

Linear preservers of two-sided matrix majorization

Fatemeh Khalooeia,*
${ }^{a}$ Department of Mathmatics, Faculty of Mathmatics, Shahid Bahonar
University of Kerman, Kerman, Islamic Republic of Iran

Article Info

Article history:
Received 13 August 2013
Accepted 28 April 2014
Available online 1 July 2014
Communicated by by Abbas
Salemi

Keywords:

Linear preservers
Matrix majorization
Row stochastic matrix
2000 MSC:
15A04
15A21

Abstract

For vectors $X, Y \in \mathbb{R}^{n}$, it is said that X is left matrix majorized by Y if for some row stochastic matrix $R ; X=R Y$. The relation $X \sim_{\ell} Y$, is defined as follows: $X \sim_{\ell} Y$ if and only if X is left matrix majorized by Y and Y is left matrix majorized by X. A linear operator $T: \mathbb{R}^{p} \rightarrow \mathbb{R}^{n}$ is said to be a linear preserver of a given relation $<$ if $X<Y$ on \mathbb{R}^{p} implies that $T X<T Y$ on \mathbb{R}^{n}. The linear preservers of ${\alpha_{\ell}}_{\ell}$ from \mathbb{R}^{p} to \mathbb{R}^{n} are characterized before. In this parer we characterize the linear preservers of \sim_{ℓ} from \mathbb{R}^{p} to $\mathbb{R}^{n}, p \geq 3$. In fact we show that the linear preservers of \sim_{ℓ} from \mathbb{R}^{p} to \mathbb{R}^{n} are the same as the linear preservers of $<_{\ell}$ from \mathbb{R}^{p} to \mathbb{R}^{n}, but for $p=2$, they are not the same.

(C) (2014) Wavelets and Linear Algebra

1. Introduction

Let $M_{n m}$ be the algebra of all $n \times m$ real matrices, and the usual notation \mathbb{R}^{n} for $n \times 1$ real vectors. A matrix $R=\left[r_{i j}\right] \in M_{n m}$ is called a row stochastic matrix if $r_{i j} \geq 0$ and $\Sigma_{k=1}^{m} r_{i k}=1$ for

[^0](c) (2014) Wavelets and Linear Algebra
all i, j. For vectors $X, Y \in \mathbb{R}^{n}$, we say X is left (resp. right) matrix majorized by Y and write $X<_{\ell} Y$ (resp. $X<_{r} Y$) if for some row stochastic matrix $R, X=R Y$ (resp. $X=Y R$). For more information about right and left matrix majorization and some other majorizations, we refer to [1, 4, 5, 12]. Also for $X, Y \in \mathbb{R}^{n}$, we write $X \sim_{\ell} Y$, if $X<_{\ell} Y<_{\ell} X$.

A linear operator $T: \mathbb{R}^{p} \rightarrow \mathbb{R}^{n}$ is said to be a linear preserver of a given relation $<$ if $X<Y$ on \mathbb{R}^{p} implies that $T X<T Y$ on \mathbb{R}^{n}. The linear preservers of $<_{\ell}$ and $<_{r}$ from \mathbb{R}^{n} to \mathbb{R}^{n} are fully characterized in [6] and [7]. For more information about linear preservers of majorization we refer the reader to $[1,2,3,11]$. In [8], the authors studied the linear preservers of $<_{\ell}$ from \mathbb{R}^{p} to \mathbb{R}^{n}, where p and n are not necessarily equal, and characterized the structure of these linear preservers of $<_{\ell}$ for $p \leq n \leq p(p-1)$. In [9], by a geometric approach one can see the characterization of linear preservers of $<_{\ell}$ from \mathbb{R}^{p} to \mathbb{R}^{n} without any additional conditions on p and n. In [10], the authors characterized all linear preservers of \sim_{ℓ} from \mathbb{R}^{2} to \mathbb{R}^{n}. Here we focus on this method and we characterize all linear preservers of \sim_{ℓ} from \mathbb{R}^{p} to \mathbb{R}^{n}, for $p \geq 3$.

We shall use the following conventions throughout the paper. Let $T: \mathbb{R}^{p} \rightarrow \mathbb{R}^{n}$ be a nonzero linear operator and let $[T]=\left[t_{i j}\right]$ denote the matrix representation of T with respect to the standard bases $\left\{e_{1}, e_{2}, \ldots, e_{p}\right\}$ of \mathbb{R}^{p} and $\left\{f_{1}, f_{2}, \ldots, f_{n}\right\}$ of \mathbb{R}^{n}. If $p=1$, then all linear operators on \mathbb{R}^{1} are preservers of \sim_{ℓ}. Thus, we assume $p \geq 2$. For every $i(i=1, \ldots, k)$ let A_{i} be $m_{i} \times p$ matrix. We use the notation $\left[A_{1} / A_{2} / \ldots / A_{k}\right]$ to denote the corresponding $\left(m_{1}+m_{2}+\cdots+m_{k}\right) \times p$ matrix. Put

$$
\begin{align*}
& \mathbf{a}:=\max \left\{t_{i j} \mid 1 \leq i \leq n, 1 \leq j \leq p\right\}, \\
& \mathbf{b}:=\min \left\{t_{i j} \mid 1 \leq i \leq n, 1 \leq j \leq p\right\} . \tag{1.1}
\end{align*}
$$

We also use the notation P for the permutation matrix such that $P\left(e_{i}\right)=e_{i+1}, 1 \leq i \leq p-1$, $P\left(e_{p}\right)=e_{1}$. Let I denote the $p \times p$ identity matrix, and let $r, s \in \mathbb{R}$ be such that $r s<0$. Define the $p(p-1) \times p$ matrix $\mathcal{P}_{p}(r, s)=\left[P_{1} / P_{2} / \ldots / P_{p-1}\right]$ where $P_{j}=r I+s P^{j}$, for all $j(1 \leq j \leq p-1)$. It is clear that up to a row permutation the matrices $\mathcal{P}_{p}(r, s)$ and $\mathcal{P}_{p}(s, r)$ are equal. Also define $\mathcal{P}_{p}(r, 0):=r I, \mathcal{P}_{p}(0, s):=s I$ and $\mathcal{P}_{p}(0,0)$ as $1 \times p$ zero matrix.

Throughout the paper, for a given vector $x \in \mathbb{R}^{n}, \max x$ and $\min x$ denote the maximum and minimum values of components of x, respectively.

Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{n}$ be a linear operator and let $[T]=\left[T_{1} / \ldots / T_{n}\right]$, where $T_{i}=\left[t_{i 1}, t_{i 2}\right]$, for every $i(1 \leq i \leq n)$. Let

$$
\begin{equation*}
\Delta:=\operatorname{Conv}\left(\left\{\left(t_{i 1}, t_{i 2}\right),\left(t_{i 2}, t_{i 1}\right), 1 \leq i \leq n\right\}\right) \subseteq \mathbb{R}^{2} \tag{1.2}
\end{equation*}
$$

where $\operatorname{Conv}(A)$ denotes the convex hull of a set A. Also, let $C(T)$ denote the set of all corners of Δ.
Now, we recall the characterization of linear preservers of ${\alpha_{\ell}}^{\text {from }} \mathbb{R}^{p}$ to \mathbb{R}^{n}, beginning with $p=2$.
Theorem 1.1. [9,Theorem 3.3] Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{n}$ be a linear operator. Then, T is a linear preserver of $<_{\ell}$ if and only if $\mathcal{P}_{2}(x, y)$ is a submatrix of $[T]$ and $x y \leq 0$ for all $(x, y) \in C(T)$.

For the case $p \geq 3$ we first need some definitions.
Definition 1.2. Let $T: \mathbb{R}^{p} \rightarrow \mathbb{R}^{n}$ be a linear operator. We denote by P_{i} (resp. N_{i}) the sum of the nonnegative (resp. nonpositive) entries in the $i^{\text {th }}$ row of [T]. If all the entries in the $i^{\text {th }}$ row are positive (resp. negative), we define $N_{i}=0$ (resp. $P_{i}=0$).

Definition 1.3. Let $T: \mathbb{R}^{p} \rightarrow \mathbb{R}^{n}$ be a linear operator. Define

$$
\begin{aligned}
\Delta: & =\operatorname{Conv}\left(\left\{\left(P_{i}, N_{i}\right),\left(N_{i}, P_{i}\right): 1 \leq i \leq n\right\}\right), \\
E(T): & =\left\{\left(P_{i}, N_{i}\right):\left(P_{i}, N_{i}\right) \text { is a corner of } \Delta\right\},
\end{aligned}
$$

where P_{i}, N_{i} are as in Definition 1.2.
Theorem 1.4. [9, Theorem 4.6] Let $T: \mathbb{R}^{p} \rightarrow \mathbb{R}^{n}, p \geq 3$, and let $E(T)$ be as in Definition 1.3. Then T preserves $<_{\ell}$ if and only if $\mathcal{P}_{p}(\alpha, \beta)$ is a submatrix of $[T]$ for all $(\alpha, \beta) \in E(T)$.

For $X, Y \in \mathbb{R}^{p}$, we define $X \sim_{\ell} Y$, when $X<_{\ell} Y<_{\ell} X$. To obtain our main result (a complete characterization of linear preservers of \sim_{ℓ} from \mathbb{R}^{p} to \mathbb{R}^{n}), we consider the case $p \geq 3$, and recall the case $p=2$ which is characterized in [10], as follows.

For $x, y \in R$, define $Q_{2}(x, y)=\left[\begin{array}{ll}x & y \\ y & x\end{array}\right]$, if $x \neq y$ and $Q_{2}(x, x)=\left[\begin{array}{ll}x & x\end{array}\right]$.
Theorem 1.5. [8 and 10 , Theorem 2.6] Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{n}$ be a linear operator. Then T is a linear preserver of \sim_{ℓ} if and only if $Q_{2}(x, y)$ is a submatrix of $[T]$, for all $(x, y) \in C(T)$, where $C(T)$ denote the set of all corners of Δ as in (1.2).

Obviously, if $T: \mathbb{R}^{p} \rightarrow \mathbb{R}^{n}$ is a linear preserver of $<_{\ell}$, then T is a linear preserver of \sim_{ℓ}. But by the following example the converse is not true for $p=2$.
Let $[T]=\left[\begin{array}{ll}3 & 2 \\ 2 & 3\end{array}\right]$. Then T is a linear preserver of \sim_{ℓ}, but by Theorem 1.1, T is not a linear preserver of $<_{\ell}$.

2. Linear Preservers of \sim_{ℓ} on $\mathbb{R}^{p}, p \geq 3$

Lemma 2.1. Let $x, y \in \mathbb{R}^{n}$. Then the following assertions are true
(a) $x<_{\ell} y$ if and only if $\min y \leq \min x \leq \max x \leq \max y$.
(b) $x \sim_{\ell} y$ if and only if $\min x=\min y$ and $\max x=\max y$.

Proof. Let $x=\left(x_{1}, \ldots, x_{n}\right), y=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}^{n}$ and let $x<_{\ell} y$. Therefore $x=R y$ for some $n \times n$ row stochastic matrices R. It follows that $x_{i} \in \operatorname{Conv}\left(\left\{y_{1}, \ldots, y_{n}\right\}\right)$ for all $i(1 \leq i \leq n)$ and hence $\min y \leq \min x \leq \max x \leq \max y$. Since $x \sim_{\ell} y$ when $x<_{\ell} y<_{\ell} x$, (b) is a consequence of (a).

Lemma 2.2. Let T be a linear operator on \mathbb{R}^{p}. Let $[T]=\left[T_{1} / \ldots / T_{k}\right]$ such that T_{i} is a linear preserver of \sim_{ℓ}, for all $i(1 \leq i \leq k)$. Then T is a linear preserver of \sim_{ℓ}.

Proof. Let $x \in \mathbb{R}^{p}, \min T_{i} x=\alpha_{i}$ and $\max T_{i} x=\beta_{i}$, for all $i(1 \leq i \leq k)$. Then $\min T x=\min \alpha_{i}$ and $\max T x=\max \beta_{i}$. Since $T x=\left[T_{1} x / \ldots / T_{k} x\right]$, for all $x \in \mathbb{R}^{p}, T$ is a linear preserver of \sim_{ℓ}.

Lemma 2.3. Let T be a linear operator on \mathbb{R}^{p}, and let $p \geq 3$. If $[T]=\mathcal{P}_{p}(\alpha, \beta), \beta \leq 0 \leq \alpha$, then T is a linear preserver of \sim_{ℓ}. In general, if

$$
[T]=\left[\mathcal{P}_{p}\left(\alpha_{1}, \beta_{1}\right) / \cdots / \mathcal{P}_{p}\left(\alpha_{k}, \beta_{k}\right)\right], \beta_{i} \leq 0 \leq \alpha_{i}, \forall i=1, \ldots, k
$$

then T is a linear preserver of \sim_{ℓ}.

Proof. Let $x=\left(x_{1}, \ldots, x_{p}\right)^{t}, y=\left(y_{1}, \ldots, y_{p}\right)^{t} \in \mathbb{R}^{p}$ and $x \sim_{\ell} y$. By Lemma 2.1, $\min x=\min y$ and $\max x=\max y$. Let $m=\min x=\min y$ and $M=\max x=\max y$. It is easy to show that $\alpha m+\beta M \leq$ $\alpha x_{i}+\beta x_{j}$, also $\alpha m+\beta M \leq \alpha y_{i}+\beta y_{j}, \forall i \neq j \in\{1, \ldots, p\}$. Hence $\min T x=\alpha m+\beta M=\min T y$. Similarly, $\max T x=\alpha M+\beta m=\max T y$. Thus by Lemma 2.1, $T x \sim_{\ell} T y$. The second statement is a consequence of Lemma 2.2.

Definition 2.4. Let $T: \mathbb{R}^{p} \rightarrow \mathbb{R}^{n}$ be a linear operator and let $[T]=\left[T_{1} / \ldots / T_{n}\right]$. Define

$$
\Omega:=\operatorname{Conv}\left(\left\{T_{i}=\left(t_{i 1}, \ldots, t_{i p}\right), 1 \leq i \leq n\right\}\right) \subseteq \mathbb{R}^{p} .
$$

Also, let $C(T)$ be the set of all corners of Ω.
Lemma 2.5. Let $T: \mathbb{R}^{p} \rightarrow \mathbb{R}^{n}, p \geq 3$, be a linear preserver of \sim_{ℓ} and $[T]=\left[T_{1} / \ldots / T_{n}\right]$, where $T_{i}=\left(t_{i 1}, t_{i 2}, \ldots, t_{i p}\right)$, for all $i(1 \leq i \leq n)$. Suppose there exists $i(1 \leq i \leq n)$ such that $t_{i l}>0$, for all $l(1 \leq l \leq p)$ or $t_{i l}<0$, for all $l(1 \leq l \leq p)$. Then $T_{i} \notin C(T)$.

Proof. Without loss of generality we can assume [T] has no identical rows. Since T is a linear preserver of \sim_{ℓ} if and only if ηT is a linear preserver of \sim_{ℓ} for all $\eta \neq 0$, we can assume that there exists some i such that $T_{i} \in C(T)$ and $t_{i l}>0$ for all $l(1 \leq l \leq p)$, and reach a contradiction. Since $T_{i} \in C(T)$, there exists $x=\left(x_{1}, \ldots, x_{p}\right)^{t} \in \mathbb{R}^{p}$ such that

$$
\begin{equation*}
t_{i 1} x_{1}+t_{i 2} x_{2}+\cdots+t_{i p} x_{p}<t_{j 1} x_{1}+t_{j 2} x_{2}+\cdots+t_{j p} x_{p}, \forall j \neq i \tag{2.1}
\end{equation*}
$$

Let $m=\min x$ and $M=\max x$. Assuming $x_{1}=m$ and $x_{p}=M$, will cause no loss of generality. Also, without loss of generality, we can assume $m \neq M$ and there exists some $1<k<n$ such that $m<x_{k}<M$, because by (2.1) we can choose $\varepsilon_{0}>0$ small enough so that for all $0<\varepsilon \leq \varepsilon_{0}$,

$$
t_{i 1}(m-\varepsilon)+t_{i 2} x_{2}+\cdots+t_{i p}(M+\varepsilon)<t_{j 1}(m-\varepsilon)+t_{j 2} x_{2}+\cdots+t_{j p}(M+\varepsilon), \forall j \neq i .
$$

Fix $0<\varepsilon \leq \varepsilon_{0}$ and define $x_{\varepsilon}=\left(m-\varepsilon, x_{2}, \ldots, x_{p-1}, M+\varepsilon\right)^{t} \in \mathbb{R}^{p}$, thus min $T x_{\varepsilon}=t_{i 1}(m-\varepsilon)+\cdots+$ $t_{i p}(M+\varepsilon)$ and $\min x_{\varepsilon}=m-\varepsilon \neq M+\varepsilon=\max x_{\varepsilon}$. Suppose $m \neq M$ and $m<x_{k}<M$ for some $1<k<n$. Choose $\alpha>0$ small enough such that $m<x_{k}+\alpha<M$ and

$$
t_{i 1} x_{1}+\cdots+t_{i k}\left(x_{k}+\alpha\right)+\cdots+t_{i p} x_{p}<t_{j 1} x_{1}+\cdots+t_{j k}\left(x_{k}+\alpha\right)+\cdots+t_{j p} x_{p}, \forall j \neq i .
$$

Define $y=\left(x_{1}, \ldots, x_{k}+\alpha, \ldots, x_{p}\right)^{t}$. Since $t_{i k}>0$,

$$
\min T x=t_{i 1} x_{1}+\cdots+t_{i p} x_{p}<t_{i 1} x_{1}+\cdots+t_{i k}\left(x_{k}+\alpha\right)+\cdots+t_{i p} x_{p}=\min T y .
$$

But $y \sim_{\ell} x$, a contradiction.
Let $T: \mathbb{R}^{p} \rightarrow \mathbb{R}^{n}$ be a linear operator. Without loss of generality, we assume that $[T]=$ [$\left.T^{p} / T^{n} / \widetilde{T}\right]$, where all entries of T^{p} (resp. T^{n}) are positive (resp. negative) and each row of \widetilde{T} has nonnegative and nonpositive entries.

Corollary 2.6. Let T and \widetilde{T} be as above, then T is a linear preserver of \sim_{ℓ} if and only if $C(T)=$ $C(\widetilde{T})$ and \widetilde{T} is a linear preserver of \sim_{ℓ}.

Proof. Let T be a linear preserver of \sim_{ℓ}. By Lemma 2.5, the rows of T^{p} and T^{n} can not be in $C(T)$, hence $C(T)=C(\widetilde{T})$. Thus if $x \in \mathbb{R}^{p}, \min T x=\min \widetilde{T} x$ and $\max T x=\max \widetilde{T} x$. Therefore \widetilde{T} is a linear preserver of $\sim_{\mathcal{I}}$. Conversely, let $C(T)=C(\widetilde{T})$, and suppose \widetilde{T} is a linear preserver of \sim_{ℓ}. Then $\max T x=\max \widetilde{T} x$ and $\min T x=\min \widetilde{T} x$, for all $x \in \mathbb{R}^{p}$. Hence T is a linear preserver of $\sim \ell$.

Lemma 2.7. Let $p \geq 3$ and let $T: \mathbb{R}^{p} \rightarrow \mathbb{R}^{n}$, be a linear preserver of \sim_{ℓ}. Let $[T]=\left[T_{1} / \cdots / T_{n}\right]$, where $T_{i}=\left(t_{i 1}, \ldots, t_{i p}\right)^{t}$, for every $i(1 \leq i \leq n)$. Then $\mathbf{b} \leq \sum_{l=1}^{p} t_{i l} \leq \mathbf{a}$, for all i, where \mathbf{a} and \mathbf{b} are as in (1).

Proof. Without loss of generality we can assume [T] has no identical rows. If $i, j \in\{1, \ldots, p\}$, we have $e_{i} \sim_{\ell} e_{j}$ and so $T e_{i} \sim_{\ell} T e_{j}$ which implies that $\max T e_{i}=\max T e_{j}$ and $\min T e_{i}=$ $\min T e_{j}$. Hence $\max T e_{i}=\mathbf{a}$ and $\min T e_{i}=\mathbf{b}$, for all $i \in\{1, \ldots, n\}$. Since $\sum_{j \in J} e_{j} \sim_{\ell} e_{1}$, for all $J \subset\{1, \ldots, p\}, \min T\left(\sum_{j \in J} e_{j}\right)=\min T e_{1}=\mathbf{b}$ and $\max T\left(\sum_{j \in J} e_{j}\right)=\max T e_{1}=\mathbf{a}$. Therefore if $|J|=p-1$ then $\mathbf{b} \leq \sum_{j \in J} t_{i l} \leq \mathbf{a}$, for all $i(1 \leq i \leq n)$. Which implies, if $\sum_{l=1}^{p} t_{i l}>\mathbf{a}$ (resp. $\sum_{l=1}^{p} t_{i l}<\mathbf{b}$) for some $i(1 \leq i \leq n)$, then $t_{i l}>0$ (resp. $\left.t_{i l}<0\right)$ for all $l(1 \leq l \leq p)$. Without loss of generality let $t_{i l}>0$ for all $l(1 \leq l \leq p)$ and $\sum_{l=1}^{p} t_{i l}>\mathbf{a}$. There exists $k(1 \leq k \leq n)$ such that $t_{k l}>0$ for all $l(1 \leq l \leq n)$ and $\sum_{l=1}^{p} t_{k l}=\max \left\{\sum_{l=1}^{p} t_{i l}: 1 \leq i \leq n\right\}$. It is clear that $\sum_{l=1}^{p} t_{k l}>\mathbf{a}$ and $\max T e=\sum_{l=1}^{p} t_{k l}$, where $e=(1, \ldots, 1)^{t} \in \mathbb{R}^{p}$. Since $[T]$ has no identical rows, there exists some $\varepsilon>0$ and some $x \in \mathbb{R}^{p}$ with $\max x=1+\varepsilon$ and $\min x \geq 1$ such that

$$
t_{k 1} x_{1}+\ldots+t_{k p} x_{p}>t_{i 1} x_{1}+\ldots+t_{i p} x_{p}, \forall i \neq k
$$

Hence $T_{k} \in C(T)$, a contradiction.
Since $T: \mathbb{R}^{p} \rightarrow \mathbb{R}^{n}$ is a linear preserver of \sim_{ℓ} if and only if ηT is so for all nonzero real number η, we can assume $\mathbf{a}>0$ and $|\mathbf{b}| \leq \mathbf{a}$.

Corollary 2.8. Let $T: \mathbb{R}^{p} \rightarrow \mathbb{R}^{n}, p \geq 3$, be a linear preserver of \sim_{ℓ}. Then $p \leq n$, moreover, if a row of $[T]$ contains an entry equal to \mathbf{a} (resp. \mathbf{b}), then all other entries of that row are nonpositive (resp. nonnegative).

Proof. As in the proof of Lemma 2.7, $\max T e_{i}=\mathbf{a}$ and $\min T e_{i}=\mathbf{b}$, for all $i \in\{1, \ldots, n\}$. Therefore every column of $[T]$ contains at least one entry equal to a and at least one entry equal to \mathbf{b}. Also by Lemma 2.7, since $\mathbf{b} \leq \sum_{l=1}^{p} t_{i l} \leq \mathbf{a}$, for all $i(1 \leq i \leq p)$, every row of [T] has at most one entry equal to \mathbf{a} and at most one entry equal to \mathbf{b}. Now, $\mathbf{a}>0$, since every column of $[T]$ has at least one entry equal to \mathbf{a} and every row of $[T]$ has at most one entry equal to a, it follows that $p \leq n$. The second statement is a consequence of Lemma 2.7.

Theorem 2.9. Let $T: \mathbb{R}^{p} \rightarrow \mathbb{R}^{n}$ be a linear preserver of \sim_{ℓ}, and let $E(T)$ be as in Definition 1.3. If $\left(P_{r}, N_{r}\right) \in E(T)$ for some $r(1 \leq r \leq n)$ then there exists $k \in[r]=\left\{1 \leq i \leq n: P_{i}=P_{r}, N_{i}=N_{r}\right\}$ such that $T_{k} \in C(T)$.

Proof. Let $\left(P_{r}, N_{r}\right) \in E(T)$ for some $r(1 \leq r \leq n)$. Then there exist $m \leq M$ such that

$$
\begin{equation*}
P_{r} m+N_{r} M<P_{j} m+N_{j} M, j \notin[r] . \tag{2.2}
\end{equation*}
$$

Now we have the following cases for the entries of the $r^{\text {th }}$ row of [T].
Case 1. If $t_{r l}>0$ for all $l(1 \leq l \leq p)$, then $P_{r}>0$ and $N_{r}=0$, which together with (2.2) implies that $P_{r} m<P_{j} m+N_{j} M, j \notin[r]$.
It is easy to check that

$$
\begin{equation*}
P_{r} m<P_{j} m+N_{j} M \leq P_{j} m+N_{j} m=\left(P_{j}+N_{j}\right) m, j \notin[r] . \tag{2.3}
\end{equation*}
$$

Thus $P_{r} m<\left(P_{j}+N_{j}\right) m$ and hence $\min T(m e)=P_{r} m$. By Lemma 2.5, there exists $k \neq r$ such that $P_{r} m=\min T(m e)=\sum_{l=1}^{p} t_{k l} m=P_{k} m+N_{k} m$, and $T_{k} \in C(T)$. By (2.3) $k \in[r]$. Thus there exists $k \in[r]$ such that $T_{k} \in C(T)$.
Case 2. If $t_{r i} \leq 0$ for some $i(1 \leq i \leq p)$ and $t_{r j}>0$ for some $j \neq i,(1 \leq j \leq p)$. Define $x \in \mathbb{R}^{p}$ such that $\min x=m$ and $\max x=M$. Then there exists $k(1 \leq k \leq n)$, such that $\min T x=\sum_{l=1}^{p} t_{k l} x_{l}$. Hence (2.2) implies

$$
P_{r} m+N_{r} M \leq P_{k} m+N_{k} M \leq \sum_{l=1}^{p} t_{k l} x_{l}=\min T x .
$$

Define $y \in \mathbb{R}^{p}$ by $y_{l}=m$ if $t_{r l}>0$ and $y_{l}=M$ if $t_{r l} \leq 0$. Obviously $y \sim_{\ell} x$. Since T is a linear preserver of $\sim_{\ell}, T y \sim_{\ell} T x$ which implies that

$$
P_{k} m+N_{k} M \leq \sum_{l=1}^{p} t_{k l} x_{l}=\min T x=\min T y \leq P_{r} m+N_{r} M .
$$

Therefore by (2.2) $P_{k} m+N_{k} M=P_{r} m+N_{r} M$. Thus $k \in[r]$ and $\min T x=\sum_{l=1}^{p} t_{k l} x_{l}$. Hence $T_{k} \in C(T)$ for some $k \in[r]$.
Case 3. If $t_{r l}<0$ for all $l(1 \leq l \leq p)$ then $N_{r}<0$ and $P_{r}=0$, which together with (2.2) implies that $N_{r} M<P_{j} m+N_{j} M, j \notin[r]$. Like the Case 1

$$
\begin{equation*}
N_{r} M<P_{j} m+N_{j} M \leq P_{j} M+N_{j} M=\left(P_{j}+N_{j}\right) M, j \notin[r] . \tag{2.4}
\end{equation*}
$$

Therefore $\min T(M e)=N_{r} M$. By Lemma 2.5, there exists $k \neq r$ such that $N_{r} M=\min T(M e)=$ $\sum_{l=1}^{p} t_{k l} M=P_{k} M+N_{k} M$, and $T_{k} \in C(T)$. By (2.4) $k \in[r]$. Thus there exists $k \in[r]$ such that $T_{k} \in C(T)$.
Case 4. If $t_{r i}<0$ for some $i(1 \leq i \leq p)$ and $t_{r j} \geq 0$ for some $j \neq i(1 \leq j \leq p)$. We can prove it the same as Case 2 and conclude that there exists $k \in[r]$ such that $T_{k} \in C(T)$.

Corollary 2.10. Let $T: \mathbb{R}^{p} \rightarrow \mathbb{R}^{n}$ be a linear preserver of \sim_{ℓ}. If $1 \leq r \leq n$ and for some $m \leq M$, $P_{r} m+N_{r} M<P_{j} m+N_{j} M$, for all $j \notin[r]$. Then there exists $k \in[r]$ and $x \in \mathbb{R}^{p}$ with $\min x=m$ and $\max x=M$ such that $\min T x=P_{r} m+N_{r} M=\sum_{l=1}^{p} t_{k l} x_{l}$.
Proof. Consider four Cases of the proof of Theorem 2.9. As we see in the proof of Case $1 T_{k} \in$ $C(T), k \neq r$ and $k \in[r]$. By Lemma 2.5 there exists $l(1 \leq l \leq p)$ such that $t_{k l}=0$. Define $x \in \mathbb{R}^{p}$ such that $x_{l}=M$ and $x_{i}=m$ for all $i \neq l$. There exists $j(1 \leq j \leq p)$ such that $\min T x=\sum_{l=1}^{p} t_{j l} x_{l}$. Hence $P_{r} m+N_{r} M \leq P_{j} m+N_{j} M \leq \sum_{l=1}^{p} t_{j l} x_{l} \leq \min T x$. Since $(T x)_{k}=P_{k} m+N_{k} M=P_{r} m+N_{r} M$, $\min T x=P_{r} m+N_{r} M$. By a similar proof, the statement holds in Case 3. As in the proof of Cases 2 and 4 of Theorem 2.9, the statement is immediate.

Theorem 2.11. Let $T: \mathbb{R}^{p} \rightarrow \mathbb{R}^{n}(p \geq 3)$ be a linear operator. T preserves \sim_{ℓ} if and only if $\mathcal{P}_{p}(P, N)$ is a submatrix of $[T]$ for all $(P, N) \in E(T)$.

Proof. To prove necessity, let T be a preserver of \sim_{ℓ} and let $\left(P_{r}, N_{r}\right) \in E(T)$. Then there exists $m \leq M$ such that $P_{r} m+N_{r} M<P_{j} m+N_{j} M$ for all $j, j \notin[r]$. Choose ε_{0} small enough so that for all $0<\varepsilon<\varepsilon_{0}$,

$$
P_{r}(m-\varepsilon)+N_{r}(M+\varepsilon)<P_{j}(m-\varepsilon)+N_{j}(M+\varepsilon), \quad \forall j \notin[r] .
$$

Let $0<\varepsilon<\varepsilon_{0}$, be fixed and let $x_{\varepsilon}=\left(x_{1}, \ldots, x_{p}\right)^{t} \in \mathbb{R}^{p}$ with $\min x_{\varepsilon}=m-\varepsilon$ and $\max x_{\varepsilon}=M+\varepsilon$. By Corollary 2.10 there exists $k \in[r]$ such that $\min T\left(x_{\varepsilon}\right)=\sum_{l=1}^{p} t_{k l} x_{l}=P_{r}(m-\varepsilon)+N_{r}(M+\varepsilon)$. Fix $i \neq j \in\{1, \ldots, p\}$ and define $y_{\varepsilon}=\left(y_{1}, \ldots, y_{p}\right)^{t} \in \mathbb{R}^{p}$ such that $y_{i}=m-\varepsilon, y_{j}=M+\varepsilon$ and $y_{l}=\alpha_{l}, \quad m-\varepsilon<\alpha_{l}<M+\varepsilon, l \neq i, j$. Since $x_{\varepsilon} \sim_{\ell} y_{\varepsilon}, T x_{\varepsilon} \sim_{\ell} T y_{\varepsilon}$, there exists $s \in[r]$ such that $\min T\left(y_{\varepsilon}\right)=t_{s i}(m-\varepsilon)+t_{s j}(M+\varepsilon)+\sum_{l \neq i, j} t_{s l} \alpha_{l}=P_{r}(m-\varepsilon)+N_{r}(M+\varepsilon)=\min T\left(x_{\varepsilon}\right)$. Since $0<\varepsilon<\varepsilon_{0}$ and $m-\varepsilon \leq \alpha_{l} \leq M+\varepsilon, l \neq i, j$ are arbitrary and the number of rows of [T] is finite, there exists $q \in[r]$ such that $t_{q i}=P_{r}$ and $t_{q j}=N_{r}$ and $t_{q l}=0$, for all $l, l \neq i, j$. Also, since $i, j \in\{1, \ldots, n\}$ are arbitrary, $[T]$ has $\mathcal{P}_{p}\left(P_{r}, N_{r}\right)$ as a submatrix. For sufficiency, let $E(T)=\left\{\left(P_{i_{1}}, N_{i_{1}}\right), \ldots,\left(P_{i_{k}}, N_{i_{k}}\right)\right\}$. Then up to a row permutation $[T]=[\widehat{T} / Q]$, where \widehat{T} is the operator on \mathbb{R}^{p} such that $\widehat{T}=\left[\mathcal{P}_{p}\left(P_{i_{1}}, N_{i_{1}}\right) / \ldots / \mathcal{P}_{p}\left(P_{i_{k}}, N_{i_{k}}\right)\right]$. By Lemma 2.3, \widehat{T} is a linear preserver of \sim_{ℓ}. To prove T is a linear preserver of \sim_{ℓ}, we are going to show that $\min T x=\min \widehat{T} x$ and $\max T x=\max \widehat{T} x$, for all $x \in \mathbb{R}^{p}$. Let $x \in \mathbb{R}^{p}$, obviously $\min T x \leq \min \widehat{T} x$, it is enough to prove $\min \widehat{T} x \leq \min T x$. If $\min T(x)=\sum_{l=1}^{p} t_{i l} x_{l}$, for some $i, T_{i} \in Q$. Let $m=\min x$ and $M=\max x$, therefore $P_{i} m+N_{i} M \leq \sum_{l=1}^{p} t_{i l} x_{l}$. There is $1 \leq r \leq n$ such that $\left(P_{r}, N_{r}\right) \in E(T)$ and $P_{r} m+N_{r} M \leq$ $P_{i} m+N_{i} M$, because $\left(P_{i}, N_{i}\right) \in \Delta$ and Δ is convex. By Corollary $2.10 \mathrm{~min} T x=P_{r} m+N_{r} M$. Then $\min \widehat{T} x \leq \min T x$ and hence $\min \widehat{T} x=\min T x$. Similarly $\max \widehat{T} x=\max T x$ and therefore T is a linear preserver of \sim_{ℓ}.

Corollary 2.12. Let $T: \mathbb{R}^{p} \rightarrow \mathbb{R}^{n}, p \geq 3$ be a linear operator then the following assertions are equivalent
(a) T preserves $<_{\ell}$,
(b) T preserves \sim_{ℓ},
(c) $\mathcal{P}_{p}(P, N)$ is a submatrix of $[T]$ for all $(P, N) \in E(T)$.

Problem. [7] characterizes all linear preservers of ${\alpha_{r}}_{r}$ from M_{n} to M_{n}, and also from \mathbb{R}^{n} to \mathbb{R}^{n}. It would be nice to characterize all linear preservers of $<_{r}\left(\right.$ or $\left.\sim_{r}\right)$ from \mathbb{R}^{p} to \mathbb{R}^{n}.

References

[1] T. Ando, Majorization, doubly stochastic matrices, and comparison of eigenvalues, Linear Algebra Appl., 118 (1989), 163-248.
[2] A. Armandnejad, F. Akbarzadeh and Z. Mohamadi,Row and column-majorization on $M_{n, m}$, Linear Algebra Appl., 437(2012), 1025-1032.
[3] L. B. Beasley, S.-G. Lee and Y.-H. Lee, A characterization of strong preservers of matrix majorization, Linear Algebra Appl. 367 (2003), 341-346.
[4] R. Bhatia, Matrix Analysis, Springer-Verlag, New York, 1997.
[5] R. A. Brualdi and G. Dahl,Majorization classes of integral matrices, Linear Algebra Appl., 436(2012), 802-813.
[6] A. M. Hasani and M. Radjabalipour,Linear preserver of matrix majorization, International Journal of Pure and Applied Mathematics, 32(4) (2006), 475-482.
[7] A. M. Hasani and M. Radjabalipour,On linear preservers of (right) matrix majorization, Linear Algebra Appl., 423(2-3)(2007), 255-261.
[8] F. Khalooei, M. Radjabalipour and P. Torabian, Linear preservers of left matrix majorization, Electron. J. Linear Algebra, 17(2008), 304-315.
[9] F. Khalooei and A. Salemi,The structure of linear preservers of left matrix majorization on \mathbb{R}^{p}, Electron. J. Linear Algebra, 18(2009), 88-97.
[10] F. Khalooei and A. Salemi,Linear preservers of majorization, Iranian Journal of Mathematical Siences and Informatics, 6(2) (2011), 43-50.
[11] C. K. Li and E. Poon,Linear operators preserving directional majorization, Linear Algebra Appl., 325 (2001), 141-146.
[12] F. D. Martínez Pería, P. G. Massey, and L. E. Silvestre, Weak Matrix-Majorization, Linear Algebra Appl., 403(2005), 343-368.

[^0]: *Corresponding author
 Email address: f_khalooei@uk.ac.ir (Fatemeh Khalooei)

