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Abstract
In this paper, a problem whose cost function and constraints are
increasing convex along rays is considered. For solving such
problems, an algorithm is presented that is inspired by the gen-
eralized Cutting Angle Method. A set that contains the optimal
solution of the mentioned problem is defined. Some numerical
examples are presented to confirm the validity and accuracy of
the algorithm.
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1. Introduction

The most common and well-known area of global and local optimization is convex program-
ming. The fundamental tool in the study of convex optimization problems is subgradient, which
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plays both local and global roles. First, a subgradient of a convex function f at a point x carries
out a local approximation of f in a neighborhood of x [1]. Second, the subgradient allows us to
construct an affine function h, which does not exceed f over the entire space and coincides with f
at x. This affine function is called a support function [18].
We cannot extend many results in convex programming to nonconvex programming, therefore
convex programming alone cannot help to solve many problems of optimization in real world, so
there is a clear need to develop special tools for solving nonconvex problems.
A function f is said to be abstract convex if it can be represented as the upper envelope of a class
of functions, which is sufficiently simple and called elementary functions which are studied in
[18, 19, 24].
S. S. Kutateladze and A.M. Rubinov published the first book on abstract convexity and some of its
applications to functional analysis in ordered spaces in 1976. The first characterizations of these
functions have been presented in [19].
Abstract convexity has recently emerged as an area of research with potentially intense application
to nonconvex optimization (see [21, 16, 24]).
In this paper, we will focus on one particular highly structured but nevertheless widespread class of
abstract convex function so-called increasing convex-along-rays function defined on nonnegative
orthant that the restriction of this function f to each ray starting at the origin is a convex function
of one variable [19].
Abstract convexity has found many applications in the study of mathematical analysis and op-
timization problems and also it has practical and theoretical applications in economics and me-
chanics and various engineering problems, Also it found an interesting application to the theory
of inequalities. However, the development of abstract convex analysis, like the development of
its forerunner, convex analysis, was mainly driven by applications to optimization. For applica-
tions of abstract convexity, we need to describe the main objects of this theory in some concrete
situations. Just as the set of linear function leads to a theory of convex functions and convex sets.
[9, 19].
It is known that some classes of increasing functions are abstract convex. For example, the class
of increasing and positively homogeneous (IPH) functions [6, 12] and the class of increasing and
convex-along-rays functions are abstract convex [12, 20]. The class of increasing and co-radiant
(ICR) functions is another class of increasing functions which are abstract convex. Abstract con-
vexity of nonnegative ICR functions defined on cones in an ordered topological vector space, has
been investigated in [6, 25].
Monotonicity plays an important role in various areas of mathematics and its applications. Most
results on monotonicity have been obtained in [5, 6] for increasing and co-radiant (ICR) functions
and increasing and convex-along-rays functions (see [14]). Also, some of these results have been
obtained in [14] for increasing and positively homogeneous (IPH) functions. The first studies of
these functions were carried out over the cones in topological vector spaces [11], some suitable
extensions of these functions defined over topological vector spaces, were obtained in [11, 12].
Moreover, the first characterizations of these functions have been presented in [19].
We propose an algorithm to solve a problem with such ICAR objective function whose constraints
are also ICAR functions, we have approximated such a problem from below using affine functions
inspired Cutting Angle method, then converted it into a new unconstrained problem by Penalty
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problem method. Since the recent problem is locally Lipschitz,the Subgradient method is used for
finding descent directions and approximated stationary points, then some numerical examples are
presented.
Our initial experiments have been restricted to small dimensional problems, however, the results
can be generalized to the global character of the algorithm in higher dimensions.
The structure of the paper is as follows: In Section 2 we provide some definitions, notations and
preliminary results related to abstract convexity . In Section 3 a set that contains the optimal so-
lution of our problem is defined. A new algorithm to solve the mentioned problem is given in
Section 4 and finally in Section 5 we approximate the solution of some numerical examples with
this novel algorithm.

2. Preliminaries

In this section, first we give some definitions and results related to the abstract convexity.
Throughout this paper, we assume that X is a compact set in Rn and the functions f and g are
increasing convex along rays functions where g : Rn → R, also [l, x] stands for the inner product
of vectors l and x in Rn.

Definition 2.1. [19] Let V ⊆ R̄ = [−∞,∞] and X be a set, suppose that H is a nonempty set of
functions h : X → V . A function f : X → V̄ is called abstract convex with respect to H (or
H−convex) if there exists a set U ⊂ H such that f is the upper envelope of this set:

f (x) = sup{h(x) : h ∈ U}, (∀x ∈ X).

The set H will be referred to as a set of elementary functions.

Definition 2.2. [19] Let f : X → V̄ be a function, the set supp( f ,H) = {h ∈ H : h ≤ f } of all
H−minorants of f is called the support set of the function f with respect to the set of elementary
functions H. Occasionally, we shall use the term lower support set instead of support set.

Definition 2.3. [19] Let Q ⊆ Rn be a conic set. A function f : Q → (−∞,+∞] is called convex-
along-rays (briefly, CAR) if, for each x ∈ Q , the function fx(t) := f (tx), t ∈ [0,+∞) is convex.
Denote by Rx the closed ray {tx : t ≥ 0} starting at the origin and passing through a point x. We
can rephrase the definition of convexity-along-rays in the following form. A function f : Q →
(−∞,+∞] is convex-along-rays if its restriction to each ray Rx with x ∈ Q is a convex function.

The class of ICAR functions is very broad. For example an increasing positively homogeneous
function of degree m ≥ 1 and an increasing convex function defined on Rn

+ and a family of func-
tions f (x) = xα1

1 .x
α2
2 ... xαn

n for x ∈ Rn
+ (
∑
αi ≥ 1 and αi ≥ 0) are ICAR.

abstract convexity is studied based on classes of elementary functions, consisting of the so-called
min-type functions. Instead of linear functions x →

∑
lixi defined on Rn, we consider functions

of the form x→ mini∈I+(l)lixi with I+(l) = {i : li > 0}, defined either on the cone Rn
+ of vectors with

positive coordinates or on the cone Rn
+ of vectors with nonnegative coordinates. Abstract convex-

ity with respect to this class of elementary functions leads to the theory of monotone functions
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defined on cones Rn
+ and Rn

+.
Min-type functions l(x) with l = (l1, l2, ..., ln) and x = (x1, x2, ..., xn) have a following general form:

(x) =< l, x >:= mini∈I+(l)lixi with I+(l) = {i : li > 0}.

Definition 2.4. [19] Let L be a set of all min-type functions defined on Rn
+ where < l, x >:=

mini∈I+(l)lixi with I+(l) = {i : li > 0}, the L-subdifferential of an ICAR functions f at point
x ∈ dom f is defined by:

∂L f (x) = {` ∈ L :< `, y > − < `, x >≤ ( f (y) − f (x))}, ∀y ∈ Rn
+.

Proposition 2.5. [19] Let f be an ICAR function and y ∈ Rn
+ \ {0} be a vector, such that (1 + ε)y ∈

dom f for some ε > 0. Then there exists ` ∈ Rn
+ with the property :

< `, x > − < `, y >≤ ( f (x) − f (y)), ∀x ∈ Rn
+.

In particular, the vector l = u/y with u ∈ ∂ fy(1) enjoys this property, where:

(u/y)i =

0 if yi = 0,
ui/yi if yi , 0.

(2.1)

Let f : Rn
+ → R be a convex-along-rays function, It is well known that ∂ fy(t) coincides with

the segment [( f ′y )−(t), ( f ′y )+(t)], where ( f ′y )−(t) and ( f ′y )+(t) are the left and right derivatives of the
function fy at point t, respectively. An easy calculation ([19]) shows that ( f ′y )−(1) = − f ′(y,−y) and
( f ′y )+(1) = f ′(y, y), where

f ′(y, u) := lim
α→0+

(
f (y + αu) − f (y)

α
)

is the directional derivative of function f at point y in the direction u. Thus ∂ fy(1) = [− f ′(y,−y), f ′(y, y)]
.

Proposition 2.6. [19] Let f be an ICAR function and x ∈ Rn
+\{0} a point such that (1+ε)x ∈ dom f

for some ε > 0, and also let L be a set of all min-type functions defined on Rn
+ where < l, x >:=

mini∈I+(l)lixi with I+(l) = {i : li > 0}. Then the subdifferential ∂L f (x) is nonempty and:

∂L f (x) ⊃ {u/x : u ∈ ∂ fx(1)}

where fx(t) = f (tx).

Definition 2.7. A function f : Rn → R is locally Lipschitz continuous at a point x ∈ Rn if there
exist scalars K > 0 and ε > 0 such that:

| f (y) − f (z)| ≤ K||y − z||, ∀ y, z ∈ B(x; ε).

Function f : Rn → R is said to be locally Lipschitz continuous on a set U ⊆ Rn if it is locally
Lipschitz continuous at every point belonging to the set U.

Definition 2.8. A point x ∈ Rn satisfying 0 ∈ ∂ f (x) is called a stationary point of f .
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3. Characterizing a set which contains the optimal solution

In this section, we want to find a set contains the optimal solution of our problem which has
the following form:

min f (x)
s.t.

g(x) ≤ 0,
x ∈ X,

(P)

where X is a compact set in Rn
+ and functions f (x) and g(x) are increasing convex along rays.

For every point x ∈ X, consider:
min fx(t)

s.t.
gx(t) ≤ 0,

t ≥ 0,

(Px)

where the functions fx(t) and gx(t) are convex for all t ≥ 0, x ∈ X and and the feasible region of
problem Px for x ∈ X is:

Ux := {t ≥ 0 : gx(t) ≤ 0 }.

We define the set S as follow:

S := {x ∈ X : min
t∈Ux

( fx(t)) = fx(1)}. (3.1)

Lemma 3.1. The set S in (3.2) is nonempty.

Proof. Consider an arbitrary and fixed point x̂ ∈ X, suppose that the optimal solution of Px̂(t) is t̂,
.i.e:

mint∈U x̂( fx̂(t)) = fx̂(t̂).

We assume t̂ x̂ := x̄, since the rays {tx̂ : t ≥ 0} and {tx̄ : t ≥ 0} are equal, the optimal value of two
following problems:

min fx̂(t)

s.t gx̂(t) ≤ 0,

t ≥ 0,

and:
min fx̄(t)

s.t gx̄(t) ≤ 0,

t ≥ 0,

are equal. so we have:

mint∈U x̄( fx̄(t)) = mint∈U x̂( fx̂(t)) = fx̂(t̂) = f (t̂ x̂) = f (x̄) = fx̄(1),

consequently, x̄ ∈ S and S is not empty.
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Lemma 3.2. Suppose that x̃ is an optimal solution for problem (P) and consider the set:

S := {x ∈ X : min
t∈Ux

( fx(t)) = fx(1)},

then x̃ ∈ S .

Proof. We must show that t = 1 is the optimal solution for the problem (Px̃). let t0 ≥ 0 is the
optimal solution for the problem (Px̃), Since x̃ is an optimal solution of problem (P), on ray
{λx̃ : λ ≥ 0} we have:

f (x̃) ≤ fx̃(t0),

if f (x̃) < fx̃(t0) then it is a contradiction, because it means that t0 is not optimal for problem (Px̃).
Therefore fx̃(1) = f (x̃) = fx̃(t0) and it can be concluded that t = 1 is an optimal solution for (Px̃),
so x̃ ∈ S .

Let L be the set of all min-type functions l(x) =< l, x > with l ∈ Rn
+, where:

< l, x > = min
i∈I+(l)

lixi with I+(l) = {i : li > 0}.

Vertical shifts of functions ` ∈ L, which are in the form h(x) = `(x) − c, for all x ∈ X with ` ∈ L
and c ∈ R, are called L−affine functions or abstract affine functions with respect to L.

Definition 3.3. Consider a point x0 ∈ f := {x ∈ X : f (x) < ∞}.The set ∂∗HL
f (x) is defined as

follows:
∂∗HL

f (x0) := {h ∈ supp( f ,H) : h(x0) = f (x0)},

where HL is the set of all L-affine functions.

Proposition 3.4. [19] Let f : Rn
+ → R be an ICAR function such that for each x ∈ Rn

+, the function
fx defined by fx(t) = f (tx) is lower semicontinuous on Rn

+. Then a function f is abstract convex
with respect to the set HL of all functions h defined by h(x) =< l, x > −c.

Let f be an ICAR function. Proposition 2.6 shows that the L−subdifferential ∂L f (x) is nonempty

and contains the function lx :=
f ′(x, x)

x
, where:

lx(y) = min
i∈I+(x)

f ′(x, x)
xi

yi = f ′(x, x) min
i∈I+(x)

yi

xi
.

According to Proposition 7.1 in ([19]) the set ∂∗HL
f (x) is nonempty for all x ∈ Rn

+ and this set
contains function hx, where:

hx(y) = f ′(x, x) min
i∈I+(x)

yi

xi
− ( f ′(x, x) − f (x)).

It is clear that hx(x) = f (x) and also hx(y) ≤ f (y) for all y ∈ X. Indeed, let L be the set of all min-
type functions l(x) = < l, x > with l ∈ Rn

+, where < l, x >= mini∈I+(l) lixi with I+(l) = {i : li > 0}.
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since ∂ fy(1) = [− f ′(y,−y), f ′(y, y)] and ∂L f (x) ⊃ {u/x : u ∈ ∂ fx(1)} we have ∂L f (x) ⊃ { f ′(x, x)/x :
x ∈ X}. Therefore:

< f ′(x, x)/x, y > − < f ′(x, x)/x, x >≤ ( f (y) − f (x)), ∀y ∈ Rn
+,

thus:
f ′(x, x) min

i∈I+(x)

yi

xi
− f ′(x, x) + f (x) ≤ f (y),∀y ∈ Rn

+

→ hx(y) ≤ f (y). (3.2)

Proposition 3.5. Let f be an ICAR function defined on Rn
+ and x̄ , 0 a point such that λx̄ ∈ dom

f for some λ > 1, then f (x̄) = limin f k→∞ f (xk) whenever xk → x̄ .

By using h as an element of the set ∂∗HL
f (x), we can represent the cutting angle method in the

following form.

Algorithm1 :
Step0. Set k := 0 and Choose an arbitrary point x0 ∈ X.
Step1. Calculate a vector lk and l̄k with coordinates lk

i and l̄k
i :

lk
i :=


f ′(xk, xk)

xk
i

, , xk
i , 0,

0 , xk
i = 0.

(3.3)

l̄k
i :=


g′(xk, xk)

xk
i

, xk
i , 0,

0 , xk
i = 0.

(3.4)

where xk
i is the i−th coordinate of vector xk .

Step2. Define concave functions hk and h̄k by:

hk(x) := min
i∈I+(xk)

lk
i xi − ( f ′(xk, xk) − f (xk)),

h̄k(x) := min
i∈I+(xk)

l̄k
i xi − (g′(xk, xk) − g(xk)).

Step3. Set:
fk(x) := max0≤ j≤kh j(x) and gk(x) := max0≤ j≤kh̄ j(x),

and solve the following problem by algorithm 3:

min fk(x)
s.t.

gk(x) ≤ 0,
x ∈ X.

(Pk)

Step4. Let xk+1 be a solution of problem (Pk), using the existing software packages or the algo-
rithm for solving subproblem in [22] (section 5) find xk+1

s ∈ S by solving the convex subproblem
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(Pxk+1(t)) and set xk+1 := xk+1
s and go to Step 1.

Now, a proof of the convergence of the algorithm 1 is given under an additional assumption and
in order to study the convergence, we introduce the following quantities (for the classical convex
cases which were considered by A.M. Rubinov):

µk = fk(xk
s) (k = 0, 1, 2, ..), λk = fk−1(xk) (k = 1, 2, ..).

Some properties of functions fk and numbers λk and µk are as follows:
1) f0(x) ≤ f1(x) ≤ f2(x) ≤ ... ≤ fk(x) ≤ ... ≤ f (x), ∀x ∈ X.
Since fk(x) := max0≤ j≤k h j(x) and by (3.2) we have h j(x) ≤ f (x) for all j = 0, 1, ..., k and x ∈ X, we
conclude that max0≤ j≤k h j(x) ≤ f (x).
2) µk = f (xk

s) = hk(xk
s). Indeed:

fk(xk
s) ≤ f (xk

s) = hk(xk
s) ≤ max

0≤i≤k
hi(xk

s) = fk(xk
s).

3) The inequality λk ≤ λk+1 holds for all k. In fact:

λk = fk−1(xk) = min
gk−1(x)≤0 x∈X

fk−1(x) = min
gk−1(x)≤0 x∈X

max
0≤i≤k−1

hi(x)

≤ min
gk−1(x)≤0 x∈X

max
0≤i≤k

hi(x) ≤ min
gk(x)≤0 x∈X

max
0≤i≤k

hi(x)

= min
gk(x)≤0 x∈X

fk(x) = fk(xk+1) = λk+1.

4) Sequence {λk} is increasing and bounded from above. Therefore, limk→∞ λk exists. Indeed:

λk = fk−1(xk) = min
gk−1(x)≤0 x∈X

fk−1(x)

≤ min
gk−1(x)≤0 x∈X

f (x) ≤ min
g(x)≤0 x∈X

f (x) ≤ f (x0),∀k = 1, 2, ...

5) λk ≤ ming(x)≤0 x∈X f (x) ≤ µk for all k=1,2, ... . Indeed for a solution u of the problem (P), we
have:

min
g(x)≤0 x∈X

f (x) = f (u) ≥ fk−1(u) ≥ min
gk−1(x)≤0 x∈X

fk−1(x) = λk.

On the other hand, ming(x)≤0 x∈X f (x) ≤ f (xk
s) = µk.

Lemma 3.6. If we have xk = xk+1 ∈ S for some k, then xk is a solution of problem P.

Proof. In this case, we can take hk = hk+1, therefore:

λk+1 = fk(xk+1) = fk(xk+1
s ) = max

0≤i≤k
hi(xk+1

s ) = max
0≤i≤k+1

hi(xk+1
s ) = fk+1(xk+1

s ) = µk+1.

Property (5) shows that f (xk) = ming(x)≤0 x∈X f (x).

In the following, we give a condition which provides the convergence of algorithm 1 whenever
the produced sequence is infnite.
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Remark 3.7. In step 4 of algorithm 1, we take the feasible point xk+1
s such that txk+1

s is not feasible
for all scaler t < 1 and therefore, we have xk+1

s ≤ xk+1 for all feasible solutions xk+1.
Since fk(.) is an increasing function, we may write fk(xk+1

s ) ≤ fk(xk+1) , also in problem mingk(x)≤0 x∈X fk(x) =

fk(xk+1) we have gk(xk+1
s ) ≤ g(xk+1

s ) ≤ 0, thus xk+1
s is feasible for this problem and fk(xk+1) ≤

fk(xk+1
s ), so we conclude fk(xk+1

s ) = fk(xk+1).
We also suppose that X ⊂ (dom f ∩ dom g) and for each x ∈ X there exists xs ∈ S .

Proposition 3.8. Assume that the set L consists of concave functions defined on an open convex
set, which contains the compact set X. Let the sequence {xk

s}, produced by algorithm 1, is infinite.
Suppose that the directional derivatives u → h′k(x, u) of the concave functions hk at points x ∈ X
are uniformly bounded on set X:

||h′k(x, .)|| = max
||u||≤1
|h′k(x, u)| ≤ r < +∞, x ∈ X, k = 0, 1, ... .

Then each limit point x̄s of the sequence {xk
s} is a solution of problem (P).

Proof. Let xk j
s → x̄s for each j, consider the function hi with i ≤ k j−1 and find a supergradient ai

of the concave function hi at the point xk j . Let bi(x) = hi(xk j
s ) + [ai, x − xk j

s ], then bi(x) ≥ hi(x) for
all x ∈ X and hi(xk j

s ) = bi(xk j
s ). We have:

µk j−1 = fk j−1(xk j−1
s ) = max

0≤i≤k j−1
hi(xk j−1

s ) ≤ max
0≤i≤k j−1

bi(xk j−1
s )

= max
0≤i≤k j−1

(hi(xk j
s ) + [ai, x

k j−1
s − xk j

s ]) ≤ max
0≤i≤k j−1

(hi(xk j
s )) + max

0≤i≤k j−1
||ai||.||x

k j−1
s − xk j

s ||

= fk j−1(xk j
s ) + max

0≤i≤k j−1
||ai||.||x

k j−1
s − xk j

s ||.

Let ∂̄hi(xk j
s ) be the superdifferential of concave function hi at point xk j

s . Since ai ∈ ∂̄hi(xk j
s ), we

have:
h′i(xk j

s , u) = min{[l, u], l ∈ ∂̄hi(xk j
s )} ≤ [ai, u], ∀u ∈ Rn.

Hence:
−h′i(xk j

s ,−u) ≥ −[ai,−u] = [ai, u].

According to assumption we have:

||ai|| = max
||u||≤1

[ai, u] ≤ max
||u||≤1
−h′i(xk j

s ,−u) ≤ max
||u||≤1
|h′i(xk j

s , u)| ≤ r.

Let limk→∞ λk = λ Since ||xk j−1
s − xk j

s || → 0, we have (by Remark 3.7) limsup µk j ≤ λ. On the
other hand, µk j ≥ λk j−1 implies limin fµk j ≥ λ.Thus µk j = f (xk j

s )→ λ.
Since xk j

s → x̄s and functions f and g are ICAR. by proposition 3.1, we have: f (x̄s) = limin f k→∞ f (xk j
s ),

whenever xk j
s → x̄s .

Furthermore, f (xk j
s )→ λ, thus λ = f (x̄s) ≤ ming(x)≤0 x∈X f (x) ≤ f (x̄s) therefore:

min
g(x)≤0 x∈X

f (x) = f (x̄s).
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For function g(x) we have limin f
x

k j
s →x̄s

g(xk j
s ) = g(x̄s) and since g(xk j

s ) ≤ 0, limsup
x

k j
s →x̄s

g(xk j
s ) ≤ 0,

and we have:
g(x̄s) = limin f

x
k j
s →x̄s

g(xk j
s ) ≤ limsup

x
k j
s →x̄s

g(xk j
s ) ≤ 0

therefore point x̄s is feasible and the optimal solution for problem (P).

4. Solving Subproblem ( Pk )

The subproblem obtained in algorithm 1 is going to be solved, which is in the following form:

min fk(x)
s.t.

gk(x) ≤ 0,
x ∈ X.

(Pk)

where fk(.) , gk(.) are noconvex locally Lipschitz functions and the set X is compact.
In the following, we define exact penalty function for (Pk) and also the Subgradient method (see
[3]) is used for solving the subproblem (Pk).
For simplicity of presentation, we have used a single scalar penalty parameter r for the constraints
[4]. The exact penalty function formulation is as follows:

Fr(x) = fk(x) + r(max{0, gk(x)}), (Fr)

where r ≥ 0.
Approximate minimizer xr of function Fr can be computed using the subgradient method for
nonconvex nonsmooth optimization, [3]. The main difficulty of penalty function methods lies
in choosing the initial value and the updating strategy for the penalty parameter r. If the value
remains too small, the unconstrained problem Fr may produce a solution which is not feasible for
the original problem. On the other hand, if the value becomes too large, the unconstrained problem
Fr will be ill-conditioned. Moreover, both too large and too small penalty parameter could present
numerical difficulties.
The pseudo-code for exact penalty method is given in the following. [4].
Exact Penalty Algorithm
Initialize x0 ∈ Rn

+ , r1 ≥ 0, ε ≥ 0 and k = 1;
While the termination condition is not met, find an approximate minimizer xk of problem:

Frk(x) = fk(x) + rk(max{0, gk(x)}),

starting at xk using Algorithm 3.
If Frk(xk) − fk(xk) ≤ ε, then STOP with the approximate solution xk;
Else Choose new penalty parameter rk+1 > rk;
Choose new starting point xk+1;
End if,
End While,
Return final solution xk;
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End Exact Penalty algorithm.
Now we want to find descent directions for problem Fr by the following algorithm [3]. Let x ∈ Rn

+

be a given point,c1 ∈ (0, 1) and δ > 0 be given numbers.
Algorithm2 : Computation of the descent direction:
Step1. Select any d1 ∈ S 1 := {x ∈ Rn : ||x|| = 1} and compute a subgradient v1 ∈ ∂Frk(x) such that
F′rk

(x, d1) = [v1, d1]. Set ṽ1 := v1 and k := 1.
Step2. Solve the following problem:

minimize Qk(λ) := ||λvk + (1 − λ)ṽk||
2,

such that λ ∈ [0, 1]. Let λ̄k be a solution of this problem. Set v̄k := λ̄kvk + (1 − λ̄k)ṽk.
Step3. (Stopping criterion) If ||v̄k|| < δ1 then stop, otherwise go to Step 4.

Step4. Compute the search direction by d̄k = −
v̄k

||v̄k||
.

Step5. If F′rk
(x, d̄k) ≤ −c1||v̄k||, then stop. Otherwise go to Step 6.

Step6. Compute a subgradient u ∈ ∂Frk(x) such that F′rk
(x, d̄k) =< u, d̄k >.

Set vk+1 := u, ṽk+1 := v̄k, k := k + 1 and go to Step 2.
we will apply algorithm 2 to find descent directions because it allows us to design a simple line
search procedure.
Let c1 ∈ (0, 1), c2 ∈ (0, c1] be given numbers. An algorithm for finding approximate stationary
points satisfying 0 ∈ ∂Frk(x) + Bε+δ proceeds as follows, [3].
Algorithm3 : Computation of the approximate stationary points of Problem Fr.
Step1. Select any starting point x0 ∈ Rn

+ and set k := 0.
Step2. Apply algorithm 2 to comput the descent direction at x = xk for given δ > 0 and c1 ∈ (0, 1)
for Problem Fr.
Step3. If ||v̄k|| < δ2, then stop, otherwise go to Step 4.
Step4. Compute xk+1 = xk + σkdk, where σk is defined as follows:

σk = Argmax {σ ≥ 0 : Frk(xk + σd̄k) − Frk(xk) ≤ −c2σ||v̄k||}.

Set k := k + 1 and go to Step 2.
Algorithm 3 terminates after finite number of iterations [3].

5. Numerical Examples

In this section, we will consider some numerical examples using the mentioned algorithm and
draw their diagram to see how the algorithm works. These examples are presented to demonstrate
the accuracy and efficiency of the the algorithms.

Parameters were chosen as follows:

ε = 10−7, c1 = 10−3, c2 = 10−4, δ1 = 10−3, δ2 = 10−5, r1 = 10.

By using matlab software, solutions in high accuracy were obtained and the proposed algorithm is
evaluated by five examples, and the numerical results are summarized in Table 1.
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Example 5.1. Consider the problem:
min 50

√
xy

s.t 2/3
√

(4xy − 1)3 ≤ 10 0.5 ≤ x ≤ 5, 0.5 ≤ y ≤ 5.

Figure 1: Diagram of example 5.1.

Example 5.2. Consider the following problem:

min max(x + y + 20, 10
√

xy)

s.t x2 + y2 ≤ 20, 0.5 ≤ x ≤ 5, 0.5 ≤ y ≤ 5.

Figure 2: Diagram of example 5.2.

Example 5.3. Consider the problem:

min max(
√

(x3y5),
√

(x2y6),
√

(x6y2))

s.t x2 + y2 ≤ 20, (x, y) ∈ X,

where X is a parallelogram with vertices (1, 2), (2, 1), (3, 2) and (4, 1).
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Figure 3: Diagram of example 5.3.

Figure 4: Diagram of example 5.4.

Example 5.4. The following problem is considered:

min x2 + y2 + (xy)3/2

s.t x3 + y3 + 5(xy)3/2 ≤ 100, (x, y) ∈ X

Where X is a trapezius with vertices (0, 1), (0, 3), (3, 0) and (9, 0).

Example 5.5. The following problem is considered:

min
√

xy2z3

s.t
√

xy +
√

xz +
√

zy ≤ 50, 1 ≤ x ≤ 5, 1 ≤ y ≤ 5, 1 ≤ z ≤ 5

Note that in Table 1, Opt.solution and Opt.value are the optimal solution and the optimal value
obtained by the proposed algorithm, respectively. Time is in second and shows the duration to
reach the optimal solutions in the proposed algorithm.
From the above discussions, it can be concluded that the mentioned algorithm, which is derived
from the Cutting Angle Method, can also be used to solve problems with increasing convex along
rays constraints and many problems in the fields of economic, engineering and mathematical anal-
ysis can be solved with this method.
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Table 1: Obtained results by the proposed algorithms

Examples Opt. solution Opt. value Starting point Iter. Time(Sec.)

Example 5.1 (0.5000,0.5000) 25 (1,1) 5 12.12

Example 5.2 (1.0000,1.0000,1.0000) 1 (1.5,2,2.5) 3 14.27

Example 5.3 (0.5000,0.5000) 21 (2,1) 5 11.77

Example 5.4 (2.0000,1.0000) 8 (3,1.5) 3 13.51

Example 5.5 (0.0330,0.9890) 0.9851 (1,3) 5 15.69
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