\phi\left(\frac{1}{2} A\right) \circ \phi(x \otimes f)\right)=F\left(\frac{I}{2} \circ \phi(x \otimes f)\right)=F(\phi(x \otimes f))
$$

which by Lemma 2.4 is a contradiction. Therefore, x and $A x$ are linearly dependent for every $x \in \mathcal{X}$ and then $A=\lambda I$, for some scalar λ. We have

$$
\begin{aligned}
X= & F\left(\lambda^{-1} I \circ \frac{\lambda}{2} I\right) \subseteq F\left(\phi\left(\lambda^{-1} I\right) \circ \phi\left(\frac{\lambda}{2} I\right)\right) \\
& =F\left(\phi\left(\lambda^{-1} I\right) \circ \frac{I}{2}\right)=F\left(\phi\left(\lambda^{-1} I\right)\right)
\end{aligned}
$$

and then $\phi\left(\lambda^{-1} I\right)=I$. This together with $\phi(\lambda I)=I$ and Lemma 2.3 implies $\lambda^{-1} I=\lambda I$ and then $\lambda=1$ or -1 . This completes the proof.

Remark 2.6. Without losing any generality (replacing ϕ by $-\phi$ if needed) we assume that $\phi(I)=I$. Thus we have

$$
\begin{equation*}
F(A) \subseteq F(\phi(A)), \tag{1}
\end{equation*}
$$

for every $A \in \mathcal{B}(\mathcal{X})$.
Lemma 2.7. $\phi(A)=A$, for every rank-one operator A.
Proof. Let $A=x \otimes f$, for some $x \in \mathcal{X}$ and $f \in \mathcal{X}^{*}$. Unitality of ϕ together with (1) implies

$$
\operatorname{ker} A=F(I-A) \subseteq F(I-\phi(A))=\operatorname{ker} \phi(A)
$$

and then $\operatorname{ker} f \subseteq \operatorname{ker} \phi(A)$. Injectivity of ϕ yields that $\operatorname{ker} f=\operatorname{ker} \phi(A)$, because if $\operatorname{ker} f$ is a proper subset of $\operatorname{ker} \phi(A)$, then since $\operatorname{ker} f$ is a maximal subspace of $\mathcal{X}, \operatorname{ker} \phi(A)=\mathcal{X}$ and so $\phi(A)=0$, which is in contrast to injectivity of ϕ. So $\operatorname{ker} f=\operatorname{ker} \phi(A)$ implies that $\phi(A)=y \otimes f$, for some $y \in \mathcal{X}$. The rest of the proof is divided into three cases.

Case 1. If $f(x)=1$, then $\langle x\rangle=F(A) \subseteq F(\phi(A))$ which implies that $\phi(A) x=y f(x)=y=x$. Hence $\phi(A)=A$.

Case 2. If $f(x)=0$, then there exits a functional g such that $g(x)=1$ and then by Case 1

$$
\phi(x \otimes(f+g))=x \otimes(f+g) .
$$

On the other hand

$$
\phi(x \otimes(f+g))=\phi(x \otimes f)+\phi(x \otimes g)=\phi(x \otimes f)+x \otimes g .
$$

Thus $\phi(x \otimes f)=x \otimes f$.
Case 3. Let $f(x)=a \neq 0,1$. First we show that x and y are linearly dependent. Otherwise there exists a functional g such that $g(x)=1$ and $g(y)=0$. Let $\phi((1-a) x \otimes g)=w \otimes g$, for some $w \in \mathcal{X}$. Since $(f+(1-a) g) x=1$, we have

$$
\begin{gathered}
<x>=F(x \otimes(f+(1-a) g)) \\
=F(x \otimes f+(1-a) x \otimes g) \subseteq F(y \otimes f+w \otimes g)
\end{gathered}
$$

which implies that $(y \otimes f+w \otimes g) x=x$ and then $a y+w=x$. Hence $g(w)=1$ which is a contradiction, because if $g(w)=1$, then from Case $1, w \otimes g=\phi(w \otimes g)$ and injectivity of ϕ follows that $(1-a) x \otimes g=w \otimes g$ and so $(1-a) x=w$. Thus $(1-a) g(x)=g(w)$ and then $a=0$, which is not correct.

Therefore, x and y are linearly dependent and so $\phi(x \otimes f)=a^{\prime} x \otimes f$, for some scalar a^{\prime}. Let u be a vector such that $f(u)=0$. By Case 2 and the first part of Case 3 , there exists a scalar b^{\prime} such that

$$
\phi(u \otimes f)=\phi((u+x) \otimes f-x \otimes f)
$$

and so

$$
u \otimes f=b^{\prime}(u+x) \otimes f-a^{\prime} x \otimes f
$$

Thus

$$
(u \otimes f) x=\left(b^{\prime}(u+x) \otimes f-a^{\prime} x \otimes f\right) x
$$

which implies that $a u=a b^{\prime}(u+x)-a a^{\prime} x$ and then $0=\left(b^{\prime}-1\right) u+\left(b^{\prime}-a^{\prime}\right) x$. It is clear that x and u are linearly independent, because otherwise, from $f(u)=0$ we obtain $f(x)=0$ which is a contradiction. This together with the last relation implies $b^{\prime}=1$ and $b^{\prime}=a^{\prime}$ and so $a^{\prime}=1$. This completes the proof.

Proof of Main Theorem. The assertion immediately follows by Lemma 2.7, additivity of ϕ and Proposition 2.2.

References

[1] M. Brešar and P. Šemrl, On locally linearly dependent operators and derivations, Trans. Am. Math. Soc., 351 (1999), 1257-1275.
[2] G.M.A. Chebotar, W.-F. Ke, P.-H. Lee and N.-C. Wong, Mappings preserving zero products, Studia Math., 155 (2003), 77-94.
[3] M. Dobovišek, B. Kuzma, G. Lešnjak, C.K. Li and T. Petek, Mappings that preserve pairs of operators with zero triple Jordan Product, Linear Algebra Appl., 426 (2007), 255-279.
[4] G. Dolinar, S. Du, J. Hou and P. Legiša, General preservers of invariant subspace lattices, Linear Algebra Appl., 429 (2008), 100-109.
[5] L. Fang, G. Ji and Y. Pang, Maps preserving the idempotency of products of operators, Linear Algebra Appl., 426 (2007), 40-52.
[6] C.-K. Li, P. Šemrl and N.-K. Tsing, Maps preserving the nilpotency of products of operators, Linear Algebra Appl., 424 (2007), 222-239.
[7] L. Molnǎr, Non-linear Jordan triple automorphisms of sets of self-adjoint matrices and operators, Studia Math., 173 (2006), 39-48.
[8] P. Šemrl, Linear mappings that preserve operators annihilated by a poly- nomial, J. Oper. Theory, 36, (1996), 45-58.
[9] A. Taghavi and R. Hosseinzadeh, Maps preserving the dimension of fixed points of products of operators, Linear and Multilinear Algebra, 62 (2013), 1285-1292.
[10] A. Taghavi, R. Hosseinzadeh and H. Rohi, Maps preserving the fixed points of sum of operators, Oper. Matrices, 9 (2015), 563-569.
[11] A. Taghavi and R. Hosseinzadeh, Maps preserving the fixed points of triple Jordan products of operators, Indag. Math., 27 (2016), 850-854.
[12] M. Wang, L. Fang and G. Ji, Linear maps preserving idempotency of products or triple Jordan products of operators, Linear Algebra Appl., 429 (2008), 181-189.

[^0]: *Corresponding author
 Email address: ro.hosseinzadeh@umz.ac.ir (Roja Hosseinzadeh)
 http://doi.org/10.22072/wala.2022.540575.1349 © (2022) Wavelets and Linear Algebra

