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Abstract
For vectors X,Y ∈ Rn, it is said that X is left matrix majorized
by Y if for some row stochastic matrix R; X = RY. The relation
X ∼` Y, is defined as follows: X ∼` Y if and only if X is left
matrix majorized by Y and Y is left matrix majorized by X. A
linear operator T : Rp → Rn is said to be a linear preserver of
a given relation ≺ if X ≺ Y on Rp implies that T X ≺ TY on
Rn. The linear preservers of ≺` from Rp to Rn are characterized
before. In this parer we characterize the linear preservers of ∼`
from Rp to Rn, p ≥ 3. In fact we show that the linear preservers
of ∼` from Rp to Rn are the same as the linear preservers of ≺`
from Rp to Rn, but for p = 2, they are not the same.
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1. Introduction

Let Mnm be the algebra of all n × m real matrices, and the usual notation Rn for n × 1 real
vectors. A matrix R = [ri j] ∈ Mnm is called a row stochastic matrix if ri j ≥ 0 and Σm

k=1rik = 1 for
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all i, j. For vectors X,Y ∈ Rn, we say X is left (resp. right) matrix majorized by Y and write X ≺` Y
(resp. X ≺r Y) if for some row stochastic matrix R, X = RY (resp. X = YR). For more information
about right and left matrix majorization and some other majorizations, we refer to [1, 4, 5, 12].
Also for X,Y ∈ Rn, we write X ∼` Y, if X ≺` Y ≺` X.

A linear operator T : Rp → Rn is said to be a linear preserver of a given relation ≺ if X ≺ Y
on Rp implies that T X ≺ TY on Rn. The linear preservers of ≺` and ≺r from Rn to Rn are fully
characterized in [6] and [7]. For more information about linear preservers of majorization we refer
the reader to [1, 2, 3, 11]. In [8], the authors studied the linear preservers of ≺` from Rp to Rn,
where p and n are not necessarily equal, and characterized the structure of these linear preservers
of ≺` for p ≤ n ≤ p(p − 1). In [9], by a geometric approach one can see the characterization of
linear preservers of ≺` from Rp to Rn without any additional conditions on p and n. In [10], the
authors characterized all linear preservers of ∼` from R2 to Rn. Here we focus on this method and
we characterize all linear preservers of ∼` from Rp to Rn, for p ≥ 3.

We shall use the following conventions throughout the paper. Let T : Rp → Rn be a nonzero
linear operator and let [T ] = [ti j] denote the matrix representation of T with respect to the standard
bases {e1, e2, . . . , ep} of Rp and { f1, f2, . . . , fn} of Rn. If p = 1, then all linear operators on R1 are
preservers of ∼`. Thus, we assume p ≥ 2. For every i (i = 1, . . . , k) let Ai be mi × p matrix. We use
the notation [A1/A2/ . . . /Ak] to denote the corresponding (m1 + m2 + · · · + mk) × p matrix. Put

a : = max{ti j | 1 ≤ i ≤ n, 1 ≤ j ≤ p},
b : = min{ti j | 1 ≤ i ≤ n, 1 ≤ j ≤ p}. (1.1)

We also use the notation P for the permutation matrix such that P(ei) = ei+1, 1 ≤ i ≤ p − 1,
P(ep) = e1. Let I denote the p × p identity matrix, and let r, s ∈ R be such that rs < 0. Define the
p(p − 1) × p matrix Pp(r, s) = [P1/P2/ . . . /Pp−1] where P j = rI + sP j, for all j (1 ≤ j ≤ p − 1).
It is clear that up to a row permutation the matrices Pp(r, s) and Pp(s, r) are equal. Also define
Pp(r, 0) := rI, Pp(0, s) := sI and Pp(0, 0) as 1 × p zero matrix.

Throughout the paper, for a given vector x ∈ Rn, max x and min x denote the maximum and
minimum values of components of x, respectively.

Let T : R2 → Rn be a linear operator and let [T ] = [T1/ . . . /Tn], where Ti = [ti1, ti2], for every
i (1 ≤ i ≤ n). Let

∆ := Conv({(ti1, ti2), (ti2, ti1), 1 ≤ i ≤ n}) ⊆ R2, (1.2)

where Conv(A) denotes the convex hull of a set A. Also, let C(T ) denote the set of all corners of
∆.
Now, we recall the characterization of linear preservers of ≺` from Rp to Rn, beginning with p = 2.

Theorem 1.1. [9,Theorem 3.3] Let T : R2 → Rn be a linear operator. Then, T is a linear
preserver of ≺` if and only if P2(x, y) is a submatrix of [T ] and xy ≤ 0 for all (x, y) ∈ C(T ).

For the case p ≥ 3 we first need some definitions.

Definition 1.2. Let T : Rp → Rn be a linear operator. We denote by Pi (resp. Ni) the sum of the
nonnegative (resp. nonpositive) entries in the ith row of [T ]. If all the entries in the ith row are
positive (resp. negative), we define Ni = 0 (resp. Pi = 0).
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Definition 1.3. Let T : Rp → Rn be a linear operator. Define

∆ : = Conv({(Pi,Ni), (Ni, Pi) : 1 ≤ i ≤ n}),
E(T ) : = {(Pi,Ni) : (Pi,Ni) is a corner of ∆},

where Pi,Ni are as in Definition 1.2.

Theorem 1.4. [9,Theorem 4.6] Let T : Rp → Rn, p ≥ 3, and let E(T ) be as in Definition 1.3.
Then T preserves ≺` if and only if Pp(α, β) is a submatrix of [T ] for all (α, β) ∈ E(T ).

For X,Y ∈ Rp, we define X ∼` Y, when X ≺` Y ≺` X. To obtain our main result (a complete
characterization of linear preservers of ∼` from Rp to Rn), we consider the case p ≥ 3, and recall
the case p = 2 which is characterized in [10], as follows.

For x, y ∈ R, define Q2(x, y) =

[
x y
y x

]
, if x , y and Q2(x, x) = [x x].

Theorem 1.5. [8 and 10, Theorem 2.6] Let T : R2 → Rn be a linear operator. Then T is a linear
preserver of ∼` if and only ifQ2(x, y) is a submatrix of [T ], for all (x, y) ∈ C(T ), where C(T ) denote
the set of all corners of ∆ as in (1.2).

Obviously, if T : Rp → Rn is a linear preserver of ≺`, then T is a linear preserver of ∼` . But
by the following example the converse is not true for p = 2.

Let [T ] =

[
3 2
2 3

]
. Then T is a linear preserver of ∼`, but by Theorem 1.1, T is not a linear

preserver of ≺` .

2. Linear Preservers of ∼` on Rp, p ≥ 3

Lemma 2.1. Let x, y ∈ Rn. Then the following assertions are true

(a) x ≺` y if and only if min y ≤ min x ≤ max x ≤ max y.

(b) x ∼` y if and only if min x = min y and max x = max y.

Proof. Let x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn and let x ≺` y. Therefore x = Ry for some n × n
row stochastic matrices R. It follows that xi ∈ Conv({y1, . . . , yn}) for all i (1 ≤ i ≤ n) and hence
min y ≤ min x ≤ max x ≤ max y. Since x ∼` y when x ≺` y ≺` x, (b) is a consequence of (a).

Lemma 2.2. Let T be a linear operator on Rp. Let [T ] = [T1/ . . . /Tk] such that Ti is a linear
preserver of ∼`, for all i (1 ≤ i ≤ k). Then T is a linear preserver of ∼` .

Proof. Let x ∈ Rp, min Tix = αi and max Tix = βi, for all i (1 ≤ i ≤ k). Then min T x = minαi and
max T x = max βi. Since T x = [T1x/ . . . /Tkx], for all x ∈ Rp, T is a linear preserver of ∼` .

Lemma 2.3. Let T be a linear operator on Rp, and let p ≥ 3. If [T ] = Pp(α, β), β ≤ 0 ≤ α, then
T is a linear preserver of ∼` . In general, if

[T ] = [Pp(α1, β1)/ · · · /Pp(αk, βk)], βi ≤ 0 ≤ αi, ∀i = 1, . . . , k

then T is a linear preserver of ∼` .
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Proof. Let x = (x1, . . . , xp)t, y = (y1, . . . , yp)t ∈ Rp and x ∼` y. By Lemma 2.1, min x = min y and
max x = max y. Let m = min x = min y and M = max x = max y. It is easy to show that αm+βM ≤
αxi + βx j, also αm + βM ≤ αyi + βy j, ∀i , j ∈ {1, . . . , p}. Hence min T x = αm + βM = min Ty.
Similarly, max T x = αM + βm = max Ty. Thus by Lemma 2.1, T x ∼` Ty. The second statement
is a consequence of Lemma 2.2.

Definition 2.4. Let T : Rp → Rn be a linear operator and let [T ] = [T1/ . . . /Tn]. Define

Ω := Conv({Ti = (ti1, . . . , tip), 1 ≤ i ≤ n}) ⊆ Rp.

Also, let C(T ) be the set of all corners of Ω.

Lemma 2.5. Let T : Rp → Rn, p ≥ 3, be a linear preserver of ∼` and [T ] = [T1/ . . . /Tn], where
Ti = (ti1, ti2, . . . , tip), for all i (1 ≤ i ≤ n). Suppose there exists i (1 ≤ i ≤ n) such that til > 0, for all
l (1 ≤ l ≤ p) or til < 0, for all l (1 ≤ l ≤ p). Then Ti < C(T ).

Proof. Without loss of generality we can assume [T ] has no identical rows. Since T is a linear
preserver of ∼` if and only if ηT is a linear preserver of ∼` for all η , 0, we can assume that there
exists some i such that Ti ∈ C(T ) and til > 0 for all l (1 ≤ l ≤ p), and reach a contradiction. Since
Ti ∈ C(T ), there exists x = (x1, . . . , xp)t ∈ Rp such that

ti1x1 + ti2x2 + · · · + tipxp < t j1x1 + t j2x2 + · · · + t jpxp, ∀ j , i. (2.1)

Let m = min x and M = max x. Assuming x1 = m and xp = M, will cause no loss of generality.
Also, without loss of generality, we can assume m , M and there exists some 1 < k < n such that
m < xk < M, because by (2.1) we can choose ε0 > 0 small enough so that for all 0 < ε ≤ ε0,

ti1(m − ε) + ti2x2 + · · · + tip(M + ε) < t j1(m − ε) + t j2x2 + · · · + t jp(M + ε), ∀ j , i.

Fix 0 < ε ≤ ε0 and define xε = (m− ε, x2, . . . , xp−1,M + ε)t ∈ Rp, thus min T xε = ti1(m− ε) + · · ·+

tip(M + ε) and min xε = m − ε , M + ε = max xε. Suppose m , M and m < xk < M for some
1 < k < n. Choose α > 0 small enough such that m < xk + α < M and

ti1x1 + · · · + tik(xk + α) + · · · + tipxp < t j1x1 + · · · + t jk(xk + α) + · · · + t jpxp, ∀ j , i.

Define y = (x1, . . . , xk + α, . . . , xp)t. Since tik > 0,

min T x = ti1x1 + · · · + tipxp < ti1x1 + · · · + tik(xk + α) + · · · + tipxp = min Ty.

But y ∼` x, a contradiction.

Let T : Rp → Rn be a linear operator. Without loss of generality, we assume that [T ] =

[T p/T n/T̃ ], where all entries of T p (resp. T n) are positive (resp. negative) and each row of T̃ has
nonnegative and nonpositive entries.

Corollary 2.6. Let T and T̃ be as above, then T is a linear preserver of ∼` if and only if C(T ) =

C(T̃ ) and T̃ is a linear preserver of ∼` .
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Proof. Let T be a linear preserver of ∼`. By Lemma 2.5, the rows of T p and T n can not be in
C(T ), hence C(T ) = C(T̃ ). Thus if x ∈ Rp, min T x = min T̃ x and max T x = max T̃ x. Therefore
T̃ is a linear preserver of ∼` . Conversely, let C(T ) = C(T̃ ), and suppose T̃ is a linear preserver of
∼` . Then max T x = max T̃ x and min T x = min T̃ x, for all x ∈ Rp. Hence T is a linear preserver
of ∼`.

Lemma 2.7. Let p ≥ 3 and let T : Rp → Rn, be a linear preserver of ∼` . Let [T ] = [T1/ · · · /Tn],
where Ti = (ti1, . . . , tip)t, for every i (1 ≤ i ≤ n). Then b ≤

∑p
l=1 til ≤ a, for all i, where a and b are

as in (1).

Proof. Without loss of generality we can assume [T ] has no identical rows. If i, j ∈ {1, . . . , p},
we have ei ∼` e j and so Tei ∼` Te j which implies that max Tei = max Te j and min Tei =

min Te j. Hence max Tei = a and min Tei = b, for all i ∈ {1, . . . , n}. Since
∑

j∈J e j ∼` e1, for all
J ⊂ {1, . . . , p}, min T (

∑
j∈J e j) = min Te1 = b and max T (

∑
j∈J e j) = max Te1 = a. Therefore

if | J |= p − 1 then b ≤
∑

j∈J til ≤ a, for all i (1 ≤ i ≤ n). Which implies, if
∑p

l=1 til > a
(resp.

∑p
l=1 til < b) for some i (1 ≤ i ≤ n), then til > 0 (resp. til < 0) for all l (1 ≤ l ≤ p). Without

loss of generality let til > 0 for all l (1 ≤ l ≤ p) and
∑p

l=1 til > a. There exists k (1 ≤ k ≤ n) such
that tkl > 0 for all l (1 ≤ l ≤ n) and

∑p
l=1 tkl = max{

∑p
l=1 til : 1 ≤ i ≤ n}. It is clear that

∑p
l=1 tkl > a

and max Te =
∑p

l=1 tkl, where e = (1, . . . , 1)t ∈ Rp. Since [T ] has no identical rows, there exists
some ε > 0 and some x ∈ Rp with max x = 1 + ε and min x ≥ 1 such that

tk1x1 + . . . + tkpxp > ti1x1 + . . . + tipxp, ∀i , k.

Hence Tk ∈ C(T ), a contradiction.

Since T : Rp → Rn is a linear preserver of ∼` if and only if ηT is so for all nonzero real number
η, we can assume a > 0 and | b |≤ a.

Corollary 2.8. Let T : Rp → Rn, p ≥ 3, be a linear preserver of ∼` . Then p ≤ n, moreover, if a
row of [T ] contains an entry equal to a (resp. b), then all other entries of that row are nonpositive
(resp. nonnegative).

Proof. As in the proof of Lemma 2.7, max Tei = a and min Tei = b, for all i ∈ {1, . . . , n}.
Therefore every column of [T ] contains at least one entry equal to a and at least one entry equal
to b. Also by Lemma 2.7, since b ≤

∑p
l=1 til ≤ a, for all i (1 ≤ i ≤ p), every row of [T ] has at most

one entry equal to a and at most one entry equal to b. Now, a > 0, since every column of [T ] has
at least one entry equal to a and every row of [T ] has at most one entry equal to a, it follows that
p ≤ n. The second statement is a consequence of Lemma 2.7.

Theorem 2.9. Let T : Rp → Rn be a linear preserver of ∼`, and let E(T ) be as in Definition 1.3.
If (Pr,Nr) ∈ E(T ) for some r (1 ≤ r ≤ n) then there exists k ∈ [r] = {1 ≤ i ≤ n : Pi = Pr,Ni = Nr}

such that Tk ∈ C(T ).

Proof. Let (Pr,Nr) ∈ E(T ) for some r (1 ≤ r ≤ n). Then there exist m ≤ M such that

Prm + Nr M < P jm + N jM, j < [r]. (2.2)



F. Khalooei / Wavelets and Linear Algebra 1 (2014) 43-50 48

Now we have the following cases for the entries of the rth row of [T ].
Case 1. If trl > 0 for all l (1 ≤ l ≤ p), then Pr > 0 and Nr = 0, which together with (2.2) implies
that Prm < P jm + N jM, j < [r].
It is easy to check that

Prm < P jm + N jM ≤ P jm + N jm = (P j + N j)m, j < [r]. (2.3)

Thus Prm < (P j + N j)m and hence min T (me) = Prm. By Lemma 2.5, there exists k , r such that
Prm = min T (me) =

∑p
l=1 tklm = Pkm + Nkm, and Tk ∈ C(T ). By (2.3) k ∈ [r]. Thus there exists

k ∈ [r] such that Tk ∈ C(T ).
Case 2. If tri ≤ 0 for some i (1 ≤ i ≤ p) and tr j > 0 for some j , i, (1 ≤ j ≤ p). Define x ∈ Rp

such that min x = m and max x = M. Then there exists k (1 ≤ k ≤ n), such that min T x =
∑p

l=1 tklxl.
Hence (2.2) implies

Prm + Nr M ≤ Pkm + NkM ≤
p∑

l=1

tklxl = min T x.

Define y ∈ Rp by yl = m if trl > 0 and yl = M if trl ≤ 0. Obviously y ∼` x. Since T is a linear
preserver of ∼`, Ty ∼` T x which implies that

Pkm + NkM ≤
p∑

l=1

tklxl = min T x = min Ty ≤ Prm + Nr M.

Therefore by (2.2) Pkm + NkM = Prm + Nr M. Thus k ∈ [r] and min T x =
∑p

l=1 tklxl. Hence
Tk ∈ C(T ) for some k ∈ [r].
Case 3. If trl < 0 for all l (1 ≤ l ≤ p) then Nr < 0 and Pr = 0, which together with (2.2) implies
that Nr M < P jm + N jM, j < [r]. Like the Case 1

Nr M < P jm + N jM ≤ P jM + N jM = (P j + N j)M, j < [r]. (2.4)

Therefore min T (Me) = Nr M. By Lemma 2.5, there exists k , r such that Nr M = min T (Me) =∑p
l=1 tklM = PkM + NkM, and Tk ∈ C(T ). By (2.4) k ∈ [r]. Thus there exists k ∈ [r] such that

Tk ∈ C(T ).
Case 4. If tri < 0 for some i (1 ≤ i ≤ p) and tr j ≥ 0 for some j , i (1 ≤ j ≤ p). We can prove it the
same as Case 2 and conclude that there exists k ∈ [r] such that Tk ∈ C(T ).

Corollary 2.10. Let T : Rp → Rn be a linear preserver of ∼` . If 1 ≤ r ≤ n and for some m ≤ M,
Prm + Nr M < P jm + N jM, for all j < [r]. Then there exists k ∈ [r] and x ∈ Rp with min x = m and
max x = M such that min T x = Prm + Nr M =

∑p
l=1 tklxl.

Proof. Consider four Cases of the proof of Theorem 2.9. As we see in the proof of Case 1 Tk ∈

C(T ), k , r and k ∈ [r]. By Lemma 2.5 there exists l (1 ≤ l ≤ p) such that tkl = 0. Define x ∈ Rp

such that xl = M and xi = m for all i , l. There exists j (1 ≤ j ≤ p) such that min T x =
∑p

l=1 t jlxl.
Hence Prm + Nr M ≤ P jm + N jM ≤

∑p
l=1 t jlxl ≤ min T x. Since (T x)k = Pkm + NkM = Prm + Nr M,

min T x = Prm + Nr M. By a similar proof, the statement holds in Case 3. As in the proof of Cases
2 and 4 of Theorem 2.9, the statement is immediate.
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Theorem 2.11. Let T : Rp → Rn (p ≥ 3) be a linear operator. T preserves ∼` if and only if
Pp(P,N) is a submatrix of [T ] for all (P,N) ∈ E(T ).

Proof. To prove necessity, let T be a preserver of ∼` and let (Pr,Nr) ∈ E(T ). Then there exists
m ≤ M such that Prm + Nr M < P jm + N jM for all j, j < [r]. Choose ε0 small enough so that for
all 0 < ε < ε0,

Pr(m − ε) + Nr(M + ε) < P j(m − ε) + N j(M + ε), ∀ j < [r].

Let 0 < ε < ε0, be fixed and let xε = (x1, . . . , xp)t ∈ Rp with min xε = m−ε and max xε = M+ε.
By Corollary 2.10 there exists k ∈ [r] such that min T (xε) =

∑p
l=1 tklxl = Pr(m − ε) + Nr(M + ε).

Fix i , j ∈ {1, . . . , p} and define yε = (y1, . . . , yp)t ∈ Rp such that yi = m − ε, y j = M + ε
and yl = αl, m − ε < αl < M + ε, l , i, j. Since xε ∼` yε, T xε ∼` Tyε, there exists s ∈ [r]
such that min T (yε) = tsi(m − ε) + ts j(M + ε) +

∑
l,i, j tslαl = Pr(m − ε) + Nr(M + ε) = min T (xε).

Since 0 < ε < ε0 and m − ε ≤ αl ≤ M + ε, l , i, j are arbitrary and the number of rows of
[T ] is finite, there exists q ∈ [r] such that tqi = Pr and tq j = Nr and tql = 0, for all l, l , i, j.
Also, since i, j ∈ {1, . . . , n} are arbitrary, [T ] has Pp(Pr,Nr) as a submatrix. For sufficiency,
let E(T ) = {(Pi1 ,Ni1), . . . , (Pik ,Nik)}. Then up to a row permutation [T ] = [T̂/Q], where T̂ is the
operator on Rp such that T̂ = [Pp(Pi1 ,Ni1)/ . . . /Pp(Pik ,Nik)].By Lemma 2.3, T̂ is a linear preserver
of ∼` . To prove T is a linear preserver of ∼`, we are going to show that min T x = min T̂ x and
max T x = max T̂ x, for all x ∈ Rp. Let x ∈ Rp, obviously min T x ≤ min T̂ x, it is enough to prove
min T̂ x ≤ min T x. If min T (x) =

∑p
l=1 tilxl, for some i, Ti ∈ Q. Let m = min x and M = max x,

therefore Pim + NiM ≤
∑p

l=1 tilxl. There is 1 ≤ r ≤ n such that (Pr,Nr) ∈ E(T ) and Prm + Nr M ≤
Pim + NiM, because (Pi,Ni) ∈ ∆ and ∆ is convex. By Corollary 2.10 min T x = Prm + Nr M. Then
min T̂ x ≤ min T x and hence min T̂ x = min T x. Similarly max T̂ x = max T x and therefore T is a
linear preserver of ∼` .

Corollary 2.12. Let T : Rp → Rn, p ≥ 3 be a linear operator then the following assertions are
equivalent

(a) T preserves ≺`,

(b) T preserves ∼`,

(c) Pp(P,N) is a submatrix of [T ] for all (P,N) ∈ E(T ).

Problem. [7] characterizes all linear preservers of ≺r from Mn to Mn, and also from Rn to Rn.
It would be nice to characterize all linear preservers of ≺r (or ∼r ) from Rp to Rn.
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