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1. Introduction

Let M,,, be the algebra of all n X m real matrices, and the usual notation R" for n X 1 real

vectors. A matrix R = [r;;] € M, is called a row stochastic matrix if r;; > 0 and X}, ry = 1 for
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all i, j. For vectors X, Y € R", we say X is left (resp. right) matrix majorized by Y and write X <, Y
(resp. X <, Y) if for some row stochastic matrix R, X = RY (resp. X = YR). For more information
about right and left matrix majorization and some other majorizations, we refer to [1, 4, 5, 12].
Also for X, Y e R*, we write X ~, Y, if X <, Y <, X.

A linear operator 7: R? — R” is said to be a linear preserver of a given relation < if X < Y
on R?” implies that TX < TY on R". The linear preservers of <, and <, from R" to R" are fully
characterized in [6] and [7]. For more information about linear preservers of majorization we refer
the reader to [1, 2, 3, 11]. In [8], the authors studied the linear preservers of <, from R” to R”",
where p and n are not necessarily equal, and characterized the structure of these linear preservers
of <, for p < n < p(p —1). In [9], by a geometric approach one can see the characterization of
linear preservers of <, from R” to R" without any additional conditions on p and n. In [10], the
authors characterized all linear preservers of ~, from R? to R". Here we focus on this method and
we characterize all linear preservers of ~, from R” to R”, for p > 3.

We shall use the following conventions throughout the paper. Let T : R” — R” be a nonzero
linear operator and let [7'] = [#;;] denote the matrix representation of 7" with respect to the standard
bases {ej, e,,...,¢e,} of R” and {fi, f>,..., f,} of R". If p = 1, then all linear operators on R! are
preservers of ~,. Thus, we assume p > 2. Forevery i (i = 1,...,k) let A; be m; X p matrix. We use
the notation [A;/A,/ ... /A;] to denote the corresponding (m; + m; + - - - + my) X p matrix. Put

a:
b:

max{t; |1 <i<n,1<j<p},
min{t;; | 1 <i<n,1 <j<p} (1.1)

We also use the notation P for the permutation matrix such that P(e;) = e;11, 1 <i < p—1,
P(e,) = e;. Let I denote the p X p identity matrix, and let r, s € R be such that rs < 0. Define the
p(p — 1) x p matrix P,(r, s) = [P1/P2/ .../Py,-1] where P; = r[ + sP/, forall j(1<j<p-1).
It is clear that up to a row permutation the matrices #,(r, s) and $,(s, r) are equal. Also define
P,(r,0) :=rl, Py0,s) := sl and P,(0,0) as 1 X p zero matrix.

Throughout the paper, for a given vector x € R”, max x and min x denote the maximum and
minimum values of components of x, respectively.

Let T : R?> — R” be a linear operator and let [T] = [T,/ ... /T,], where T; = [t;, t;»], for every
i(1<i<n).Let

A = Conv({(t;1, ), (tin, 1), | < i < n}) C R?, (1.2)

where Conv(A) denotes the convex hull of a set A. Also, let C(T') denote the set of all corners of
A.
Now, we recall the characterization of linear preservers of <, from R” to R", beginning with p = 2.

Theorem 1.1. [9, Theorem 3.3] Let T : R?> — R" be a linear operator. Then, T is a linear
preserver of < if and only if P,(x, V) is a submatrix of [T] and xy < 0 for all (x,y) € C(T).

For the case p > 3 we first need some definitions.

Definition 1.2. Let 7: R” — R” be a linear operator. We denote by P; (resp. N;) the sum of the
nonnegative (resp. nonpositive) entries in the i row of [T]. If all the entries in the i’ row are
positive (resp. negative), we define N; = 0 (resp. P; = 0).
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Definition 1.3. Let 7 : R? — R” be a linear operator. Define

A Conv({(P;, N;), (N, P;)) : 1 <i<n}),
E(T): = {(P;,N,:(P;,N;)isacorner of A},

where P;, N; are as in Definition 1.2.

Theorem 1.4. [9, Theorem 4.6] Let T: R? — R", p > 3, and let E(T) be as in Definition 1.3.
Then T preserves <. if and only if P ,(a, B) is a submatrix of [T] for all (a,p) € E(T).

For X,Y € R?, we define X ~, ¥, when X <, Y <, X. To obtain our main result (a complete
characterization of linear preservers of ~, from R” to R"), we consider the case p > 3, and recall
the case p = 2 which is characterized in [10], as follows.

For x,y € R, define @,(x,y) = [ i i ],ifx # yand @(x, x) = [x x].

Theorem 1.5. [8 and 10, Theorem 2.6] Let T : R?> — R" be a linear operator. Then T is a linear
preserver of ~¢ if and only if Q(x, y) is a submatrix of [T], for all (x,y) € C(T), where C(T) denote
the set of all corners of A as in (1.2).

Obviously, if T: R” — R" is a linear preserver of <,, then T is a linear preserver of ~, . But
by the following example the converse is not true for p = 2.

Let[T]:[; g

preserver of <, .

] . Then T is a linear preserver of ~,, but by Theorem 1.1, T is not a linear

2. Linear Preservers of ~, on R?, p > 3

Lemma 2.1. Let x,y € R". Then the following assertions are true
(@) x<¢yifandonly if miny < minx < max x < max y.
(b) x ~¢yifand only if min x = miny and max x = maxy.

Proof. Let x = (x1,...,%,),y = (V1,...,y,) € R" and let x <, y. Therefore x = Ry for some n X n
row stochastic matrices R. It follows that x; € Conv({yy,...,y,}) forall i (1 < i < n) and hence
miny < minx < max x < maxy. Since x ~, y when x <, y <, x, (b) is a consequence of (a). ]

Lemma 2.2. Let T be a linear operator on R?. Let [T] = [T,/ .../T}] such that T; is a linear
preserver of ~¢, for all i (1 <i < k). Then T is a linear preserver of ~ .

Proof. Let x € R?, minT;x = @; and max T;x = 3;, for all i (1 < i < k). Then min 7x = min @; and
max 7x = max ;. Since Tx = [Tx/ ... /Tx], for all x € R”, T is a linear preserver of ~, . ]

Lemma 2.3. Let T be a linear operator on R?, and let p > 3. If [T] = Pp(a,p), f <0 < a, then
T is a linear preserver of ~; . In general, if

[T] = [Pplar,B)] - [Pplar. B, Bi <0< a;, Vi=1,....k

then T is a linear preserver of ~; .
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Proof. Let x = (x1,...,x,),y = (y1,...,y,) € R” and x ~, y. By Lemma 2.1, min x = miny and
max x = maxy. Letm = minx = miny and M = max x = max y. It is easy to show that am+8M <
ax; + fx;j, also am + M < ay; + By;, Vi # j€ {1,...,p}. Hence minTx = am + M = minTYy.
Similarly, max Tx = aM + fm = max Ty. Thus by Lemma 2.1, Tx ~, Ty. The second statement
is a consequence of Lemma 2.2. ]

Definition 2.4. Let 7 : R? — R” be a linear operator and let [T] = [T/ ... /T,]. Define
Q :=Conv({T; = (ti1,...,tip), 1 <i<n}) CRP.
Also, let C(T) be the set of all corners of Q.

Lemma 2.5. Let T : R? — R", p > 3, be a linear preserver of ~, and [T = [T,/ ... /T,], where
T: = (ti,to, ..., tip), for all i (1 < i < n). Suppose there exists i (1 < i < n) such that t; > 0, for all
l(A<I<p)orty<0,foralll(1 <1< p).ThenT; ¢ C(T).

Proof. Without loss of generality we can assume [7'] has no identical rows. Since T is a linear
preserver of ~, if and only if 5T is a linear preserver of ~, for all n # 0, we can assume that there
exists some i such that 7; € C(T') and t;; > O for all / (1 < [ < p), and reach a contradiction. Since
T; € C(T), there exists x = (xi,...,x,)" € R” such that

ixy+ipxy+ -+ lipx, <tjpxp+ipxy+---+1Xy, \7'] # 1. (21)

Let m = minx and M = max x. Assuming x; = m and x, = M, will cause no loss of generality.
Also, without loss of generality, we can assume m # M and there exists some 1 < k < n such that
m < x; < M, because by (2.1) we can choose g, > 0 small enough so that for all 0 < & < &,

tim—g)+tpxy + -+ ti,(M+¢e) <tjm—g) +tpxy +---+tj,(M+e¢), Vj#i.

Fix 0 < &€ < gy and define x, = (m—¢&,x2,...,x,1, M+ &) € R?, thusminTx, = t;(m—g)+--- +
tiy(MM + &) and minx, = m —& # M + &€ = max x,. Suppose m # M and m < x; < M for some
1 < k < n. Choose @ > 0 small enough such that m < x; + @ < M and

fixp + o+ (et @) + -+ lpx, <tjpXp+ o+t + @) + -+ 1px,, Vi#E L
Define y = (x,..., X + @, ..., x,)". Since t; > 0,
minTx = tjjx; + -+ tipx, <tygx; +--- + g + @)+ +t,x, =minTy.
But y ~; x, a contradiction. L]

Let 7 : R? — R" be a linear operator. Without loss of generality, we assume that [T'] =
[T?/T"]T], where all entries of T” (resp. T") are positive (resp. negative) and each row of T has
nonnegative and nonpositive entries.

Corollary 2.6. Let T and T be as above, then T is a linear preserver of ~; if and only if C(T) =
C(T)and T is a linear preserver of ~; .
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Proof. Let T be a linear preserver of ~,. By Lemma 2.5, the rows of 77 and 7" can not be in
C(T), hence C(T) = C(T). Thus if x € R”, min7x = min Tx and max T'x = max T x. Therefore
T is a linear preserver of ~, . Conversely, let C(T) = C(T) and suppose T is a linear preserver of
~¢ . Then max Tx = max Tx and min 7x = min 7x, for all x € R”. Hence T is a linear preserver

of ~e. ]
Lemma 2.7. Let p > 3 and let T : R? — R", be a linear preserver of ~, . Let [T] = [T/ ---/T,],
where T; = (ti1, ..., 1), for every i (1 < i < n). Then'b < Zle ty < a, for all i, where a and b are
as in (1).

Proof. Without loss of generality we can assume [7] has no identical rows. If i, j € {1,..., p},
we have e; ~; e; and so Te; ~; Te; which implies that maxTe; = maxTe; and minTe; =
minTe;. Hence maxTe; = a and minTe; = b, for all i € {1,...,n}. Since Zje] ej ~¢ ey, for all

Jc{l,...,p}, minT (Y, e;) = minTe; = b and max7T(};,e;) = maxTe; = a. Therefore
if| J|=p—1Tthenb < },,f; < a, forali(l < i < n). Which implies, if Zle t; > a
(resp. Zle ty < b) for somei (1 <i<n),thent; >0 (resp. t; < 0)forall [ (1 << p). Without
loss of generality let ¢; > O forall [ (1 <[ < p) and Zz , tu > a. There exists k (1 < k < n) such
that t; > Oforall/ (1 </ < n)and Zl lsz max 21 ti o 1 <@ < n}. Itis clear that Zl (> a
and max Te = 21:1 tu, where e = (1,...,1)" € R”. Since [T] has no identical rows, there exists

some € > 0 and some x € R” with max x = 1 + € and min x > 1 such that
Xy + ...+ Xy > Xy + .o 1ipXp, Vi +# k.

Hence T} € C(T), a contradiction. O]

Since T : R? — R"is a linear preserver of ~, if and only if 7 is so for all nonzero real number
1, we can assume a > 0 and | b |< a.

Corollary 2.8. Let T : R? — R", p > 3, be a linear preserver of ~; . Then p < n, moreover, if a
row of [T] contains an entry equal to a (resp. b), then all other entries of that row are nonpositive
(resp. nonnegative).

Proof. As in the proof of Lemma 2.7, maxTe; = a and minTe; = b, for all i € {1,...,n}.
Therefore every column of [7'] contains at least one entry equal to a and at least one entry equal
to b. Also by Lemma 2.7, since b < Zle ty <a,foralli(l <i< p),every row of [T] has at most
one entry equal to a and at most one entry equal to b. Now, a > 0, since every column of [7'] has
at least one entry equal to a and every row of [T] has at most one entry equal to a, it follows that
p < n. The second statement is a consequence of Lemma 2.7. ]

Theorem 2.9. Let T : R? — R" be a linear preserver of ~¢, and let E(T) be as in Definition 1.3.
If (P,,N,) € E(T) for some r (1 < r < n) then there exists k € [r] ={1 <i<n:P;=P,N;=N,}
such that T, € C(T).

Proof. Let (P,,N,) € E(T) for some r (1 < r < n). Then there exist m < M such that

Pum+N,M < Pym+N;M, j ¢ [r]. 2.2)
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Now we have the following cases for the entries of the 7 row of [T].

Case 1. Ift,, >0 forall /(1 <[ < p), then P, > 0 and N, = 0, which together with (2.2) implies
that P.m < Pym + N;M, j & [r].

It is easy to check that

Pm<Pm+NM<Pm+Nm=(P;+N)m, jélrl (2.3)

Thus P,m < (P; + N;)m and hence min T'(me) = P,m. By Lemma 2.5, there exists k # r such that
P.m = min T (me) = lezl tum = Pym + Nym, and T, € C(T). By (2.3) k € [r]. Thus there exists
k € [r] such that T}, € C(T).

Case 2. If 1,; < O for some i (1 < i < p) and ¢,; > O for some j # i, (1 < j < p). Define x € R?
such that min x = m and max x = M. Then there exists k (1 < k < n), such that min7x = Zle tX;.
Hence (2.2) implies

P
Pm+NM<Pm+ NM < Ztk,x, = min 7 x.
=1

Definey € RP by y, = mift, > 0and y, = M if t,, < 0. Obviously y ~, x. Since T is a linear
preserver of ~;, Ty ~, Tx which implies that

P
Pum+ N.M < Z tux; = min Tx = min Ty < P,m + N, M.
=1

Therefore by (2.2) Pim + NyM = P,m + N.M. Thus k € [r] and minTx = Zzp:1 tyx;. Hence
Ty € C(T) for some k € [r].

Case 3. Ifr, <Oforall /(1 <[ < p)then N, < 0 and P, = 0, which together with (2.2) implies
that N.M < P;m + N;M, j ¢ [r]. Like the Case 1

NM < Pim+N,M < P;M+N;M=(P;+N)M, j¢I[rl. (2.4)

Therefore min 7(Me) = N.M. By Lemma 2.5, there exists k # r such that N,M = minT(Me) =
Zle tuM = PiM + NyM, and T, € C(T). By (2.4) k € [r]. Thus there exists k € [r] such that
T, € C(T).

Case 4. If t,; < O forsomei (1 <i< p)andt,; > 0forsome j#i(l < j< p). We can prove it the
same as Case 2 and conclude that there exists k € [r] such that T, € C(T). ]

Corollary 2.10. Let T : R? — R”" be a linear preserver of ~;, . If 1 < r < n and for some m < M,
P.m+ N,.M < Pim+ N;M, for all j & [r]. Then there exists k € [r] and x € R” with min x = m and
max x = M such that minTx = Pym + N.M = Y7 | tyx;.

Proof. Consider four Cases of the proof of Theorem 2.9. As we see in the proof of Case 1 T} €
C(T), k # rand k € [r]. By Lemma 2.5 there exists / (1 <[ < p) such that #; = 0. Define x € R”
such that x; = M and x; = m for all i # [. There exists j (1 < j < p) such that min7x = Zf:] 11X
Hence P,m + N,M < P;m+ N;M < ¥V t;x;, < min Tx. Since (Tx); = Pem + NyM = P.m + N, M,
minTx = P,m + N, M. By a similar proof, the statement holds in Case 3. As in the proof of Cases
2 and 4 of Theorem 2.9, the statement is immediate. ]
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Theorem 2.11. Let T : R? — R" (p > 3) be a linear operator. T preserves ~, if and only if
P,(P,N) is a submatrix of [T] for all (P,N) € E(T).

Proof. To prove necessity, let T be a preserver of ~, and let (P,, N,) € E(T). Then there exists
m < M such that P,m + N.M < P;m + N;M for all j, j ¢ [r]. Choose & small enough so that for
all 0 < & < g,

P.(m—-ge)+NM+¢e)<Pim—-e)+N;(M+e¢), Vjé¢lr]

Let0 < & < g, be fixed and let x, = (xi,...,x,)" € R” withmin x, = m—¢g and max x, = M +e.
By Corollary 2.10 there exists k € [r] such that min 7'(x,) = Zzp:1 tux; = P.(m—&)+ N.(M + ¢g).
Fix i # j € {1,...,p} and define y, = (y1,...,y,) € R? suchthaty, = m—¢,y;, = M + ¢
andy, =, m—-e<aq < M+eg | #i,j Since x, ~; ys, Tx; ~, Ty,, there exists s € [r]
such that min T'(y;) = ti(m — &) + t,;(M + &) + Xy jtaq; = P(m — &) + N(M + &) = min T (x,).
Since 0 < e < ggandm —e < a; < M + &, # i,j are arbitrary and the number of rows of
[T'] is finite, there exists ¢ € [r] such that 7, = P, and 7,; = N, and 1, = O, for all [, [ # i, .
Also, since i, j € {l,...,n} are arbitrary, [T] has P,(P,, N,) as a submatrix. For sufficiency,
let E(T) = {(Pi,, Ni)),...,(P;,N;)}. Then up to a row permutation [T'] = [T/Q], where T is the
operator on R?” such that T = [P,(Pi,,Ni)/ ... /PP, N;)]. By Lemma 2.3, T is a linear preserver
of ~, . To prove T is a linear preserver of ~,, we are going to show that min 7x = min Tx and
max Tx = max T'x, for all x € R”. Let x € R?, obviously min 7x < min Tx, it is enough to prove
min Tx < min Tx. If min T(x) = Zle tyx;, for some i, T; € Q. Let m = minx and M = max x,
therefore Pim + N;M < Y7, tyx;. There is 1 < r < n such that (P,,N,) € E(T) and P,m + N.M <
P;m + N;M, because (P;, N;) € A and A is convex. By Corollary 2.10 min Tx = P,m + N,M. Then
min7x < min Tx and hence min Tx = min 7'x. Similarly max Tx = max Tx and therefore T is a
linear preserver of ~, . L

Corollary 2.12. Let T: R? — R", p > 3 be a linear operator then the following assertions are
equivalent

(@) T preserves <,
(b) T preserves ~y,
(¢) Pp(P,N) is a submatrix of [T] for all (P,N) € E(T).

Problem. [7] characterizes all linear preservers of <, from M, to M,,, and also from R" to R".
It would be nice to characterize all linear preservers of <, (or ~, ) from R” to R".
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