

Property (T) for C*-dynamical systems

H. Abbasi^{a,*}, Gh. Haghighatdoost^a, I. Sadeqi^b

^aDepartment of Mathematics, Azarbaijan Shahid Madani University, Tabriz, Islamic Republic of Iran. ^bFaculty of Sciences, Sahand University of Technology, Tabriz, Islamic Republic of Iran.

ARTICLE INFO

Article history: Received 14 August 2013 Accepted 28 April 2014 Available online 1 July 2014 Communicated by Rajab Ali Kamyabi-Gol

Abstract

In this paper, we introduce a notion of property (T) for a C^* dynamical system ($\mathcal{A}, \mathcal{G}, \alpha$) consisting of a unital C^* -algebra \mathcal{A} , a locally compact group \mathcal{G} , and an action α on \mathcal{A} . As a result, we show that if \mathcal{A} has strong property (T) and \mathcal{G} has Kazhdan's property (T), then the triple ($\mathcal{A}, \mathcal{G}, \alpha$) has property (T).

© (2014) Wavelets and Linear Algebra

Keywords:

Kazhdan's property (T) Hilbert bimodule C^* -dynamical system.

2000 MSC: 26A18; 54H20

1. Introduction

A unital C^* -algebra \mathcal{A} has property (T) if there exist a finite subset \mathcal{F} of \mathcal{A} and $\varepsilon > 0$, such that for every Hilbert bimodule on \mathcal{A} with a unit (\mathcal{F}, ε)-central vector, there is a non-zero central

^{*}Corresponding author

Email addresses: abbasi.makrani@gmail.com (H. Abbasi), gorbanali@azaruniv.ac.ir (Gh. Haghighatdoost), esadeqi@sut.ac.ir (I. Sadeqi)

vector (see [1]). This property is similar to the property (T) for locally compact groups, which is defined by D. Kazhdan in [7]. A locally compact group \mathcal{G} has property (T) if, whenever a unitary representation (π , \mathcal{H}) of \mathcal{G} almost has invariant vectors, \mathcal{H} has a non-zero invariant vector. It is proved in [1] that a countable discrete group \mathcal{G} has property (T) if and only if its full (or equivalently reduced) group C^* -algebra has property (T). In [3], property (T) for a von Neumann algebra was introduced, it is shown that a discrete *ICC*-group \mathcal{G} has property (T) if and only if the von Neumann algebra generated by the left regular representation of \mathcal{G} has property (T).

In this paper, if *V* and *W* are Hilbert spaces, $V \otimes W$ denotes their Hilbert space tensor product. If *V* and *W* are algebras, $V \odot W$ denotes their algebraic tensor product. If *V* and *W* are *C*^{*}-algebras, then $V \otimes_{\min} W$ will denote their *C*^{*}-tensor product with respect to the minimal (spatial) *C*^{*}-norm and $V \otimes_{\max} W$ will denote their *C*^{*}-tensor product with respect to the maximal *C*^{*}-norm. Also, if *V* is a Hilbert space we denote by $\mathcal{L}(V)$ the unital *C*^{*}-algebra of bounded linear operators on *V*.

The paper is organised as follows. In Section 2, we recall some definitions and results in the framework of C^* -dynamical systems which are used in this paper.

In Section 3, we define a notion of property (T) for an arbitrary C^* -dynamical system $(\mathcal{A}, \mathcal{G}, \alpha)$. We show that if \mathcal{A} has strong property (T) and \mathcal{G} has property (T), then $(\mathcal{A}, \mathcal{G}, \alpha)$ has property (T). We will also show that if \mathcal{G} is a discrete group and $(\mathcal{A}, \mathcal{G}, \alpha)$ has property (T), then its C^* -crossed product has property (T) as a unital C^* -algebra. Furthermore, we show that if \mathcal{A} is a commutative unital C^* -algebra, \mathcal{G} is a countable discrete group such that there exists a faithful representation of \mathcal{A} to the Hilbert space $\ell^2(\mathcal{G})$, then property (T) of $C^*_r(\mathcal{G}) \otimes_{\min} \mathcal{A}$ implies property (T) of \mathcal{G} , where $C^*_r(\mathcal{G})$ is the reduced group C^* -algebra of \mathcal{G} .

Our basic references for C^* -algebras are [5, 8, 9]. A good reference for C^* -dynamical systems is [10]. For a survey on Kazhdan's property (T) one can refer to [2].

2. Preliminaries and Basic Concepts

A *C*^{*}-*dynamical system* (or a *dynamical system*) is a triple $(\mathcal{A}, \mathcal{G}, \alpha)$, where \mathcal{A} is a unital *C*^{*}algebra, \mathcal{G} is a locally compact group, and α is a continuous homomorphism from \mathcal{G} into the group of all *-automorphisms of \mathcal{A} . Note that the continuity condition on α amounts to the statement that $\gamma \mapsto \alpha_{\gamma}(a)$ is continuous for all $a \in \mathcal{A}$.

Let $(\mathcal{A}, \mathcal{G}, \alpha)$ be a dynamical system such that \mathcal{G} is a discrete group. Let $\mathcal{K}(\mathcal{G}, \mathcal{A})$ be the algebra of all \mathcal{A} -valued functions with finite support endowed with the following twisted convolution as product, involution and norm:

$$xy(t) = \sum_{\gamma} x(\gamma) \alpha_{\gamma}(y(\gamma^{-1}t)), \qquad x^{*}(t) = \alpha_{t}(x(t^{-1})^{*}), \qquad ||x||_{1} = \sum_{\gamma} ||x(\gamma)||,$$

where $x, y \in \mathcal{K}(\mathcal{G}, \mathcal{A})$ and $t \in \mathcal{G}$. The algebra $\mathcal{K}(\mathcal{G}, \mathcal{A})$ becomes a normed *-algebra and we denote its completion by $\ell^1(\mathcal{G}, \mathcal{A})$. The algebra \mathcal{A} is regarded as a subalgebra of $\mathcal{K}(\mathcal{G}, \mathcal{A})$ with the same unit element in which each arbitrary element $a \in \mathcal{A}$ can be thought as a function on \mathcal{G} subject to the conditions a(e) = a and $a(\gamma) = 0$ for $\gamma \neq e$, where *e* is the unit of \mathcal{G} .

The unital Banach *-algebra $\ell^1(\mathcal{G}, \mathcal{A})$ has a faithful representation and we call the C^* -envelope of $\ell^1(\mathcal{G}, \mathcal{A})$ the C^* -crossed product of \mathcal{A} by \mathcal{G} with respect to the action α and write as $\mathcal{A} \times_{\alpha} \mathcal{G}$. Let δ_{γ} be the unitary element of $\ell^1(\mathcal{G}, \mathcal{A})$ such that $\delta_{\gamma}(\gamma) = 1$ and $\delta_{\gamma}(t) = 0$ if $t \neq \gamma$. The element δ_{γ} belongs to $\mathcal{A} \times_{\alpha} \mathcal{G}$ and satisfies $\delta_{\gamma} a \delta_{\gamma}^* = \alpha_{\gamma}(a)$. An element x in $\mathcal{K}(\mathcal{G}, \mathcal{A})$ can be written as $x = \sum_{\gamma} x(\gamma) \delta_{\gamma}$.

A pair (μ, π) consisting of a representation μ of \mathcal{A} and a unitary representation π of \mathcal{G} on the same Hilbert space \mathcal{H} is called a *covariant representation* of $(\mathcal{A}, \mathcal{G}, \alpha)$ if for all $a \in \mathcal{A}$ and $\gamma \in \mathcal{G}$ we have

$$\pi(\gamma)\mu(a) = \mu(\alpha_{\gamma}(a))\pi(\gamma).$$

Consider two covariant representations (μ_1, π_1) and (μ_2, π_2) on the Hilbert spaces $\mathcal{H}_1, \mathcal{H}_2$, respectively. We say that (μ_1, π_1) and (μ_2, π_2) are *equivalent* if there exists a unitary operator $W : \mathcal{H}_1 \to \mathcal{H}_2$ such that

$$W\mu_1(a) = \mu_2(a)W, \qquad W\pi_1(\gamma) = \pi_2(\gamma)W,$$

for all $a \in \mathcal{A}$ and $\gamma \in \mathcal{G}$.

Consider a faithful representation of \mathcal{A} on a Hilbert space \mathcal{H} . Define a representation of \mathcal{A} as well as a unitary representation of \mathcal{G} on the Hilbert space $\ell^2(\mathcal{G}, \mathcal{H})$ by

$$\pi_{\alpha}(a)\widetilde{\xi}(\gamma) = \alpha_{\gamma^{-1}}(a) \cdot \widetilde{\xi}(\gamma), \qquad \lambda_{\alpha}(\gamma)\widetilde{\xi}(t) = \widetilde{\xi}(\gamma^{-1}t),$$

where $a \in \mathcal{A}, \tilde{\xi} \in \ell^2(\mathcal{G}, \mathcal{H})$ and $\gamma, t \in \mathcal{G}$. We say that $(\pi_\alpha, \lambda_\alpha)$ is a regular representation of $(\mathcal{A}, \mathcal{G}, \alpha)$.

The *reduced* C^* -*crossed product* $\mathcal{A} \times_{\alpha r} \mathcal{G}$ is the C^* -algebra on $\ell^2(\mathcal{G}, \mathcal{H})$ generated by the family of $\{\pi_{\alpha}(a), \lambda_{\alpha}(\gamma) \mid a \in \mathcal{A}, \gamma \in \mathcal{G}\}$. Note that this definition is independent of the choice of the space \mathcal{H} .

If $\mathcal{A} = \mathbb{C}$ and α is trivial, then $\ell^1(\mathcal{G}, \mathcal{A})$ coincide with $\ell^1(\mathcal{G})$ and λ_{α} is the regular representation on the Hilbert space $\ell^2(\mathcal{G})$. In this case, $\mathcal{A} \times_{\alpha} \mathcal{G}$ is the group C^* -algebra $C^*(\mathcal{G})$ and $\mathcal{A} \times_{\alpha r} \mathcal{G}$ is the reduced group C^* -algebra $C^*_r(\mathcal{G})$.

3. Property (T) for a dynamical system

A *Hilbert bimodule* on a unital C^* -algebra \mathcal{A} (or a *Hilbert \mathcal{A}-bimodule*) is a Hilbert space \mathcal{H} carrying two commuting actions, one from \mathcal{A} and one from the opposite algebra \mathcal{A}^0 (see [1]). In other words, there exists a representation from $\mathcal{A} \otimes_{\max} \mathcal{A}^0$ to $\mathcal{L}(\mathcal{H})$. If \mathcal{H} is a Hilbert \mathcal{A} -bimodule, we will write $a \cdot \xi \cdot b$ for all $a, b \in \mathcal{A}$ and $\xi \in \mathcal{H}$, to denote the module actions.

A *tracial state* on a unital C^* -algebra \mathcal{A} is a positive linear functional $Tr : \mathcal{A} \to \mathbb{C}$ such that Tr(ab) = Tr(ba) for all $a, b \in \mathcal{A}$ and Tr(1) = 1.

Definition 3.1. (see [1]) Let $\mathcal{B} \subset \mathcal{A}$ be a C^* -subalgebra containing the identity of a unital C^* algebra \mathcal{A} . The pair $(\mathcal{A}, \mathcal{B})$ has *property* (T) if there exist a finite subset \mathcal{F} of \mathcal{A} and $\varepsilon > 0$ such that the following property holds: if a Hilbert bimodule \mathcal{H} on \mathcal{A} contains a unit vector $\xi \in \mathcal{H}$ which is $(\mathcal{F}, \varepsilon)$ -central, that is:

$$\max_{a\in\mathcal{F}}\|a\cdot\xi-\xi\cdot a\|<\varepsilon,$$

then \mathcal{H} has a non-zero \mathcal{B} -central vector, that is, a non-zero vector $\eta \in \mathcal{H}$ such that

$$b \cdot \eta = \eta \cdot b$$

for all $b \in \mathcal{B}$. Moreover, \mathcal{A} has property (T) if the pair (\mathcal{A}, \mathcal{A}) has such property.

It is clear that if \mathcal{A} has property (T), then the pair (\mathcal{A}, \mathcal{B}) has, too. As an example, if \mathcal{H} is any Hilbert space and $\mathcal{B} \subset \mathcal{L}(\mathcal{H})$ a unital C^* -subalgebra, then ($\mathcal{L}(\mathcal{H}), \mathcal{B}$) has property (T) (see [4]).

Note that Definition 3.1 comes from the original definition of property (T) for groups. Let \mathcal{G} be a locally compact group and \mathcal{N} a closed subgroup. The pair $(\mathcal{G}, \mathcal{N})$ has *property* (T) if there exist a compact subset \mathcal{Q} of \mathcal{G} and r > 0 such that the following property holds: if a unitary representation (π, \mathcal{H}) of \mathcal{G} contains a unit vector $\xi \in \mathcal{H}$ which is (\mathcal{Q}, r) -invariant, that is:

$$\sup_{\gamma \in Q} \|\pi(\gamma)(\xi) - \xi\| < r,$$

then \mathcal{H} has a non-zero \mathcal{N} -invariant vector, that is, there is a non-zero vector $\eta \in \mathcal{H}$ such that

$$\pi(\gamma)(\eta) = \eta,$$

for all $\gamma \in \mathcal{N}$. Moreover, \mathcal{G} has property (*T*) if the pair (\mathcal{G}, \mathcal{G}) has property (*T*). An example of a pair with property (*T*) is the pair ($SL_2(\mathbb{Z}) \ltimes \mathbb{Z}^2, \mathbb{Z}^2$), where $SL_2(\mathbb{Z}) \ltimes \mathbb{Z}^2$ is the semi-direct product for the natural action of $SL_2(\mathbb{Z})$ on \mathbb{Z}^2 .

In the following, we give definition of a covariant birepresentation on a dynamical system and apply it to study the property (T) on the dynamical systems.

Let $(\mathcal{A}, \mathcal{G}, \alpha)$ be a dynamical system. A triple $(\mathcal{H}, \pi_1, \pi_2)$ consisting of a Hilbert bimodule \mathcal{H} on \mathcal{A} and two commuting unitary representations π_1, π_2 of \mathcal{G} on the same Hilbert space \mathcal{H} is called a *covariant birepresentation* of $(\mathcal{A}, \mathcal{G}, \alpha)$ if we have

$$\pi_1(\gamma_1)\pi_2(\gamma_2)(a\cdot\xi\cdot b) = \alpha_{\gamma_1}(a)\cdot\pi_1(\gamma_1)\pi_2(\gamma_2)(\xi)\cdot\alpha_{\gamma_2}(b),$$

for all $a, b \in \mathcal{A}, \gamma_1, \gamma_2 \in \mathcal{G}$ and $\xi \in \mathcal{H}$.

Obviously, covariant birepresentations of the dynamical system $(\mathcal{A}, \{e\}, id)$ are in one-to-one correspondence with Hilbert bimodules on \mathcal{A} , where $\{e\}$ is the trivial group with one element. Covariant birepresentations of the dynamical system $(\mathbb{C}, \mathcal{G}, id)$ correspond to commuting unitary representations of \mathcal{G} . Note that if $(\mathcal{H}, \pi_1, \pi_2)$ is a covariant birepresentation of $(\mathcal{A}, \mathcal{G}, \alpha)$, then so is the triple $(\mathcal{H}, \pi_2, \pi_1)$.

Let $(\mathcal{A}, \mathcal{G}, \alpha)$ be a dynamical system and $\mathcal{B} \subset \mathcal{A}$ an α -invariant C^* -subalgebra containing the identity element of \mathcal{A} . Let $(\mathcal{H}, \pi_1, \pi_2)$ be a covariant birepresentation of $(\mathcal{A}, \mathcal{G}, \alpha)$. We say that $(\mathcal{H}, \pi_1, \pi_2)$ has a *non-zero* $(\mathcal{B}, \mathcal{G})$ -central vector if there exists a non-zero vector η in \mathcal{H} such that

$$b \cdot \eta = \eta \cdot b, \qquad \pi_1(\gamma)\pi_2(\gamma)(\eta) = \eta,$$

for all $\gamma \in \mathcal{G}$ and $b \in \mathcal{B}$.

If $(\mathcal{A}, \mathcal{G}, \alpha)$ is a dynamical system and \mathcal{G} is a discrete group, then covariant birepresentations with non-zero central vectors are in one-to-one correspondence with α -invariant tracial states of the associated C^* -algebra.

Lemma 3.2. (i) Let $(\mathcal{H}, \pi_1, \pi_2)$ be a covariant birepresentation of a dynamical system $(\mathcal{A}, \mathcal{G}, \alpha)$ with a non-zero $(\mathcal{A}, \mathcal{G})$ -central vector η . Then \mathcal{A} admits an α -invariant tracial state.

- (ii) Let $(\mathcal{A}, \mathcal{G}, \alpha)$ be a dynamical system such that \mathcal{G} is a discrete group. Let $Tr : \mathcal{A} \to \mathbb{C}$ be an α -invariant tracial state on \mathcal{A} . Then there exists a covariant birepresentation of $(\mathcal{A}, \mathcal{G}, \alpha)$ with a non-zero $(\mathcal{A}, \mathcal{G})$ -central vector.
- *Proof.* (i) Let $\zeta = \frac{\eta}{\|\eta\|}$. Define $Tr : \mathcal{A} \to \mathbb{C}$ by $Tr(a) = \langle a \cdot \zeta, \zeta \rangle$. Then Tr is a tracial state on \mathcal{A} , and for all $a \in \mathcal{A}, \gamma \in \mathcal{G}$ we have

$$Tr(\alpha_{\gamma}(a)) = \langle \pi_{1}(\gamma)\pi_{2}(\gamma)(a \cdot \zeta), \zeta \rangle$$

= $\langle a \cdot \zeta, \pi_{2}(\gamma^{-1})\pi_{1}(\gamma^{-1})(\zeta) \rangle$
= $Tr(a).$

(ii) First, consider the extension of α-invariant tracial state on A×_α G, again denoted by Tr. Setting N = {x ∈ A×_α G | Tr(x*x) = 0}, it is easy to check that N is a two-sided ideal of A×_α G and that the map ⟨x + N, y + N⟩ = Tr(y*x) is a well-defined inner product on the quotient space A×_α G/N. We denote by L²(Tr) the Hilbert space completion of A×_α G/N. For each a ∈ A, the mappings x + N ↦ ax + N and x + N ↦ xa + N can be extend to bounded operators on L²(Tr), and L²(Tr) is a Hilbert bimodule on A. Also, if γ ∈ G, define two operators π₁(γ), π₂(γ) ∈ L(L²(Tr)) by

$$\pi_1(\gamma)(x+N) = \delta_{\gamma}x + N, \qquad \pi_2(\gamma)(x+N) = x\delta_{\gamma^{-1}} + N.$$

We obtain two commuting unitary representations π_1, π_2 of \mathcal{G} on $L^2(Tr)$, and $(L^2(Tr), \pi_1, \pi_2)$ is a covariant birepresentation of $(\mathcal{A}, \mathcal{G}, \alpha)$. Moreover, $\eta = \delta_e + N$ is a non-zero $(\mathcal{A}, \mathcal{G})$ -central vector.

Let $(\mathcal{H}, \pi_1, \pi_2)$ be a covariant birepresentation of $(\mathcal{A}, \mathcal{G}, \alpha)$. Given a finite subset \mathcal{F} of \mathcal{A} , a compact subset \mathcal{Q} of \mathcal{G} and $\varepsilon, r > 0$, we say that a unit vector $\xi \in \mathcal{H}$ is $(\mathcal{F}, \varepsilon, \mathcal{Q}, r)$ -central if:

$$\max_{a \in \mathcal{F}} \|a \cdot \xi - \xi \cdot a\| < \varepsilon, \qquad \sup_{\gamma \in Q} \|\pi_1(\gamma)\pi_2(\gamma)(\xi) - \xi\| < r.$$

The covariant birepresentation $(\mathcal{H}, \pi_1, \pi_2)$ almost has invariant vectors if it has $(\mathcal{F}, \varepsilon, Q, r)$ -central vectors for every finite subset \mathcal{F} of \mathcal{A} , compact subset Q of G and every $\varepsilon, r > 0$.

Definition 3.3. Let $(\mathcal{A}, \mathcal{G}, \alpha)$ be a dynamical system, and $\mathcal{B} \subset \mathcal{A}$ an α -invariant C^* -subalgebra containing the identity element of \mathcal{A} . We denote the dynamical system $(\mathcal{A}, \mathcal{G}, \alpha)$ with the α -invariant C^* -subalgebra \mathcal{B} , by $((\mathcal{A}, \mathcal{B}), \mathcal{G}, \alpha)$. We say that $((\mathcal{A}, \mathcal{B}), \mathcal{G}, \alpha)$ has property (T) if there exist a finite subset \mathcal{F} of \mathcal{A} , a compact subset \mathcal{Q} of \mathcal{G} and $\varepsilon, r > 0$ such that any covariant birepresentation of $(\mathcal{A}, \mathcal{G}, \alpha)$ with a unit $(\mathcal{F}, \varepsilon, \mathcal{Q}, r)$ -central possesses non-zero $(\mathcal{B}, \mathcal{G})$ -central vectors. Moreover, the dynamical system $(\mathcal{A}, \mathcal{G}, \alpha)$ has property (T) if the system $((\mathcal{A}, \mathcal{A}), \mathcal{G}, \alpha)$ has such property.

It is clear that if $(\mathcal{A}, \mathcal{G}, \alpha)$ has property (T), then so has $((\mathcal{A}, \mathcal{B}), \mathcal{G}, \alpha)$. Property (T) of the dynamical system $(\mathcal{A}, \{e\}, id)$ correspond to property (T) of \mathcal{A} , and property (T) of the dynamical system $(\mathbb{C}, \mathcal{G}, id)$ correspond to property (T) of \mathcal{G} .

- *Remark* 3.4. (i) If α is trivial and $((\mathcal{A}, \mathcal{B}), \mathcal{G}, \alpha)$ has property (T), then $(\mathcal{A}, \mathcal{B})$ has it too, for any \mathcal{B} as above.
 - (ii) Let $(\mathcal{A}, \mathcal{G}, \alpha)$ be a dynamical system, and that the *C**-algebra \mathcal{A} admitting an α -invariant character, that is, a non-zero multiplicative linear map $\chi : \mathcal{A} \to \mathbb{C}$ such that $\chi(\alpha_{\gamma}(a)) = \chi(a)$ for all $\gamma \in \mathcal{G}$ and $a \in \mathcal{A}$. If $(\mathcal{A}, \mathcal{G}, \alpha)$ has property (T), then \mathcal{G} has property (T).

Let us give an example of a dynamical system which does not have property (T).

Example 3.5. Let *X* be a smooth vector field on a compact manifold \mathcal{M} . Suppose for each point $q \in \mathcal{M}$ there is a unique integral curve $\theta^q : \mathbb{R} \to \mathcal{M}$ of *X* starting at *q*, and *p* be an element in \mathcal{M} such that θ^p is the constant curve $\theta^p(t) \equiv p$. For each $t \in \mathbb{R}$, we can define a map θ_t from \mathcal{M} to itself by sending each point $q \in \mathcal{M}$ to the point obtained by the curve starting at *q* for time *t*:

$$\theta_t(q) = \theta^q(t).$$

This defines a family of maps $\theta_t : \mathcal{M} \to \mathcal{M}$ for $t \in \mathbb{R}$. Let $C(\mathcal{M})$ denote the unital C^* -algebra of continuous complex valued functions on \mathcal{M} . We obtain a homomorphism $\alpha : \mathbb{R} \to Aut(C(\mathcal{M}))$, defined by

$$\alpha_t(f)(q) = f(\theta_{t^{-1}}(q)),$$

and $(C(\mathcal{M}), \mathbb{R}, \alpha)$ is a dynamical system. Define an α -invariant character $\chi : C(\mathcal{M}) \to \mathbb{C}$ by $\chi(f) = f(p)$. We know that \mathbb{R} does not have property (T) (see [2]), it follows from Remark 3.4 that $(C(\mathcal{M}), \mathbb{R}, \alpha)$ does not have property (T).

The notion of property (T) for a dynamical system $(\mathcal{A}, \mathcal{G}, \alpha)$ and for C^* -algebras associated to it are related via the correspondence between covariant birepresentations and Hilbert bimodules. More precisely, given a Hilbert $\mathcal{A} \times_{\alpha} \mathcal{G}$ -bimodule \mathcal{H} , one can define two commuting unitary representations π_1, π_2 of \mathcal{G} on the same Hilbert space \mathcal{H} by

$$\pi_1(\gamma)(\xi) = \delta_{\gamma} \cdot \xi, \qquad \pi_2(\gamma)(\xi) = \xi \cdot \delta_{\gamma^{-1}}.$$

Viewing \mathcal{A} as a subalgebra of $\mathcal{A} \times_{\alpha} \mathcal{G}$, it is simple to see that $(\mathcal{H}, \pi_1, \pi_2)$ is a covariant birepresentation of $(\mathcal{A}, \mathcal{G}, \alpha)$.

Conversely, suppose $(\mathcal{H}, \pi_1, \pi_2)$ is a covariant birepresentation of $(\mathcal{A}, \mathcal{G}, \alpha)$. Take $x \in \mathcal{K}(\mathcal{G}, \mathcal{A})$ and define two operators $\pi(x)$ and $\rho(x)$ on \mathcal{H} by

$$\pi(x)\xi = \sum_{\gamma} x(\gamma) \cdot \pi_1(\gamma)(\xi), \qquad \rho(x)\xi = \sum_{\gamma} \pi_2(\gamma^{-1})(\xi \cdot x(\gamma)).$$

Since π is obviously norm decreasing, it extends to a representation of $\ell^1(\mathcal{G}, \mathcal{A})$, hence to that of $\mathcal{A} \times_{\alpha} \mathcal{G}$. Similarly, ρ extends to a representation of the opposite algebra of $\mathcal{A} \times_{\alpha} \mathcal{G}$. Two representations π and ρ are commuting, so that \mathcal{H} is a Hilbert bimodule on $\mathcal{A} \times_{\alpha} \mathcal{G}$.

Hence, a non-zero $(\mathcal{A}, \mathcal{G})$ -central vector for a covariant birepresentation of $(\mathcal{A}, \mathcal{G}, \alpha)$ is a non-zero $\mathcal{A} \times_{\alpha} \mathcal{G}$ -central vector.

By the argument of Remark 15 in [1], we know that every unital C^* -algebra without tracial states has property (T). We will show that a similar fact is true for dynamical systems which the associated C^* -algebra does not admit α -invariant tracial states.

Theorem 3.6. Let $(\mathcal{A}, \mathcal{G}, \alpha)$ be a dynamical system such that the unital C*-algebra \mathcal{A} does not admit α -invariant tracial states. Then $(\mathcal{A}, \mathcal{G}, \alpha)$ has property (T).

Proof. Assume that $(\mathcal{A}, \mathcal{G}, \alpha)$ does not have property (T). Then, there is a covariant birepresentation $(\mathcal{H}, \pi_1, \pi_2)$ almost has invariant vectors. This implies that there is a net of unit vectors $(\xi_i)_{i \in I}$ in \mathcal{H} such that:

$$\lim \|a \cdot \xi_i - \xi_i \cdot a\| = 0, \qquad \lim \|\pi_1(\gamma)\pi_2(\gamma)(\xi_i) - \xi_i\| = 0,$$

for all $a \in \mathcal{A}, \gamma \in \mathcal{G}$. For each $T \in \mathcal{L}(\mathcal{H})$, let D_T be the closed disc in \mathbb{C} of radius ||T||, and consider the product space

$$X=\prod_{T\in\mathcal{L}(\mathcal{H})}D_T,$$

endowed with the product topology. By Tychonoff's Theorem, X is compact. Since $(\langle T\xi_i, \xi_i \rangle)_{T \in \mathcal{L}(\mathcal{H})}$ is an element of X for all $i \in I$, there exists a subnet $(\xi_j)_{j \in J}$ such that, for all $T \in \mathcal{L}(\mathcal{H})$, the limit

$$\varphi(T) = \lim_{j \to \infty} \langle T\xi_j, \xi_j \rangle$$

exists. It is clear that $T \mapsto \varphi(T)$ is a positive linear functional on $\mathcal{L}(\mathcal{H})$ with $\varphi(id_{\mathcal{H}}) = 1$. Moreover, for every $\gamma \in \mathcal{G}$ and $T \in \mathcal{L}(\mathcal{H})$, we have

$$\varphi(\pi_1(\gamma)\pi_2(\gamma)T) = \varphi(T) = \varphi(T\pi_1(\gamma)\pi_2(\gamma)).$$

Then $Tr : \mathcal{A} \to \mathbb{C}$ defined by $Tr(a) = \varphi(\mu(a))$ is an α -invariant tracial state on \mathcal{A} , where μ is the representation on \mathcal{H} given by, say, the left action of \mathcal{A} .

Example 3.7. Let \mathcal{H} be an infinite-dimensional Hilbert space and $\mathcal{U}(\mathcal{H})$ be its unitary group. Suppose $\mathcal{B} \subset \mathcal{L}(\mathcal{H})$ is a C^* -subalgebra containing the identity element of $\mathcal{L}(\mathcal{H})$, and that $u \in \mathcal{U}(\mathcal{H})$ is such that $u\mathcal{B}u^* \subset \mathcal{B}$. Then $\varphi(a) = uau^*$ is an automorphism of $\mathcal{L}(\mathcal{H})$. Therefore, we obtain a homomorphism $\alpha : \mathbb{Z} \to Aut(\mathcal{L}(\mathcal{H}))$, defined by $\alpha_n = \varphi^n$, and $(\mathcal{L}(\mathcal{H}), \mathbb{Z}, \alpha)$ is a dynamical system. Using Theorem 3.6, so $((\mathcal{L}(\mathcal{H}), \mathcal{B}), \mathbb{Z}, \alpha)$ has property (T).

Let $\mathcal{G}_1 \to \mathcal{G}_2$ be a surjective continuous homomorphism between locally compact groups. It is well-known that if \mathcal{G}_1 has property (T), then \mathcal{G}_2 has property (T). Similarly, let $\mathcal{A} \to \mathcal{B}$ be a surjective *-homomorphism between unital C^* -algebras. If \mathcal{A} has property (T), then so has \mathcal{B} . The corresponding statement for dynamical systems is as follows and its proof is straightforward.

Lemma 3.8. Let $(\mathcal{A}, \mathcal{G}, \alpha)$ and $(\mathcal{B}, \mathcal{G}, \beta)$ be two dynamical systems with actions α and β of a fixed group \mathcal{G} on \mathcal{A} and \mathcal{B} , respectively. Let $f : \mathcal{A} \to \mathcal{B}$ be a surjective *-homomorphism between \mathcal{A} and \mathcal{B} such that

$$\beta_{\gamma}(f(a)) = f(\alpha_{\gamma}(a)),$$

for all $\gamma \in \mathcal{G}, a \in \mathcal{A}$. If $(\mathcal{A}, \mathcal{G}, \alpha)$ has property (T), then $(\mathcal{B}, \mathcal{G}, \beta)$ has also property (T).

Let \mathcal{H} be a Hilbert bimodule on a C^* -algebra \mathcal{A} and $\mathcal{B} \subset \mathcal{A}$ a C^* -subalgebra containing the identity of \mathcal{A} . Let

$$\mathcal{H}^{\mathcal{B}} = \{ \eta \in \mathcal{H} \mid b \cdot \eta = \eta \cdot b, \ \forall b \in \mathcal{B} \},\$$

and $P_{\mathcal{H}}^{\mathcal{B}}: \mathcal{H} \to \mathcal{H}^{\mathcal{B}}$ be the orthogonal projection from \mathcal{H} over the closed subspace $\mathcal{H}^{\mathcal{B}}$.

Let us recall a notion of strong property (T) in [4]. The pair $(\mathcal{A}, \mathcal{B})$ has strong property (T) if for any r > 0, there exist a finite subset \mathcal{F} of \mathcal{A} and $\varepsilon > 0$ such that the following property holds: if a Hilbert bimodule \mathcal{H} on \mathcal{A} contains a unit vector $\xi \in \mathcal{H}$ which is $(\mathcal{F}, \varepsilon)$ -central, then $\|\xi - P_{\mathcal{H}}^{\mathcal{B}}(\xi)\| < r$. Also, \mathcal{A} has strong property (T) if $(\mathcal{A}, \mathcal{A})$ has such property.

By taking $r < \frac{1}{2}$, we see that strong property (T) implies property (T). If \mathcal{A} has no tracial state, then \mathcal{A} has strong property (T), and so does $(\mathcal{A}, \mathcal{B})$ (see [4]).

Also, suppose (π, \mathcal{H}) is a unitary representation of a locally compact group \mathcal{G} and \mathcal{N} is a closed subgroup of \mathcal{G} . Let

$$\mathcal{H}^{\mathcal{N}} = \{ \eta \in \mathcal{H} \mid \pi(\gamma)(\eta) = \eta, \ \forall \gamma \in \mathcal{N} \},\$$

and $P_{\mathcal{H}}^{N}: \mathcal{H} \to \mathcal{H}^{N}$ be the orthogonal projection from \mathcal{H} over the closed subspace \mathcal{H}^{N} .

Theorem 3.9. Suppose $(\mathcal{A}, \mathcal{B})$ has strong property (T) and \mathcal{G} has property (T). Then $((\mathcal{A}, \mathcal{B}), \mathcal{G}, \alpha)$ has property (T).

Proof. Since \mathcal{G} has property (T), there exist a compact subset Q of \mathcal{G} and $\varepsilon > 0$ such that for any unitary representation (π, \mathcal{H}) and unit vector $\xi \in \mathcal{H}$ which is (Q, ε) -invariant, one has a non-zero vector $\eta \in \mathcal{H}$ such that

$$\pi(\gamma)(\eta) = \eta$$

for all $\gamma \in \mathcal{G}$. Let $h = \min\{\frac{1}{2}, \frac{\varepsilon}{8}\}$. Since $(\mathcal{A}, \mathcal{B})$ has strong property (T), there exist a finite subset \mathcal{F} of \mathcal{A} and r > 0 such that for any Hilbert bimodule \mathcal{H} and unit vector $\xi \in \mathcal{H}$ which is (\mathcal{F}, r) -central, one has

$$\|\xi - P^{\mathcal{B}}_{\mathcal{H}}(\xi)\| < h$$

Let $k = \min\{r, \frac{\varepsilon}{4}\}$, and $(\mathcal{H}, \pi_1, \pi_2)$ be a covariant birepresentation of $(\mathcal{A}, \mathcal{G}, \alpha)$ with a unit vector $\xi \in \mathcal{H}$ such that:

$$\max_{a \in \mathcal{F}} \|a \cdot \xi - \xi \cdot a\| < k, \qquad \sup_{\gamma \in Q} \|\pi_1(\gamma)\pi_2(\gamma)(\xi) - \xi\| < k.$$

Then $\|\xi - P_{\mathcal{H}}^{\mathcal{B}}(\xi)\| < h$ and $\|P_{\mathcal{H}}^{\mathcal{B}}(\xi)\| > \frac{1}{2}$. For all $b \in \mathcal{B}, \gamma \in \mathcal{G}$ and $\zeta \in \mathcal{H}^{\mathcal{B}}$ we have:

$$b \cdot \pi_1(\gamma)\pi_2(\gamma)(\zeta) = \pi_1(\gamma)(\alpha_{\gamma^{-1}}(b) \cdot \pi_2(\gamma)(\zeta))$$

= $\pi_1(\gamma)\pi_2(\gamma)(\alpha_{\gamma^{-1}}(b) \cdot \zeta)$
= $\pi_1(\gamma)\pi_2(\gamma)(\zeta \cdot \alpha_{\gamma^{-1}}(b))$
= $\pi_1(\gamma)(\pi_2(\gamma)(\zeta) \cdot b)$
= $\pi_1(\gamma)\pi_2(\gamma)(\zeta) \cdot b.$

Hence, $\pi(\gamma) = \pi_1(\gamma)\pi_2(\gamma)$ is a unitary representation of \mathcal{G} on $\mathcal{H}^{\mathcal{B}}$. If we take $\zeta = \frac{P_{\mathcal{H}}^{\mathcal{B}}(\xi)}{\|P_{\mathcal{H}}^{\mathcal{B}}(\xi)\|}$, then we have

$$\sup_{\gamma \in Q} \|\pi(\gamma)(\zeta) - \zeta\| < \frac{k}{\|P_{\mathcal{H}}^{\mathcal{B}}(\xi)\|} + \frac{2h}{\|P_{\mathcal{H}}^{\mathcal{B}}(\xi)\|} < \frac{\varepsilon}{2\|P_{\mathcal{H}}^{\mathcal{B}}(\xi)\|} < \frac{\varepsilon}{2} \times 2 = \varepsilon.$$

Therefore, there exists a non-zero vector $\eta \in \mathcal{H}^{\mathcal{B}}$ such that

$$\pi_1(\gamma)\pi_2(\gamma)(\eta) = \pi(\gamma)(\eta) = \eta,$$

for all $\gamma \in \mathcal{G}$, which implies that η is a non-zero $(\mathcal{B}, \mathcal{G})$ -central vector, as required.

We need the following proposition from [6] to prove the next lemma.

Proposition 3.10. Let G be a locally compact and σ -compact group and let N be a closed subgroup of G. The following properties are equivalent:

- (i) $(\mathcal{G}, \mathcal{N})$ has property (T),
- (ii) for every r > 0, there exists a pair (Q, ε) of compact subset Q of G and $\varepsilon > 0$ with the following property: for any unitary representation (π, \mathcal{H}) of G which has a (Q, ε) -invariant unit vector ξ , then we have $\|\xi P^N_{\mathcal{H}}(\xi)\| \le r$.

Lemma 3.11. Let \mathcal{G} be a countable discrete group with property (T). Then ($C^*(\mathcal{G}), \mathcal{G}, \alpha$) has property (T) for any action α of \mathcal{G} on $C^*(\mathcal{G})$.

Proof. By Theorem 3.9, it suffices to prove that $C^*(\mathcal{G})$ has strong property (T). Let r > 0. Since \mathcal{G} has property (T), by Proposition 3.10 there exist a finite subset \mathcal{Q} of \mathcal{G} and $\varepsilon > 0$ such that for any unitary representation (π, \mathcal{H}) and unit vector $\xi \in \mathcal{H}$ which is $(\mathcal{Q}, \varepsilon)$ -invariant, one has $\|\xi - P^{\mathcal{G}}_{\mathcal{H}}(\xi)\| \leq \frac{r}{2}$. Let $\mathcal{F} = \{\delta_{\gamma} \mid \gamma \in \mathcal{Q}\}$ be the finite subset of $C^*(\mathcal{G})$, and \mathcal{H} a Hilbert bimodule on $C^*(\mathcal{G})$ contains a unit vector $\xi \in \mathcal{H}$ which is $(\mathcal{F}, \varepsilon)$ -central. Define a unitary representation (π, \mathcal{H}) of \mathcal{G} by

$$\pi(\gamma)(\xi) = \delta_{\gamma} \cdot \xi \cdot \delta_{\gamma^{-1}}.$$

Hence, ξ is (Q, ε) -invariant, and we have

$$\|\xi - P_{\mathcal{H}}^{C^*(\mathcal{G})}(\xi)\| = \|\xi - P_{\mathcal{H}}^{\mathcal{G}}(\xi)\| < r.$$

In the following, we show that property (T) of a dynamical system $(\mathcal{A}, \mathcal{G}, \alpha)$ such that \mathcal{G} is a discrete group implies property (T) of its *C*^{*}-crossed product.

Theorem 3.12. Let $(\mathcal{A}, \mathcal{G}, \alpha)$ be a dynamical system, and that \mathcal{G} is a discrete group. If $(\mathcal{A}, \mathcal{G}, \alpha)$ has property (T), then $\mathcal{A} \times_{\alpha} \mathcal{G}$ has property (T) (and so does $\mathcal{A} \times_{\alpha r} \mathcal{G}$).

Proof. Since $(\mathcal{A}, \mathcal{G}, \alpha)$ has property (T), there exist a finite subset \mathcal{F} of \mathcal{A} , a finite subset Q of \mathcal{G} and $\varepsilon, r > 0$ such that for every covariant birepresentation $(\mathcal{H}, \pi_1, \pi_2)$ of $(\mathcal{A}, \mathcal{G}, \alpha)$ contains a unit vector $\xi \in \mathcal{H}$ which is $(\mathcal{F}, \varepsilon, Q, r)$ -central, then \mathcal{H} has a non-zero $(\mathcal{A}, \mathcal{G})$ -central vector.

Let $\mathcal{D} = \mathcal{F} \cup \{\delta_{\gamma} \mid \gamma \in Q\}$ and $\ell = \min\{r, \varepsilon\}$. Let \mathcal{H} be a Hilbert bimodule on $\mathcal{A} \times_{\alpha} \mathcal{G}$ contains a unit vector $\xi \in \mathcal{H}$ which is (\mathcal{D}, ℓ) -central. Define two commuting unitary representations (π_1, \mathcal{H}) and (π_2, \mathcal{H}) of \mathcal{G} by

$$\pi_1(\gamma)(\xi) = \delta_{\gamma} \cdot \xi, \qquad \pi_2(\gamma)(\xi) = \xi \cdot \delta_{\gamma^{-1}}.$$

Viewing \mathcal{A} as a subalgebra of $\mathcal{A} \times_{\alpha} \mathcal{G}$, it is clear that $(\mathcal{H}, \pi_1, \pi_2)$ is a covariant birepresentation of $(\mathcal{A}, \mathcal{G}, \alpha)$, and ξ is a $(\mathcal{F}, \varepsilon, \mathcal{Q}, r)$ -central. Therefore, there exists a non-zero vector $\eta \in \mathcal{H}$ such that

$$a \cdot \eta = \eta \cdot a, \qquad \delta_{\gamma} \cdot \eta = \eta \cdot \delta_{\gamma}$$

for all $a \in \mathcal{A}$ and $\gamma \in \mathcal{G}$. Then for any $x = \sum_{\gamma} x(\gamma) \delta_{\gamma} \in \mathcal{K}(\mathcal{G}, \mathcal{A})$, we have

$$x \cdot \eta = \sum_{\gamma} x(\gamma) \delta_{\gamma} \cdot \eta = \sum_{\gamma} x(\gamma) \cdot \eta \cdot \delta_{\gamma} = \sum_{\gamma} \eta \cdot x(\gamma) \delta_{\gamma} = \eta \cdot x.$$

Since $\mathcal{K}(\mathcal{G}, \mathcal{A})$ is dense in $\ell^1(\mathcal{G}, \mathcal{A})$ and $\ell^1(\mathcal{G}, \mathcal{A})$ is dense in $\mathcal{A} \times_{\alpha} \mathcal{G}$, we obtain $x \cdot \eta = \eta \cdot x$ for all $x \in \mathcal{A} \times_{\alpha} \mathcal{G}$. Since $\mathcal{A} \times_{\alpha r} \mathcal{G}$ is a quotient of $\mathcal{A} \times_{\alpha} \mathcal{G}$, it follows that $\mathcal{A} \times_{\alpha r} \mathcal{G}$ also has property (T).

Remark 3.13. If $(\mathcal{A}, \mathcal{G}, \alpha)$ is a dynamical system, \mathcal{G} is a discrete group and α trivial, then:

$$\mathcal{A} \times_{\alpha r} \mathcal{G} \cong C^*_r(\mathcal{G}) \otimes_{\min} \mathcal{A}, \qquad \mathcal{A} \times_{\alpha} \mathcal{G} \cong C^*(\mathcal{G}) \otimes_{\max} \mathcal{A}.$$

By Theorems 3.9 and 3.12 for a discrete group \mathcal{G} with property (T) and a unital C^* -algebra \mathcal{A} with strong property (T), $C_r^*(\mathcal{G}) \otimes_{\min} \mathcal{A}$ and $C^*(\mathcal{G}) \otimes_{\max} \mathcal{A}$ have property (T).

If a locally compact group with property (T) is amenable, then it is compact, a similar fact is true for C^* -algebras with property (T) which are nuclear. A C^* -algebra \mathcal{A} is *nuclear* if, for any C^* -algebra \mathcal{B} , there is a unique pre- C^* -norm on $\mathcal{A} \odot \mathcal{B}$. Let Tr be a tracial state on the unital C^* -algebra \mathcal{A} . By the GNS-construction, Tr defines a Hilbert \mathcal{A} -bimodule, denoted by $L^2(Tr)$. In [1], it is shown that if \mathcal{A} is a unital C^* -algebra with property (T) which is nuclear, then for any tracial state Tr on \mathcal{A} , the left action of \mathcal{A} on the Hilbert space $L^2(Tr)$ is *completely atomic*, that is, $L^2(Tr)$ decomposes as a direct sum of finite dimensional \mathcal{A} -submodules. This implies that if \mathcal{A} is a unital C^* -algebra with property (T), and that there exists a tracial state Tr on \mathcal{A} such that $L^2(Tr)$ is not completely atomic, then \mathcal{A} is not nuclear.

Corollary 3.14. Let $(\mathcal{A}, \mathcal{G}, \alpha)$ be a dynamical system such that \mathcal{G} is a discrete group and \mathcal{A} is nuclear and \mathcal{G} amenable. Suppose that there exists a tracial state Tr of $\mathcal{A} \times_{\alpha} \mathcal{G}$ such that $L^2(Tr)$ is not completely atomic. Then $(\mathcal{A}, \mathcal{G}, \alpha)$ does not have property (T).

Proof. Since \mathcal{G} is amenable and \mathcal{A} is nuclear, so $\mathcal{A} \times_{\alpha} \mathcal{G}$ is nuclear (see [10]). As cited above $\mathcal{A} \times_{\alpha} \mathcal{G}$ does not have property (T). So by Theorem 3.12, $(\mathcal{A}, \mathcal{G}, \alpha)$ does not have property (T).

Note that even if $\mathcal{A} \times_{\alpha} \mathcal{G}$ has strong property (T) and α is trivial, it does not follow that \mathcal{G} has property (T).

Proposition 3.15. Let G be a locally compact and σ -compact group and N a closed subgroup of G. The following properties are equivalent:

- (i) $(\mathcal{G}, \mathcal{N})$ has property (T),
- (ii) if a unitary representation (π, \mathcal{H}) of \mathcal{G} almost has invariant vectors, that is, if it has $(\mathcal{Q}, \varepsilon)$ invariant vectors for every compact subset \mathcal{Q} of \mathcal{G} and every $\varepsilon > 0$, then \mathcal{H} contains a
 non-zero finite dimensional subspace which is invariant under \mathcal{N} .

We will now use the same technique as in the proof of Theorem 6 in [1] to obtain the following theorem, using the above proposition from [1].

Theorem 3.16. Let \mathcal{A} be a commutative unital C^* -algebra, and \mathcal{G} a countable discrete group such that there exists a faithful representation of \mathcal{A} to the Hilbert space $\ell^2(\mathcal{G})$. If $C^*_r(\mathcal{G}) \otimes_{\min} \mathcal{A}$ has property (T), then \mathcal{G} has property (T).

Proof. Viewing $C_r^*(\mathcal{G}) \otimes_{\min} \mathcal{A}$ as $\mathcal{A} \times_{\alpha r} \mathcal{G}$ in dynamical system $(\mathcal{A}, \mathcal{G}, \alpha)$ with α trivial, suppose $\mathcal{A} \times_{\alpha r} \mathcal{G}$ has property (T). Choose a finite subset \mathcal{F} of $\mathcal{A} \times_{\alpha r} \mathcal{G}$ and $\varepsilon > 0$ as in Definition 3.1. We may assume that $||y|| \le 1$ for all $y \in \mathcal{F}$. Take an element $\xi_0 \in \ell^2(\mathcal{G})$ such that $||\xi_0|| = 1$. One can check that there exists a finite subset \mathcal{Q} of \mathcal{G} such that:

$$\sum_{\gamma\in\mathcal{G}-Q}\|y(\delta_e\otimes\xi_0)(\gamma)\|^2<\frac{\varepsilon^2}{9},$$

for all $y \in \mathcal{F}$. Assume that (π, \mathcal{H}) is a unitary representation of \mathcal{G} almost has invariant vectors. Choose a unit vector $\xi \in \mathcal{H}$ such that is $(Q, \frac{\varepsilon}{3})$ -invariant vector. Define a representation μ of \mathcal{A} as well as two unitary representations π_1, π_2 of \mathcal{G} on the Hilbert space tensor product $\ell^2(\mathcal{G}, \ell^2(\mathcal{G})) \otimes \mathcal{H}$ by

$$\mu(a) = \pi_{\alpha}(a) \otimes id,$$

and,

$$\pi_1(\gamma) = \lambda_\alpha(\gamma) \otimes id, \qquad \pi_2(\gamma) = \mu_\alpha(\gamma) \otimes \pi(\gamma),$$

for all $a \in \mathcal{A}, \gamma \in \mathcal{G}$, where μ_{α} is a representation of \mathcal{G} on the Hilbert space $\ell^2(\mathcal{G}, \ell^2(\mathcal{G}))$ defined by $\mu_{\alpha}(\gamma)\widetilde{\xi}(s) = \widetilde{\xi}(s\gamma)$ for all $\gamma, s \in \mathcal{G}$ and $\widetilde{\xi} \in \ell^2(\mathcal{G}, \ell^2(\mathcal{G}))$.

Since (μ, π_1) and (μ, π_2) are covariant representations, are equivalent to multiples of the regular representation $(\pi_{\alpha}, \lambda_{\alpha})$, they extend to commuting representations of $\mathcal{A} \times_{\alpha r} \mathcal{G}$, so that $\ell^2(\mathcal{G}, \ell^2(\mathcal{G})) \otimes \mathcal{H}$ is a Hilbert bimodule on $\mathcal{A} \times_{\alpha r} \mathcal{G}$.

Let $\tilde{\eta} = \tilde{\xi} \otimes \xi$, where $\tilde{\xi} \in \ell^2(\mathcal{G}, \ell^2(\mathcal{G}))$ is defined by $\tilde{\xi}(e) = \xi_0$ and $\tilde{\xi}(\gamma) = 0$ otherwise. For any $y \in \mathcal{F}$, we have

$$\begin{split} ||y \cdot \widetilde{\eta} - \widetilde{\eta} \cdot y||^2 &= \sum_{\gamma \in \mathcal{G}} ||y(\delta_e \otimes \xi_0)(\gamma)||^2 ||\pi(\gamma)(\xi) - \xi||^2 \\ &\leq \frac{4\varepsilon^2}{9} + \sum_{\gamma \in \mathcal{Q}} ||y(\delta_e \otimes \xi_0)(\gamma)||^2 ||\pi(\gamma)(\xi) - \xi||^2 \\ &\leq \frac{4\varepsilon^2}{9} + \frac{\varepsilon^2}{9} \\ &< \varepsilon^2. \end{split}$$

Therefore, there exists a non-zero vector η in $\ell^2(\mathcal{G}, \ell^2(\mathcal{G})) \otimes \mathcal{H}$ which is $\mathcal{A} \times_{\alpha r} \mathcal{G}$ -central. Viewing η as a non-zero vector in the Hilbert space $\ell^2(\mathcal{G}, \ell^2(\mathcal{G}, \mathcal{H}))$, in particular, we have

$$\eta(\gamma t \gamma^{-1})(s) = \pi(\gamma)(\eta(t)(s)),$$

for all $\gamma, t, s \in \mathcal{G}$. Then $\gamma \mapsto ||\eta(\gamma)||$ is a non-zero function in $\ell^2(\mathcal{G})$ which is invariant under conjugation by elements of \mathcal{G} . Let $t_0 \in \mathcal{G}$ be such that $\eta(t_0) \neq 0$. It follows that $\{\gamma t_0 \gamma^{-1} \mid \gamma \in \mathcal{G}\}$ is a finite subset of \mathcal{G} . Let $s_0 \in \mathcal{G}$ be such that $\eta(t_0)(s_0) \neq 0$. Then $\{\eta(\gamma t_0 \gamma^{-1})(s_0) \mid \gamma \in \mathcal{G}\}$ is finite, hence $\{\pi(\gamma)(\eta(t_0)(s_0)) \mid \gamma \in \mathcal{G}\}$ is a finite subset of \mathcal{H} and its linear span defines a non-zero finite dimensional invariant subspace under \mathcal{G} . It follows from Proposition 3.15 that \mathcal{G} has property (T).

- *Remark* 3.17. (i) Let \mathcal{G} be a countable discrete group. Since all finite dimensional C^* -algebras have strong property (T) (see [4]), using Theorems 3.9, 3.12 and 3.16, \mathcal{G} has property (T) if and only if $C_r^*(\mathcal{G})$ has property (T). This is a well-known result of Bekka (see [1]).
 - (ii) Let G be a countable discrete abelian group. Since G is amenable there exists a faithful representation of C*(G) in the Hilbert space ℓ²(G). In fact the regular representation can be extended to an *-isomorphism between the group C*-algebra C*(G) and the reduce group C*-algebra C^{*}_r(G), and we have C*(G) ≅ C^{*}_r(G). Using Lemma 3.11 and Theorems 3.12, 3.16 it follows that G has property (T) if and only if C^{*}_r(G) ⊗_{min} C^{*}_r(G) has property (T), by choosing A = C*(G) and α trivial in dynamical system (A, G, α).

References

- [1] M. B. Bekka, *Property (T) for C*-algebras*, Bull. London Math. Soc. 38 (2006), 857 867.
- [2] B. Bekka, P. de la Harpe and A. Valette, *Kazhdan's Property (T)*, New Mathematical Monographs 11, Cambridge University Press, Cambridge 2008.
- [3] A. Connes and V. Jones, Property (T) for von Neumann algebras, Bull. London Math. Soc. 17 (1985), 51 62.
- [4] Chi-Wai Leung and Chi-Keung Ng, *Property (T) and strong Property (T) for unital C*-algebras*, J. Func. Anal. 256 (2009), 3055 3070.
- [5] K. R. Davidson, C*-algebras by example, Fields Inst. Monograph 6, Amer. Math. Soc., Providence 1996.
- [6] P. Jolissaint, Property (T) for pairs of topological groups, Enseign. Math., 215 (2005), 31 45.
- [7] D. Kazhdan, *Connection of the dual space of a group with the structure of its closed subgroups*, Funct. Anal. Appl. (1967), 63 65.
- [8] G. J. Murphy, C*-algebras and operator theory, Academic Press, San Diego 1990.
- [9] M. Takesaki, *Theory of operator algebras*, Springer, Berlin 2003.
- [10] D. Williams, *Crossed products of C*-algebras*, Math. Surveys Monogr., 134, Amer. Math. Soc., Providence 2007.