Property (T) for \mathbf{C}^{*}-dynamical systems

H. Abbasi ${ }^{\text {a, }, *}$, Gh. Haghighatdoost ${ }^{\text {a }}$, I. Sadeqi ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, Islamic Republic of Iran.
${ }^{b}$ Faculty of Sciences, Sahand University of Technology, Tabriz, Islamic
Republic of Iran.

Article Info

Article history:

Received 14 August 2013
Accepted 28 April 2014
Available online 1 July 2014
Communicated by Rajab Ali Kamyabi-Gol

Keywords:

Kazhdan's property (T)
Hilbert bimodule
C^{*}-dynamical system.
2000 MSC:
26A18; 54H20

Abstract

In this paper, we introduce a notion of property (T) for a C^{*} dynamical system $(\mathcal{A}, \mathcal{G}, \alpha)$ consisting of a unital C^{*}-algebra \mathcal{A}, a locally compact group \mathcal{G}, and an action α on \mathcal{A}. As a result, we show that if \mathcal{A} has strong property (T) and \mathcal{G} has Kazhdan's property (T), then the triple ($\mathcal{A}, \mathcal{G}, \alpha$) has property (T).

© (2014) Wavelets and Linear Algebra

1. Introduction

A unital C^{*}-algebra \mathcal{A} has property (T) if there exist a finite subset \mathcal{F} of \mathcal{A} and $\varepsilon>0$, such that for every Hilbert bimodule on \mathcal{A} with a unit $(\mathcal{F}, \varepsilon)$-central vector, there is a non-zero central

[^0]vector (see [1]). This property is similar to the property (T) for locally compact groups, which is defined by D. Kazhdan in [7]. A locally compact group \mathcal{G} has property (T) if, whenever a unitary representation (π, \mathcal{H}) of \mathcal{G} almost has invariant vectors, \mathcal{H} has a non-zero invariant vector. It is proved in [1] that a countable discrete group \mathcal{G} has property (T) if and only if its full (or equivalently reduced) group C^{*}-algebra has property (T). In [3], property (T) for a von Neumann algebra was introduced, it is shown that a discrete $I C C$-group \mathcal{G} has property (T) if and only if the von Neumann algebra generated by the left regular representation of \mathcal{G} has property (T).

In this paper, if V and W are Hilbert spaces, $V \otimes W$ denotes their Hilbert space tensor product. If V and W are algebras, $V \odot W$ denotes their algebraic tensor product. If V and W are C^{*}-algebras, then $V \otimes_{\min } W$ will denote their C^{*}-tensor product with respect to the minimal (spatial) C^{*}-norm and $V \otimes_{\max } W$ will denote their C^{*}-tensor product with respect to the maximal C^{*}-norm. Also, if V is a Hilbert space we denote by $\mathcal{L}(V)$ the unital C^{*}-algebra of bounded linear operators on V.

The paper is organised as follows. In Section 2, we recall some definitions and results in the framework of C^{*}-dynamical systems which are used in this paper.

In Section 3, we define a notion of property (T) for an arbitrary C^{*}-dynamical system ($\left.\mathcal{A}, \mathcal{G}, \alpha\right)$. We show that if \mathcal{A} has strong property (T) and \mathcal{G} has property (T), then $(\mathcal{A}, \mathcal{G}, \alpha)$ has property (T). We will also show that if \mathcal{G} is a discrete group and $(\mathcal{A}, \mathcal{G}, \alpha)$ has property (T), then its C^{*}-crossed product has property (T) as a unital C^{*}-algebra. Furthermore, we show that if \mathcal{A} is a commutative unital C^{*}-algebra, \mathcal{G} is a countable discrete group such that there exists a faithful representation of \mathcal{A} to the Hilbert space $\ell^{2}(\mathcal{G})$, then property (T) of $C_{r}^{*}(\mathcal{G}) \otimes_{\min } \mathcal{A}$ implies property (T) of \mathcal{G}, where $C_{r}^{*}(\mathcal{G})$ is the reduced group C^{*}-algebra of \mathcal{G}.

Our basic references for C^{*}-algebras are [5, 8, 9]. A good reference for C^{*}-dynamical systems is [10]. For a survey on Kazhdan's property (T) one can refer to [2].

2. Preliminaries and Basic Concepts

A C^{*}-dynamical system (or a dynamical system) is a triple $(\mathcal{A}, \mathcal{G}, \alpha)$, where \mathcal{A} is a unital C^{*} algebra, \mathcal{G} is a locally compact group, and α is a continuous homomorphism from \mathcal{G} into the group of all $*$-automorphisms of \mathcal{A}. Note that the continuity condition on α amounts to the statement that $\gamma \mapsto \alpha_{\gamma}(a)$ is continuous for all $a \in \mathcal{A}$.

Let $(\mathcal{A}, \mathcal{G}, \alpha)$ be a dynamical system such that \mathcal{G} is a discrete group. Let $\mathcal{K}(\mathcal{G}, \mathcal{A})$ be the algebra of all \mathcal{A}-valued functions with finite support endowed with the following twisted convolution as product, involution and norm:

$$
x y(t)=\sum_{\gamma} x(\gamma) \alpha_{\gamma}\left(y\left(\gamma^{-1} t\right)\right), \quad x^{*}(t)=\alpha_{t}\left(x\left(t^{-1}\right)^{*}\right), \quad\|x\|_{1}=\sum_{\gamma}\|x(\gamma)\|
$$

where $x, y \in \mathcal{K}(\mathcal{G}, \mathcal{A})$ and $t \in \mathcal{G}$. The algebra $\mathcal{K}(\mathcal{G}, \mathcal{A})$ becomes a normed $*$-algebra and we denote its completion by $\ell^{1}(\mathcal{G}, \mathcal{A})$. The algebra \mathcal{A} is regarded as a subalgebra of $\mathcal{K}(\mathcal{G}, \mathcal{A})$ with the same unit element in which each arbitrary element $a \in \mathcal{A}$ can be thought as a function on \mathcal{G} subject to the conditions $a(e)=a$ and $a(\gamma)=0$ for $\gamma \neq e$, where e is the unit of \mathcal{G}.

The unital Banach $*$-algebra $\ell^{1}(\mathcal{G}, \mathcal{A})$ has a faithful representation and we call the C^{*}-envelope of $\ell^{1}(\mathcal{G}, \mathcal{A})$ the C^{*}-crossed product of \mathcal{A} by \mathcal{G} with respect to the action α and write as $\mathcal{A} \times{ }_{\alpha} \mathcal{G}$. Let δ_{γ} be the unitary element of $\ell^{1}(\mathcal{G}, \mathcal{A})$ such that $\delta_{\gamma}(\gamma)=1$ and $\delta_{\gamma}(t)=0$ if $t \neq \gamma$. The element
δ_{γ} belongs to $\mathcal{A} \times_{\alpha} \mathcal{G}$ and satisfies $\delta_{\gamma} a \delta_{\gamma}^{*}=\alpha_{\gamma}(a)$. An element x in $\mathcal{K}(\mathcal{G}, \mathcal{A})$ can be written as $x=\sum_{\gamma} x(\gamma) \delta_{\gamma}$.

A pair (μ, π) consisting of a representation μ of \mathcal{A} and a unitary representation π of \mathcal{G} on the same Hilbert space \mathcal{H} is called a covariant representation of $(\mathcal{A}, \mathcal{G}, \alpha)$ if for all $a \in \mathcal{A}$ and $\gamma \in \mathcal{G}$ we have

$$
\pi(\gamma) \mu(a)=\mu\left(\alpha_{\gamma}(a)\right) \pi(\gamma)
$$

Consider two covariant representations $\left(\mu_{1}, \pi_{1}\right)$ and $\left(\mu_{2}, \pi_{2}\right)$ on the Hilbert spaces $\mathcal{H}_{1}, \mathcal{H}_{2}$, respectively. We say that $\left(\mu_{1}, \pi_{1}\right)$ and $\left(\mu_{2}, \pi_{2}\right)$ are equivalent if there exists a unitary operator $W: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$ such that

$$
W \mu_{1}(a)=\mu_{2}(a) W, \quad W \pi_{1}(\gamma)=\pi_{2}(\gamma) W,
$$

for all $a \in \mathcal{A}$ and $\gamma \in \mathcal{G}$.
Consider a faithful representation of \mathcal{A} on a Hilbert space \mathcal{H}. Define a representation of \mathcal{A} as well as a unitary representation of \mathcal{G} on the Hilbert space $\ell^{2}(\mathcal{G}, \mathcal{H})$ by

$$
\pi_{\alpha}(a) \widetilde{\xi}(\gamma)=\alpha_{\gamma^{-1}}(a) \cdot \widetilde{\xi}(\gamma), \quad \lambda_{\alpha}(\gamma) \widetilde{\xi}(t)=\widetilde{\xi}\left(\gamma^{-1} t\right)
$$

where $a \in \mathcal{A}, \widetilde{\xi} \in \ell^{2}(\mathcal{G}, \mathcal{H})$ and $\gamma, t \in \mathcal{G}$. We say that $\left(\pi_{\alpha}, \lambda_{\alpha}\right)$ is a regular representation of ($\mathcal{A}, \mathcal{G}, \alpha$).

The reduced C^{*}-crossed product $\mathcal{A} \times{ }_{\alpha r} \mathcal{G}$ is the C^{*}-algebra on $\ell^{2}(\mathcal{G}, \mathcal{H})$ generated by the family of $\left\{\pi_{\alpha}(a), \lambda_{\alpha}(\gamma) \mid a \in \mathcal{A}, \gamma \in \mathcal{G}\right\}$. Note that this definition is independent of the choice of the space \mathcal{H}.

If $\mathcal{A}=\mathbb{C}$ and α is trivial, then $\ell^{1}(\mathcal{G}, \mathcal{A})$ coincide with $\ell^{1}(\mathcal{G})$ and λ_{α} is the regular representation on the Hilbert space $\ell^{2}(\mathcal{G})$. In this case, $\mathcal{A} \times{ }_{\alpha} \mathcal{G}$ is the group C^{*}-algebra $C^{*}(\mathcal{G})$ and $\mathcal{A} \times{ }_{\alpha r} \mathcal{G}$ is the reduced group C^{*}-algebra $C_{r}^{*}(\mathcal{G})$.

3. Property (T) for a dynamical system

A Hilbert bimodule on a unital C^{*}-algebra \mathcal{A} (or a Hilbert \mathcal{A}-bimodule) is a Hilbert space \mathcal{H} carrying two commuting actions, one from \mathcal{A} and one from the opposite algebra \mathcal{A}^{0} (see [1]). In other words, there exists a representation from $\mathcal{A} \otimes_{\max } \mathcal{A}^{0}$ to $\mathcal{L}(\mathcal{H})$. If \mathcal{H} is a Hilbert \mathcal{A}-bimodule, we will write $a \cdot \xi \cdot b$ for all $a, b \in \mathcal{A}$ and $\xi \in \mathcal{H}$, to denote the module actions.

A tracial state on a unital C^{*}-algebra \mathcal{A} is a positive linear functional $\operatorname{Tr}: \mathcal{A} \rightarrow \mathbb{C}$ such that $\operatorname{Tr}(a b)=\operatorname{Tr}(b a)$ for all $a, b \in \mathcal{A}$ and $\operatorname{Tr}(1)=1$.
Definition 3.1. (see [1]) Let $\mathcal{B} \subset \mathcal{A}$ be a C^{*}-subalgebra containing the identity of a unital C^{*} algebra \mathcal{A}. The pair $(\mathcal{A}, \mathcal{B})$ has property (T) if there exist a finite subset \mathcal{F} of \mathcal{A} and $\varepsilon>0$ such that the following property holds: if a Hilbert bimodule \mathcal{H} on \mathcal{A} contains a unit vector $\xi \in \mathcal{H}$ which is $(\mathcal{F}, \varepsilon)$-central, that is:

$$
\max _{a \in \mathcal{F}}\|a \cdot \xi-\xi \cdot a\|<\varepsilon
$$

then \mathcal{H} has a non-zero \mathcal{B}-central vector, that is, a non-zero vector $\eta \in \mathcal{H}$ such that

$$
b \cdot \eta=\eta \cdot b
$$

for all $b \in \mathcal{B}$. Moreover, \mathcal{A} has property (T) if the pair $(\mathcal{A}, \mathcal{A})$ has such property.

It is clear that if \mathcal{A} has property (T), then the pair $(\mathcal{A}, \mathcal{B})$ has, too. As an example, if \mathcal{H} is any Hilbert space and $\mathcal{B} \subset \mathcal{L}(\mathcal{H})$ a unital C^{*}-subalgebra, then $(\mathcal{L}(\mathcal{H}), \mathcal{B})$ has property (T) (see [4]).

Note that Definition 3.1 comes from the original definition of property (T) for groups. Let \mathcal{G} be a locally compact group and \mathcal{N} a closed subgroup. The pair $(\mathcal{G}, \mathcal{N})$ has property (T) if there exist a compact subset Q of \mathcal{G} and $r>0$ such that the following property holds: if a unitary representation (π, \mathcal{H}) of \mathcal{G} contains a unit vector $\xi \in \mathcal{H}$ which is (Q, r)-invariant, that is:

$$
\sup _{\gamma \in \mathbb{Q}}\|\pi(\gamma)(\xi)-\xi\|<r,
$$

then \mathcal{H} has a non-zero \mathcal{N}-invariant vector, that is, there is a non-zero vector $\eta \in \mathcal{H}$ such that

$$
\pi(\gamma)(\eta)=\eta
$$

for all $\gamma \in \mathcal{N}$. Moreover, \mathcal{G} has property (T) if the pair $(\mathcal{G}, \mathcal{G})$ has property (T). An example of a pair with property (\mathbb{T}) is the pair $\left(S L_{2}(\mathbb{Z}) \ltimes \mathbb{Z}^{2}, \mathbb{Z}^{2}\right)$, where $S L_{2}(\mathbb{Z}) \ltimes \mathbb{Z}^{2}$ is the semi-direct product for the natural action of $S L_{2}(\mathbb{Z})$ on \mathbb{Z}^{2}.

In the following, we give definition of a covariant birepresentation on a dynamical system and apply it to study the property (T) on the dynamical systems.

Let $(\mathcal{A}, \mathcal{G}, \alpha)$ be a dynamical system. A triple $\left(\mathcal{H}, \pi_{1}, \pi_{2}\right)$ consisting of a Hilbert bimodule \mathcal{H} on \mathcal{A} and two commuting unitary representations π_{1}, π_{2} of \mathcal{G} on the same Hilbert space \mathcal{H} is called a covariant birepresentation of $(\mathcal{A}, \mathcal{G}, \alpha)$ if we have

$$
\pi_{1}\left(\gamma_{1}\right) \pi_{2}\left(\gamma_{2}\right)(a \cdot \xi \cdot b)=\alpha_{\gamma_{1}}(a) \cdot \pi_{1}\left(\gamma_{1}\right) \pi_{2}\left(\gamma_{2}\right)(\xi) \cdot \alpha_{\gamma_{2}}(b)
$$

for all $a, b \in \mathcal{A}, \gamma_{1}, \gamma_{2} \in \mathcal{G}$ and $\xi \in \mathcal{H}$.
Obviously, covariant birepresentations of the dynamical system ($\mathcal{A},\{e\}, i d)$ are in one-to-one correspondence with Hilbert bimodules on \mathcal{A}, where $\{e\}$ is the trivial group with one element. Covariant birepresentations of the dynamical system ($\mathbb{C}, \mathcal{G}, i d$) correspond to commuting unitary representations of \mathcal{G}. Note that if $\left(\mathcal{H}, \pi_{1}, \pi_{2}\right)$ is a covariant birepresentation of $(\mathcal{A}, \mathcal{G}, \alpha)$, then so is the triple $\left(\mathcal{H}, \pi_{2}, \pi_{1}\right)$.

Let $(\mathcal{A}, \mathcal{G}, \alpha)$ be a dynamical system and $\mathcal{B} \subset \mathcal{A}$ an α-invariant C^{*}-subalgebra containing the identity element of \mathcal{A}. Let $\left(\mathcal{H}, \pi_{1}, \pi_{2}\right)$ be a covariant birepresentation of $(\mathcal{A}, \mathcal{G}, \alpha)$. We say that $\left(\mathcal{H}, \pi_{1}, \pi_{2}\right)$ has a non-zero $(\mathcal{B}, \mathcal{G})$-central vector if there exists a non-zero vector η in \mathcal{H} such that

$$
b \cdot \eta=\eta \cdot b, \quad \pi_{1}(\gamma) \pi_{2}(\gamma)(\eta)=\eta,
$$

for all $\gamma \in \mathcal{G}$ and $b \in \mathcal{B}$.
If $(\mathcal{A}, \mathcal{G}, \alpha)$ is a dynamical system and \mathcal{G} is a discrete group, then covariant birepresentations with non-zero central vectors are in one-to-one correspondence with α-invariant tracial states of the associated C^{*}-algebra.

Lemma 3.2. (i) Let $\left(\mathcal{H}, \pi_{1}, \pi_{2}\right)$ be a covariant birepresentation of a dynamical system $(\mathcal{A}, \mathcal{G}, \alpha)$ with a non-zero $(\mathcal{A}, \mathcal{G})$-central vector η. Then \mathcal{A} admits an α-invariant tracial state.
(ii) Let $(\mathcal{A}, \mathcal{G}, \alpha)$ be a dynamical system such that \mathcal{G} is a discrete group. Let $\operatorname{Tr}: \mathcal{A} \rightarrow \mathbb{C}$ be an α-invariant tracial state on \mathcal{A}. Then there exists a covariant birepresentation of $(\mathcal{A}, \mathcal{G}, \alpha)$ with a non-zero $(\mathcal{A}, \mathcal{G})$-central vector.

Proof. (i) Let $\zeta=\frac{\eta}{\|\eta\| \|}$. Define $\operatorname{Tr}: \mathcal{A} \rightarrow \mathbb{C}$ by $\operatorname{Tr}(a)=\langle a \cdot \zeta, \zeta\rangle$. Then Tr is a tracial state on \mathcal{A}, and for all $a \in \mathcal{A}, \gamma \in \mathcal{G}$ we have

$$
\begin{aligned}
\operatorname{Tr}\left(\alpha_{\gamma}(a)\right) & =\left\langle\pi_{1}(\gamma) \pi_{2}(\gamma)(a \cdot \zeta), \zeta\right\rangle \\
& =\left\langle a \cdot \zeta, \pi_{2}\left(\gamma^{-1}\right) \pi_{1}\left(\gamma^{-1}\right)(\zeta)\right\rangle \\
& =\operatorname{Tr}(a) .
\end{aligned}
$$

(ii) First, consider the extension of α-invariant tracial state on $\mathcal{A} \times{ }_{\alpha} \mathcal{G}$, again denoted by Tr. Setting $N=\left\{x \in \mathcal{A} \times_{\alpha} \mathcal{G} \mid \operatorname{Tr}\left(x^{*} x\right)=0\right\}$, it is easy to check that N is a two-sided ideal of $\mathcal{A} \times_{\alpha} \mathcal{G}$ and that the map $\langle x+N, y+N\rangle=\operatorname{Tr}\left(y^{*} x\right)$ is a well-defined inner product on the quotient space $\mathcal{A} \times{ }_{\alpha} \mathcal{G} / N$. We denote by $L^{2}(T r)$ the Hilbert space completion of $\mathcal{A} \times{ }_{\alpha} \mathcal{G} / N$. For each $a \in \mathcal{A}$, the mappings $x+N \mapsto a x+N$ and $x+N \mapsto x a+N$ can be extend to bounded operators on $L^{2}(T r)$, and $L^{2}(T r)$ is a Hilbert bimodule on \mathcal{A}. Also, if $\gamma \in \mathcal{G}$, define two operators $\pi_{1}(\gamma), \pi_{2}(\gamma) \in \mathcal{L}\left(L^{2}(T r)\right)$ by

$$
\pi_{1}(\gamma)(x+N)=\delta_{\gamma} x+N, \quad \pi_{2}(\gamma)(x+N)=x \delta_{\gamma^{-1}}+N .
$$

We obtain two commuting unitary representations π_{1}, π_{2} of \mathcal{G} on $L^{2}(T r)$, and $\left(L^{2}(T r), \pi_{1}, \pi_{2}\right)$ is a covariant birepresentation of $(\mathcal{A}, \mathcal{G}, \alpha)$. Moreover, $\eta=\delta_{e}+N$ is a non-zero $(\mathcal{A}, \mathcal{G})$ central vector.

Let $\left(\mathcal{H}, \pi_{1}, \pi_{2}\right)$ be a covariant birepresentation of $(\mathcal{A}, \mathcal{G}, \alpha)$. Given a finite subset \mathcal{F} of \mathcal{A}, a compact subset Q of \mathcal{G} and $\varepsilon, r>0$, we say that a unit vector $\xi \in \mathcal{H}$ is $(\mathcal{F}, \varepsilon, Q, r)$-central if:

$$
\max _{a \in \mathcal{F}}\|a \cdot \xi-\xi \cdot a\|<\varepsilon, \quad \sup _{\gamma \in Q}\left\|\pi_{1}(\gamma) \pi_{2}(\gamma)(\xi)-\xi\right\|<r .
$$

The covariant birepresentation $\left(\mathcal{H}, \pi_{1}, \pi_{2}\right)$ almost has invariant vectors if it has $(\mathcal{F}, \varepsilon, Q, r)$-central vectors for every finite subset \mathcal{F} of \mathcal{A}, compact subset Q of \mathcal{G} and every $\varepsilon, r>0$.

Definition 3.3. Let $(\mathcal{A}, \mathcal{G}, \alpha)$ be a dynamical system, and $\mathcal{B} \subset \mathcal{A}$ an α-invariant C^{*}-subalgebra containing the identity element of \mathcal{A}. We denote the dynamical system ($\mathcal{A}, \mathcal{G}, \alpha)$ with the α invariant C^{*}-subalgebra \mathcal{B}, by $((\mathcal{A}, \mathcal{B}), \mathcal{G}, \alpha)$. We say that $((\mathcal{A}, \mathcal{B}), \mathcal{G}, \alpha)$ has property (T) if there exist a finite subset \mathcal{F} of \mathcal{A}, a compact subset Q of \mathcal{G} and $\varepsilon, r>0$ such that any covariant birepresentation of $(\mathcal{A}, \mathcal{G}, \alpha)$ with a unit $(\mathcal{F}, \varepsilon, Q, r)$-central possesses non-zero $(\mathcal{B}, \mathcal{G})$-central vectors. Moreover, the dynamical system $(\mathcal{A}, \mathcal{G}, \alpha)$ has property (T) if the system $((\mathcal{A}, \mathcal{A}), \mathcal{G}, \alpha)$ has such property.

It is clear that if $(\mathcal{A}, \mathcal{G}, \alpha)$ has property (T), then so has $((\mathcal{A}, \mathcal{B}), \mathcal{G}, \alpha)$. Property (T) of the dynamical system $(\mathcal{A},\{e\}, i d)$ correspond to property (T) of \mathcal{A}, and property (T) of the dynamical system $(\mathbb{C}, \mathcal{G}, i d)$ correspond to property (T) of \mathcal{G}.

Remark 3.4. (i) If α is trivial and $((\mathcal{A}, \mathcal{B}), \mathcal{G}, \alpha)$ has property (T), then $(\mathcal{A}, \mathcal{B})$ has it too, for any \mathcal{B} as above.
(ii) Let $(\mathcal{A}, \mathcal{G}, \alpha)$ be a dynamical system, and that the C^{*}-algebra \mathcal{A} admitting an α-invariant character, that is, a non-zero multiplicative linear map $\chi: \mathcal{A} \rightarrow \mathbb{C}$ such that $\chi\left(\alpha_{\gamma}(a)\right)=\chi(a)$ for all $\gamma \in \mathcal{G}$ and $a \in \mathcal{A}$. If ($\mathcal{A}, \mathcal{G}, \alpha$) has property (T), then \mathcal{G} has property (T).
Let us give an example of a dynamical system which does not have property (T).
Example 3.5. Let X be a smooth vector field on a compact manifold \mathcal{M}. Suppose for each point $q \in \mathcal{M}$ there is a unique integral curve $\theta^{q}: \mathbb{R} \rightarrow \mathcal{M}$ of X starting at q, and p be an element in \mathcal{M} such that θ^{p} is the constant curve $\theta^{p}(t) \equiv p$. For each $t \in \mathbb{R}$, we can define a map θ_{t} from \mathcal{M} to itself by sending each point $q \in \mathcal{M}$ to the point obtained by the curve starting at q for time t :

$$
\theta_{t}(q)=\theta^{q}(t) .
$$

This defines a family of maps $\theta_{t}: \mathcal{M} \rightarrow \mathcal{M}$ for $t \in \mathbb{R}$. Let $C(\mathcal{M})$ denote the unital C^{*}-algebra of continuous complex valued functions on \mathcal{M}. We obtain a homomorphism $\alpha: \mathbb{R} \rightarrow \operatorname{Aut}(C(\mathcal{M}))$, defined by

$$
\alpha_{t}(f)(q)=f\left(\theta_{t^{-1}}(q)\right),
$$

and $(C(\mathcal{M}), \mathbb{R}, \alpha)$ is a dynamical system. Define an α-invariant character $\chi: C(\mathcal{M}) \rightarrow \mathbb{C}$ by $\chi(f)=f(p)$. We know that \mathbb{R} does not have property (T) (see [2]), it follows from Remark 3.4 that $(C(\mathcal{M}), \mathbb{R}, \alpha)$ does not have property (T).

The notion of property (T) for a dynamical system ($\mathcal{A}, \mathcal{G}, \alpha)$ and for C^{*}-algebras associated to it are related via the correspondence between covariant birepresentations and Hilbert bimodules. More precisely, given a Hilbert $\mathcal{A} \times_{\alpha} \mathcal{G}$-bimodule \mathcal{H}, one can define two commuting unitary representations π_{1}, π_{2} of \mathcal{G} on the same Hilbert space \mathcal{H} by

$$
\pi_{1}(\gamma)(\xi)=\delta_{\gamma} \cdot \xi, \quad \pi_{2}(\gamma)(\xi)=\xi \cdot \delta_{\gamma^{-1}}
$$

Viewing \mathcal{A} as a subalgebra of $\mathcal{A} \times{ }_{\alpha} \mathcal{G}$, it is simple to see that $\left(\mathcal{H}, \pi_{1}, \pi_{2}\right)$ is a covariant birepresentation of $(\mathcal{A}, \mathcal{G}, \alpha)$.

Conversely, suppose $\left(\mathcal{H}, \pi_{1}, \pi_{2}\right)$ is a covariant birepresentation of $(\mathcal{A}, \mathcal{G}, \alpha)$. Take $x \in \mathcal{K}(\mathcal{G}, \mathcal{A})$ and define two operators $\pi(x)$ and $\rho(x)$ on \mathcal{H} by

$$
\pi(x) \xi=\sum_{\gamma} x(\gamma) \cdot \pi_{1}(\gamma)(\xi), \quad \rho(x) \xi=\sum_{\gamma} \pi_{2}\left(\gamma^{-1}\right)(\xi \cdot x(\gamma)) .
$$

Since π is obviously norm decreasing, it extends to a representation of $\ell^{1}(\mathcal{G}, \mathcal{A})$, hence to that of $\mathcal{A} \times_{\alpha} \mathcal{G}$. Similarly, ρ extends to a representation of the opposite algebra of $\mathcal{A} \times{ }_{\alpha} \mathcal{G}$. Two representations π and ρ are commuting, so that \mathcal{H} is a Hilbert bimodule on $\mathcal{A} \times{ }_{\alpha} \mathcal{G}$.

Hence, a non-zero $(\mathcal{A}, \mathcal{G})$-central vector for a covariant birepresentation of $(\mathcal{A}, \mathcal{G}, \alpha)$ is a nonzero $\mathcal{A} \times{ }_{\alpha} \mathcal{G}$-central vector.

By the argument of Remark 15 in [1], we know that every unital C^{*}-algebra without tracial states has property (T). We will show that a similar fact is true for dynamical systems which the associated C^{*}-algebra does not admit α-invariant tracial states.

Theorem 3.6. Let $(\mathcal{A}, \mathcal{G}, \alpha)$ be a dynamical system such that the unital C^{*}-algebra \mathcal{A} does not admit α-invariant tracial states. Then $(\mathcal{A}, \mathcal{G}, \alpha)$ has property (T).

Proof. Assume that $(\mathcal{A}, \mathcal{G}, \alpha)$ does not have property (T). Then, there is a covariant birepresentation $\left(\mathcal{H}, \pi_{1}, \pi_{2}\right)$ almost has invariant vectors. This implies that there is a net of unit vectors $\left(\xi_{i}\right)_{i \in I}$ in \mathcal{H} such that:

$$
\lim _{i}\left\|a \cdot \xi_{i}-\xi_{i} \cdot a\right\|=0, \quad \lim _{i}\left\|\pi_{1}(\gamma) \pi_{2}(\gamma)\left(\xi_{i}\right)-\xi_{i}\right\|=0
$$

for all $a \in \mathcal{A}, \gamma \in \mathcal{G}$. For each $T \in \mathcal{L}(\mathcal{H})$, let D_{T} be the closed disc in \mathbb{C} of radius $\|T\|$, and consider the product space

$$
X=\prod_{T \in \mathcal{L}(\mathcal{H})} D_{T}
$$

endowed with the product topology. By Tychonoff’s Theorem, X is compact. Since $\left(\left\langle T \xi_{i}, \xi_{i}\right\rangle\right)_{T \in \mathcal{L}(\mathcal{H})}$ is an element of X for all $i \in I$, there exists a subnet $\left(\xi_{j}\right)_{j \in J}$ such that, for all $T \in \mathcal{L}(\mathcal{H})$, the limit

$$
\varphi(T)=\lim _{j}\left\langle T \xi_{j}, \xi_{j}\right\rangle
$$

exists. It is clear that $T \mapsto \varphi(T)$ is a positive linear functional on $\mathcal{L}(\mathcal{H})$ with $\varphi\left(i d_{\mathcal{H}}\right)=1$. Moreover, for every $\gamma \in \mathcal{G}$ and $T \in \mathcal{L}(\mathcal{H})$, we have

$$
\varphi\left(\pi_{1}(\gamma) \pi_{2}(\gamma) T\right)=\varphi(T)=\varphi\left(T \pi_{1}(\gamma) \pi_{2}(\gamma)\right)
$$

Then $\operatorname{Tr}: \mathcal{A} \rightarrow \mathbb{C}$ defined by $\operatorname{Tr}(a)=\varphi(\mu(a))$ is an α-invariant tracial state on \mathcal{A}, where μ is the representation on \mathcal{H} given by, say, the left action of \mathcal{A}.

Example 3.7. Let \mathcal{H} be an infinite-dimensional Hilbert space and $\mathcal{U}(\mathcal{H})$ be its unitary group. Suppose $\mathcal{B} \subset \mathcal{L}(\mathcal{H})$ is a C^{*}-subalgebra containing the identity element of $\mathcal{L}(\mathcal{H})$, and that $u \in$ $\mathcal{U}(\mathcal{H})$ is such that $u \mathcal{B} u^{*} \subset \mathcal{B}$. Then $\varphi(a)=u a u^{*}$ is an automorphism of $\mathcal{L}(\mathcal{H})$. Therefore, we obtain a homomorphism $\alpha: \mathbb{Z} \rightarrow \operatorname{Aut}(\mathcal{L}(\mathcal{H}))$, defined by $\alpha_{n}=\varphi^{n}$, and $(\mathcal{L}(\mathcal{H}), \mathbb{Z}, \alpha)$ is a dynamical system. Using Theorem 3.6 , so $((\mathcal{L}(\mathcal{H}), \mathcal{B}), \mathbb{Z}, \alpha)$ has property (T).

Let $\mathcal{G}_{1} \rightarrow \mathcal{G}_{2}$ be a surjective continuous homomorphism between locally compact groups. It is well-known that if \mathcal{G}_{1} has property (T), then \mathcal{G}_{2} has property (T). Similarly, let $\mathcal{A} \rightarrow \mathcal{B}$ be a surjective $*$-homomorphism between unital C^{*}-algebras. If \mathcal{A} has property (T), then so has \mathcal{B}. The corresponding statement for dynamical systems is as follows and its proof is straightforward.

Lemma 3.8. Let $(\mathcal{A}, \mathcal{G}, \alpha)$ and $(\mathcal{B}, \mathcal{G}, \beta)$ be two dynamical systems with actions α and β of a fixed group \mathcal{G} on \mathcal{A} and \mathcal{B}, respectively. Let $f: \mathcal{A} \rightarrow \mathcal{B}$ be a surjective $*$-homomorphism between \mathcal{A} and \mathcal{B} such that

$$
\beta_{\gamma}(f(a))=f\left(\alpha_{\gamma}(a)\right)
$$

for all $\gamma \in \mathcal{G}, a \in \mathcal{A}$. If $(\mathcal{A}, \mathcal{G}, \alpha)$ has property (T), then $(\mathcal{B}, \mathcal{G}, \beta)$ has also property (T).
Let \mathcal{H} be a Hilbert bimodule on a C^{*}-algebra \mathcal{A} and $\mathcal{B} \subset \mathcal{A}$ a C^{*}-subalgebra containing the identity of \mathcal{A}. Let

$$
\mathcal{H}^{\mathcal{B}}=\{\eta \in \mathcal{H} \mid b \cdot \eta=\eta \cdot b, \quad \forall b \in \mathcal{B}\},
$$

and $P_{\mathcal{H}}^{\mathcal{B}}: \mathcal{H} \rightarrow \mathcal{H}^{\mathcal{B}}$ be the orthogonal projection from \mathcal{H} over the closed subspace $\mathcal{H}^{\mathcal{B}}$.
Let us recall a notion of strong property (T) in [4]. The pair $(\mathcal{A}, \mathcal{B})$ has strong property (T) if for any $r>0$, there exist a finite subset \mathcal{F} of \mathcal{A} and $\varepsilon>0$ such that the following property holds: if a Hilbert bimodule \mathcal{H} on \mathcal{A} contains a unit vector $\xi \in \mathcal{H}$ which is $(\mathcal{F}, \varepsilon)$-central, then $\left\|\xi-P_{\mathcal{H}}^{\mathcal{B}}(\xi)\right\|<r$. Also, \mathcal{A} has strong property (T) if $(\mathcal{A}, \mathcal{A})$ has such property.

By taking $r<\frac{1}{2}$, we see that strong property (T) implies property (T). If \mathcal{A} has no tracial state, then \mathcal{A} has strong property (T), and so does $(\mathcal{A}, \mathcal{B})$ (see [4]).

Also, suppose (π, \mathcal{H}) is a unitary representation of a locally compact group \mathcal{G} and \mathcal{N} is a closed subgroup of \mathcal{G}. Let

$$
\mathcal{H}^{\mathcal{N}}=\{\eta \in \mathcal{H} \mid \pi(\gamma)(\eta)=\eta, \forall \gamma \in \mathcal{N}\}
$$

and $P_{\mathcal{H}}^{\mathcal{N}}: \mathcal{H} \rightarrow \mathcal{H}^{\mathcal{N}}$ be the orthogonal projection from \mathcal{H} over the closed subspace $\mathcal{H}^{\mathcal{N}}$.
Theorem 3.9. Suppose $(\mathcal{A}, \mathcal{B})$ has strong property (T) and \mathcal{G} has property (T). Then $((\mathcal{A}, \mathcal{B}), \mathcal{G}, \alpha)$ has property (T).

Proof. Since \mathcal{G} has property (T), there exist a compact subset Q of \mathcal{G} and $\varepsilon>0$ such that for any unitary representation (π, \mathcal{H}) and unit vector $\xi \in \mathcal{H}$ which is (Q, ε)-invariant, one has a non-zero vector $\eta \in \mathcal{H}$ such that

$$
\pi(\gamma)(\eta)=\eta
$$

for all $\gamma \in \mathcal{G}$. Let $h=\min \left\{\frac{1}{2}, \frac{\varepsilon}{8}\right\}$. Since $(\mathcal{A}, \mathcal{B})$ has strong property (T), there exist a finite subset \mathcal{F} of \mathcal{A} and $r>0$ such that for any Hilbert bimodule \mathcal{H} and unit vector $\xi \in \mathcal{H}$ which is (\mathcal{F}, r)-central, one has

$$
\left\|\xi-P_{\mathcal{H}}^{\mathcal{B}}(\xi)\right\|<h
$$

Let $k=\min \left\{r, \frac{\varepsilon}{4}\right\}$, and $\left(\mathcal{H}, \pi_{1}, \pi_{2}\right)$ be a covariant birepresentation of $(\mathcal{A}, \mathcal{G}, \alpha)$ with a unit vector $\xi \in \mathcal{H}$ such that:

$$
\max _{a \in \mathcal{F}}\|a \cdot \xi-\xi \cdot a\|<k, \quad \sup _{\gamma \in \mathbb{Q}}\left\|\pi_{1}(\gamma) \pi_{2}(\gamma)(\xi)-\xi\right\|<k .
$$

Then $\left\|\xi-P_{\mathcal{H}}^{\mathcal{B}}(\xi)\right\|<h$ and $\left\|P_{\mathcal{H}}^{\mathcal{B}}(\xi)\right\|>\frac{1}{2}$. For all $b \in \mathcal{B}, \gamma \in \mathcal{G}$ and $\zeta \in \mathcal{H}^{\mathcal{B}}$ we have:

$$
\begin{aligned}
b \cdot \pi_{1}(\gamma) \pi_{2}(\gamma)(\zeta) & =\pi_{1}(\gamma)\left(\alpha_{\gamma^{-1}}(b) \cdot \pi_{2}(\gamma)(\zeta)\right) \\
& =\pi_{1}(\gamma) \pi_{2}(\gamma)\left(\alpha_{\gamma-1}(b) \cdot \zeta\right) \\
& =\pi_{1}(\gamma) \pi_{2}(\gamma)\left(\zeta \cdot \alpha_{\gamma^{-1}}(b)\right) \\
& =\pi_{1}(\gamma)\left(\pi_{2}(\gamma)(\zeta) \cdot b\right) \\
& =\pi_{1}(\gamma) \pi_{2}(\gamma)(\zeta) \cdot b .
\end{aligned}
$$

Hence, $\pi(\gamma)=\pi_{1}(\gamma) \pi_{2}(\gamma)$ is a unitary representation of \mathcal{G} on $\mathcal{H}^{\mathcal{B}}$. If we take $\zeta=\frac{P_{\mathcal{H}}^{\mathcal{B}}(\xi)}{\left\|P_{\mathcal{H}}^{\mathcal{B}}(\xi)\right\|}$, then we have

$$
\sup _{\gamma \in \mathcal{Q}}\|\pi(\gamma)(\zeta)-\zeta\|<\frac{k}{\left\|P_{\mathcal{H}}^{\mathcal{B}}(\xi)\right\|}+\frac{2 h}{\left\|P_{\mathcal{H}}^{\mathcal{B}}(\xi)\right\|}<\frac{\varepsilon}{2\left\|P_{\mathcal{H}}^{\mathcal{B}}(\xi)\right\|}<\frac{\varepsilon}{2} \times 2=\varepsilon .
$$

Therefore, there exists a non-zero vector $\eta \in \mathcal{H}^{\mathcal{B}}$ such that

$$
\pi_{1}(\gamma) \pi_{2}(\gamma)(\eta)=\pi(\gamma)(\eta)=\eta
$$

for all $\gamma \in \mathcal{G}$, which implies that η is a non-zero $(\mathcal{B}, \mathcal{G})$-central vector, as required.
We need the following proposition from [6] to prove the next lemma.
Proposition 3.10. Let \mathcal{G} be a locally compact and σ-compact group and let \mathcal{N} be a closed subgroup of \mathcal{G}. The following properties are equivalent:
(i) $(\mathcal{G}, \mathcal{N})$ has property (T),
(ii) for every $r>0$, there exists a pair (Q, ε) of compact subset Q of \mathcal{G} and $\varepsilon>0$ with the following property: for any unitary representation (π, \mathcal{H}) of \mathcal{G} which has a (Q, ε)-invariant unit vector ξ, then we have $\left\|\xi-P_{\mathcal{H}}^{\mathcal{N}}(\xi)\right\| \leq r$.

Lemma 3.11. Let \mathcal{G} be a countable discrete group with property (T). Then $\left(C^{*}(\mathcal{G}), \mathcal{G}, \alpha\right)$ has property (T) for any action α of \mathcal{G} on $C^{*}(\mathcal{G})$.

Proof. By Theorem 3.9, it suffices to prove that $C^{*}(\mathcal{G})$ has strong property (T). Let $r>0$. Since \mathcal{G} has property (T), by Proposition 3.10 there exist a finite subset Q of \mathcal{G} and $\varepsilon>0$ such that for any unitary representation (π, \mathcal{H}) and unit vector $\xi \in \mathcal{H}$ which is (Q, ε)-invariant, one has $\left\|\xi-P_{\mathcal{H}}^{\mathcal{G}}(\xi)\right\| \leq \frac{r}{2}$. Let $\mathcal{F}=\left\{\delta_{\gamma} \mid \gamma \in Q\right\}$ be the finite subset of $C^{*}(\mathcal{G})$, and \mathcal{H} a Hilbert bimodule on $C^{*}(\mathcal{G})$ contains a unit vector $\xi \in \mathcal{H}$ which is $(\mathcal{F}, \varepsilon)$-central. Define a unitary representation (π, \mathcal{H}) of \mathcal{G} by

$$
\pi(\gamma)(\xi)=\delta_{\gamma} \cdot \xi \cdot \delta_{\gamma^{-1}}
$$

Hence, ξ is (Q, ε)-invariant, and we have

$$
\left\|\xi-P_{\mathcal{H}}^{C^{*}(\mathcal{G})}(\xi)\right\|=\left\|\xi-P_{\mathcal{H}}^{\mathcal{G}}(\xi)\right\|<r .
$$

In the following, we show that property (T) of a dynamical system $(\mathcal{A}, \mathcal{G}, \alpha)$ such that \mathcal{G} is a discrete group implies property (T) of its C^{*}-crossed product.

Theorem 3.12. Let $(\mathcal{A}, \mathcal{G}, \alpha)$ be a dynamical system, and that \mathcal{G} is a discrete group. If $(\mathcal{A}, \mathcal{G}, \alpha)$ has property (T), then $\mathcal{A} \times{ }_{\alpha} \mathcal{G}$ has property (T) (and so does $\mathcal{A} \times{ }_{\alpha r} \mathcal{G}$).

Proof. Since $(\mathcal{A}, \mathcal{G}, \alpha)$ has property (T), there exist a finite subset \mathcal{F} of \mathcal{A}, a finite subset Q of \mathcal{G} and $\varepsilon, r>0$ such that for every covariant birepresentation $\left(\mathcal{H}, \pi_{1}, \pi_{2}\right)$ of $(\mathcal{F}, \mathcal{G}, \alpha)$ contains a unit vector $\xi \in \mathcal{H}$ which is $(\mathcal{F}, \varepsilon, Q, r)$-central, then \mathcal{H} has a non-zero $(\mathcal{A}, \mathcal{G})$-central vector.

Let $\mathcal{D}=\mathcal{F} \cup\left\{\delta_{\gamma} \mid \gamma \in Q\right\}$ and $\ell=\min \{r, \varepsilon\}$. Let \mathcal{H} be a Hilbert bimodule on $\mathcal{A} \times{ }_{\alpha} \mathcal{G}$ contains a unit vector $\xi \in \mathcal{H}$ which is (\mathcal{D}, ℓ)-central. Define two commuting unitary representations $\left(\pi_{1}, \mathcal{H}\right)$ and $\left(\pi_{2}, \mathcal{H}\right)$ of \mathcal{G} by

$$
\pi_{1}(\gamma)(\xi)=\delta_{\gamma} \cdot \xi, \quad \pi_{2}(\gamma)(\xi)=\xi \cdot \delta_{\gamma^{-1}}
$$

Viewing \mathcal{A} as a subalgebra of $\mathcal{A} \times{ }_{\alpha} \mathcal{G}$, it is clear that $\left(\mathcal{H}, \pi_{1}, \pi_{2}\right)$ is a covariant birepresentation of $(\mathcal{A}, \mathcal{G}, \alpha)$, and ξ is a $(\mathcal{F}, \varepsilon, Q, r)$-central. Therefore, there exists a non-zero vector $\eta \in \mathcal{H}$ such that

$$
a \cdot \eta=\eta \cdot a, \quad \delta_{\gamma} \cdot \eta=\eta \cdot \delta_{\gamma}
$$

for all $a \in \mathcal{A}$ and $\gamma \in \mathcal{G}$. Then for any $x=\sum_{\gamma} x(\gamma) \delta_{\gamma} \in \mathcal{K}(\mathcal{G}, \mathcal{A})$, we have

$$
x \cdot \eta=\sum_{\gamma} x(\gamma) \delta_{\gamma} \cdot \eta=\sum_{\gamma} x(\gamma) \cdot \eta \cdot \delta_{\gamma}=\sum_{\gamma} \eta \cdot x(\gamma) \delta_{\gamma}=\eta \cdot x .
$$

Since $\mathcal{K}(\mathcal{G}, \mathcal{A})$ is dense in $\ell^{1}(\mathcal{G}, \mathcal{A})$ and $\ell^{1}(\mathcal{G}, \mathcal{A})$ is dense in $\mathcal{A} \times{ }_{\alpha} \mathcal{G}$, we obtain $x \cdot \eta=\eta \cdot x$ for all $x \in \mathcal{A} \times{ }_{\alpha} \mathcal{G}$. Since $\mathcal{A} \times{ }_{\alpha r} \mathcal{G}$ is a quotient of $\mathcal{A} \times{ }_{\alpha} \mathcal{G}$, it follows that $\mathcal{A} \times{ }_{\alpha r} \mathcal{G}$ also has property (T).

Remark 3.13. If $(\mathcal{A}, \mathcal{G}, \alpha)$ is a dynamical system, \mathcal{G} is a discrete group and α trivial, then:

$$
\mathcal{A} \times_{\alpha r} \mathcal{G} \cong C_{r}^{*}(\mathcal{G}) \otimes_{\min } \mathcal{A}, \quad \mathcal{A} \times_{\alpha} \mathcal{G} \cong C^{*}(\mathcal{G}) \otimes_{\max } \mathcal{A} .
$$

By Theorems 3.9 and 3.12 for a discrete group \mathcal{G} with property (T) and a unital C^{*}-algebra \mathcal{A} with strong property (T), $C_{r}^{*}(\mathcal{G}) \otimes_{\min } \mathcal{A}$ and $C^{*}(\mathcal{G}) \otimes_{\max } \mathcal{A}$ have property (T).

If a locally compact group with property (T) is amenable, then it is compact, a similar fact is true for C^{*}-algebras with property (T) which are nuclear. A C^{*}-algebra \mathcal{A} is nuclear if, for any C^{*}-algebra \mathcal{B}, there is a unique pre- C^{*}-norm on $\mathcal{A} \odot \mathcal{B}$. Let Tr be a tracial state on the unital C^{*}-algebra \mathcal{A}. By the $G N S$-construction, Tr defines a Hilbert \mathcal{A}-bimodule, denoted by $L^{2}(\operatorname{Tr})$. In [1], it is shown that if \mathcal{A} is a unital C^{*}-algebra with property (T) which is nuclear, then for any tracial state Tr on \mathcal{A}, the left action of \mathcal{A} on the Hilbert space $L^{2}(T r)$ is completely atomic, that is, $L^{2}(\operatorname{Tr})$ decomposes as a direct sum of finite dimensional \mathcal{A}-submodules. This implies that if \mathcal{A} is a unital C^{*}-algebra with property (T), and that there exists a tracial state Tr on \mathcal{A} such that $L^{2}(\operatorname{Tr})$ is not completely atomic, then \mathcal{A} is not nuclear.

Corollary 3.14. Let $(\mathcal{A}, \mathcal{G}, \alpha)$ be a dynamical system such that \mathcal{G} is a discrete group and \mathcal{A} is nuclear and \mathcal{G} amenable. Suppose that there exists a tracial state Tr of $\mathcal{A} \times{ }_{\alpha} \mathcal{G}$ such that $L^{2}(\operatorname{Tr})$ is not completely atomic. Then $(\mathcal{A}, \mathcal{G}, \alpha)$ does not have property (T).
Proof. Since \mathcal{G} is amenable and \mathcal{A} is nuclear, so $\mathcal{A} \times{ }_{\alpha} \mathcal{G}$ is nuclear (see [10]). As cited above $\mathcal{A} \times{ }_{\alpha} \mathcal{G}$ does not have property (T). So by Theorem 3.12, ($\mathcal{A}, \mathcal{G}, \alpha$) does not have property (T).

Note that even if $\mathcal{A} \times{ }_{\alpha} \mathcal{G}$ has strong property (T) and α is trivial, it does not follow that \mathcal{G} has property (T).
Proposition 3.15. Let \mathcal{G} be a locally compact and σ-compact group and \mathcal{N} a closed subgroup of G. The following properties are equivalent:
(i) $(\mathcal{G}, \mathcal{N})$ has property (T),
(ii) if a unitary representation (π, \mathcal{H}) of \mathcal{G} almost has invariant vectors, that is, if it has (Q, ε) invariant vectors for every compact subset Q of \mathcal{G} and every $\varepsilon>0$, then \mathcal{H} contains a non-zero finite dimensional subspace which is invariant under \mathcal{N}.

We will now use the same technique as in the proof of Theorem 6 in [1] to obtain the following theorem, using the above proposition from [1].

Theorem 3.16. Let \mathcal{A} be a commutative unital C^{*}-algebra, and \mathcal{G} a countable discrete group such that there exists a faithful representation of \mathcal{A} to the Hilbert space $\ell^{2}(\mathcal{G})$. If $C_{r}^{*}(\mathcal{G}) \otimes_{\min } \mathcal{A}$ has property (T), then \mathcal{G} has property (T).

Proof. Viewing $C_{r}^{*}(\mathcal{G}) \otimes_{\text {min }} \mathcal{A}$ as $\mathcal{A} \times_{\alpha r} \mathcal{G}$ in dynamical system $(\mathcal{A}, \mathcal{G}, \alpha)$ with α trivial, suppose $\mathcal{A} \times{ }_{\alpha r} \mathcal{G}$ has property (T). Choose a finite subset \mathcal{F} of $\mathcal{A} \times{ }_{\alpha r} \mathcal{G}$ and $\varepsilon>0$ as in Definition 3.1. We may assume that $\|y\| \leq 1$ for all $y \in \mathcal{F}$. Take an element $\xi_{0} \in \ell^{2}(\mathcal{G})$ such that $\left\|\xi_{0}\right\|=1$. One can check that there exists a finite subset Q of \mathcal{G} such that:

$$
\sum_{\gamma \in \mathcal{G}-Q}\left\|y\left(\delta_{e} \otimes \xi_{0}\right)(\gamma)\right\|^{2}<\frac{\varepsilon^{2}}{9}
$$

for all $y \in \mathcal{F}$. Assume that (π, \mathcal{H}) is a unitary representation of \mathcal{G} almost has invariant vectors. Choose a unit vector $\xi \in \mathcal{H}$ such that is $\left(Q, \frac{\varepsilon}{3}\right)$-invariant vector. Define a representation μ of \mathcal{A} as well as two unitary representations π_{1}, π_{2} of \mathcal{G} on the Hilbert space tensor product $\ell^{2}\left(\mathcal{G}, \ell^{2}(\mathcal{G})\right) \otimes \mathcal{H}$ by

$$
\mu(a)=\pi_{\alpha}(a) \otimes i d,
$$

and,

$$
\pi_{1}(\gamma)=\lambda_{\alpha}(\gamma) \otimes i d, \quad \pi_{2}(\gamma)=\mu_{\alpha}(\gamma) \otimes \pi(\gamma)
$$

for all $a \in \mathcal{A}, \gamma \in \mathcal{G}$, where μ_{α} is a representation of \mathcal{G} on the Hilbert space $\ell^{2}\left(\mathcal{G}, \ell^{2}(\mathcal{G})\right)$ defined by $\mu_{\alpha}(\gamma) \widetilde{\xi}(s)=\widetilde{\xi}(s \gamma)$ for all $\gamma, s \in \mathcal{G}$ and $\widetilde{\xi} \in \ell^{2}\left(\mathcal{G}, \ell^{2}(\mathcal{G})\right)$.

Since $\left(\mu, \pi_{1}\right)$ and $\left(\mu, \pi_{2}\right)$ are covariant representations, are equivalent to multiples of the regular representation $\left(\pi_{\alpha}, \lambda_{\alpha}\right)$, they extend to commuting representations of $\mathcal{A} \times{ }_{\alpha r} \mathcal{G}$, so that $\ell^{2}\left(\mathcal{G}, \ell^{2}(\mathcal{G})\right) \otimes$ \mathcal{H} is a Hilbert bimodule on $\mathcal{A} \times{ }_{\alpha r} \mathcal{G}$.

Let $\widetilde{\eta}=\widetilde{\xi} \otimes \xi$, where $\widetilde{\xi} \in \ell^{2}\left(\mathcal{G}, \ell^{2}(\mathcal{G})\right)$ is defined by $\widetilde{\xi}(e)=\xi_{0}$ and $\widetilde{\xi}(\gamma)=0$ otherwise. For any $y \in \mathcal{F}$, we have

$$
\begin{aligned}
\|y \cdot \widetilde{\eta}-\widetilde{\eta} \cdot y\|^{2} & =\sum_{\gamma \in \mathcal{G}}\left\|y\left(\delta_{e} \otimes \xi_{0}\right)(\gamma)\right\|^{2}\|\pi(\gamma)(\xi)-\xi\|^{2} \\
& \leq \frac{4 \varepsilon^{2}}{9}+\sum_{\gamma \in Q}\left\|y\left(\delta_{e} \otimes \xi_{0}\right)(\gamma)\right\|^{2}\|\pi(\gamma)(\xi)-\xi\|^{2} \\
& \leq \frac{4 \varepsilon^{2}}{9}+\frac{\varepsilon^{2}}{9} \\
& <\varepsilon^{2}
\end{aligned}
$$

Therefore, there exists a non-zero vector η in $\ell^{2}\left(\mathcal{G}, \ell^{2}(\mathcal{G})\right) \otimes \mathcal{H}$ which is $\mathcal{A} \times{ }_{\alpha r} \mathcal{G}$-central. Viewing η as a non-zero vector in the Hilbert space $\ell^{2}\left(\mathcal{G}, \ell^{2}(\mathcal{G}, \mathcal{H})\right)$, in particular, we have

$$
\eta\left(\gamma t \gamma^{-1}\right)(s)=\pi(\gamma)(\eta(t)(s))
$$

for all $\gamma, t, s \in \mathcal{G}$. Then $\gamma \mapsto\|\eta(\gamma)\|$ is a non-zero function in $\ell^{2}(\mathcal{G})$ which is invariant under conjugation by elements of \mathcal{G}. Let $t_{0} \in \mathcal{G}$ be such that $\eta\left(t_{0}\right) \neq 0$. It follows that $\left\{\gamma t_{0} \gamma^{-1} \mid \gamma \in \mathcal{G}\right\}$ is a finite subset of \mathcal{G}. Let $s_{0} \in \mathcal{G}$ be such that $\eta\left(t_{0}\right)\left(s_{0}\right) \neq 0$. Then $\left\{\eta\left(\gamma t_{0} \gamma^{-1}\right)\left(s_{0}\right) \mid \gamma \in \mathcal{G}\right\}$ is finite, hence $\left\{\pi(\gamma)\left(\eta\left(t_{0}\right)\left(s_{0}\right)\right) \mid \gamma \in \mathcal{G}\right\}$ is a finite subset of \mathcal{H} and its linear span defines a non-zero finite dimensional invariant subspace under \mathcal{G}. It follows from Proposition 3.15 that \mathcal{G} has property (T).

Remark 3.17. (i) Let \mathcal{G} be a countable discrete group. Since all finite dimensional C^{*}-algebras have strong property (T) (see [4]), using Theorems 3.9, 3.12 and $3.16, \mathcal{G}$ has property (T) if and only if $C_{r}^{*}(\mathcal{G})$ has property (T). This is a well-known result of Bekka (see [1]).
(ii) Let \mathcal{G} be a countable discrete abelian group. Since \mathcal{G} is amenable there exists a faithful representation of $C^{*}(\mathcal{G})$ in the Hilbert space $\ell^{2}(\mathcal{G})$. In fact the regular representation can be extended to an *-isomorphism between the group C^{*}-algebra $C^{*}(\mathcal{G})$ and the reduce group C^{*}-algebra $C_{r}^{*}(\mathcal{G})$, and we have $C^{*}(\mathcal{G}) \cong C_{r}^{*}(\mathcal{G})$. Using Lemma 3.11 and Theorems 3.12, 3.16 it follows that \mathcal{G} has property (T) if and only if $C_{r}^{*}(\mathcal{G}) \otimes_{\min } C_{r}^{*}(\mathcal{G})$ has property (T), by choosing $\mathcal{A}=C^{*}(\mathcal{G})$ and α trivial in dynamical system $(\mathcal{A}, \mathcal{G}, \alpha)$.

References

[1] M. B. Bekka, Property (T) for C^{*}-algebras, Bull. London Math. Soc. 38 (2006), 857-867.
[2] B. Bekka, P. de la Harpe and A. Valette, Kazhdan's Property (T), New Mathematical Monographs 11, Cambridge University Press, Cambridge 2008.
[3] A. Connes and V. Jones, Property (T) for von Neumann algebras, Bull. London Math. Soc. 17 (1985), 51-62.
[4] Chi-Wai Leung and Chi-Keung Ng, Property (T) and strong Property (T) for unital C^{*}-algebras, J. Func. Anal. 256 (2009), 3055-3070.
[5] K. R. Davidson, C^{*}-algebras by example, Fields Inst. Monograph 6, Amer. Math. Soc., Providence 1996.
[6] P. Jolissaint, Property (T) for pairs of topological groups, Enseign. Math., 215 (2005), 31-45.
[7] D. Kazhdan, Connection of the dual space of a group with the structure of its closed subgroups, Funct. Anal. Appl. (1967), 63-65.
[8] G. J. Murphy, C ${ }^{*}$-algebras and operator theory, Academic Press, San Diego 1990.
[9] M. Takesaki, Theory of operator algebras, Springer, Berlin 2003.
[10] D. Williams, Crossed products of C^{*}-algebras, Math. Surveys Monogr., 134, Amer. Math. Soc., Providence 2007.

[^0]: *Corresponding author
 Email addresses: abbasi.makrani@gmail.com (H. Abbasi), gorbanali@azaruniv.ac.ir (Gh. Haghighatdoost), esadeqi@sut.ac.ir (I. Sadeqi)
 (c) (2014) Wavelets and Linear Algebra

