

Linear preservers of two-sided matrix majorization

Fatemeh Khalooei^{a,*}

^aDepartment of Mathmatics, Faculty of Mathmatics, Shahid Bahonar University of Kerman, Kerman, Islamic Republic of Iran

ARTICLE INFO

Article history: Received 13 August 2013 Accepted 28 April 2014 Available online 1 July 2014 Communicated by by Abbas Salemi

Keywords:

Linear preservers Matrix majorization Row stochastic matrix

2000 MSC: 15A04 15A21

Abstract

For vectors $X, Y \in \mathbb{R}^n$, it is said that X is left matrix majorized
by <i>Y</i> if for some row stochastic matrix <i>R</i> ; $X = RY$. The relation
$X \sim_{\ell} Y$, is defined as follows: $X \sim_{\ell} Y$ if and only if X is left
matrix majorized by Y and Y is left matrix majorized by X . A
linear operator $T \colon \mathbb{R}^p \to \mathbb{R}^n$ is said to be a linear preserver of
a given relation \prec if $X \prec Y$ on \mathbb{R}^p implies that $TX \prec TY$ on
\mathbb{R}^n . The linear preservers of \prec_{ℓ} from \mathbb{R}^p to \mathbb{R}^n are characterized
before. In this parer we characterize the linear preservers of \sim_{ℓ}
from \mathbb{R}^p to \mathbb{R}^n , $p \ge 3$. In fact we show that the linear preservers
of \sim_{ℓ} from \mathbb{R}^p to \mathbb{R}^n are the same as the linear preservers of \prec_{ℓ}
from \mathbb{R}^p to \mathbb{R}^n , but for $p = 2$, they are not the same.

© (2014) Wavelets and Linear Algebra

1. Introduction

Let M_{nm} be the algebra of all $n \times m$ real matrices, and the usual notation \mathbb{R}^n for $n \times 1$ real vectors. A matrix $R = [r_{ij}] \in M_{nm}$ is called a *row stochastic* matrix if $r_{ij} \ge 0$ and $\sum_{k=1}^{m} r_{ik} = 1$ for

© (2014) Wavelets and Linear Algebra

^{*}Corresponding author

Email address: f_khalooei@uk.ac.ir (Fatemeh Khalooei)

all *i*, *j*. For vectors $X, Y \in \mathbb{R}^n$, we say *X* is left (resp. right) matrix majorized by *Y* and write $X \prec_{\ell} Y$ (resp. $X \prec_r Y$) if for some row stochastic matrix *R*, X = RY (resp. X = YR). For more information about right and left matrix majorization and some other majorizations, we refer to [1, 4, 5, 12]. Also for $X, Y \in \mathbb{R}^n$, we write $X \sim_{\ell} Y$, if $X \prec_{\ell} Y \prec_{\ell} X$.

A linear operator $T: \mathbb{R}^p \to \mathbb{R}^n$ is said to be a linear preserver of a given relation \prec if $X \prec Y$ on \mathbb{R}^p implies that $TX \prec TY$ on \mathbb{R}^n . The linear preservers of \prec_{ℓ} and \prec_r from \mathbb{R}^n to \mathbb{R}^n are fully characterized in [6] and [7]. For more information about linear preservers of majorization we refer the reader to [1, 2, 3, 11]. In [8], the authors studied the linear preservers of \prec_{ℓ} from \mathbb{R}^p to \mathbb{R}^n , where *p* and *n* are not necessarily equal, and characterized the structure of these linear preservers of \prec_{ℓ} for $p \leq n \leq p(p-1)$. In [9], by a geometric approach one can see the characterization of linear preservers of \prec_{ℓ} from \mathbb{R}^p to \mathbb{R}^n without any additional conditions on *p* and *n*. In [10], the authors characterized all linear preservers of \sim_{ℓ} from \mathbb{R}^p to \mathbb{R}^n , for $p \geq 3$.

We shall use the following conventions throughout the paper. Let $T : \mathbb{R}^p \to \mathbb{R}^n$ be a nonzero linear operator and let $[T] = [t_{ij}]$ denote the matrix representation of T with respect to the standard bases $\{e_1, e_2, \ldots, e_p\}$ of \mathbb{R}^p and $\{f_1, f_2, \ldots, f_n\}$ of \mathbb{R}^n . If p = 1, then all linear operators on \mathbb{R}^1 are preservers of \sim_{ℓ} . Thus, we assume $p \ge 2$. For every i ($i = 1, \ldots, k$) let A_i be $m_i \times p$ matrix. We use the notation $[A_1/A_2/\ldots/A_k]$ to denote the corresponding $(m_1 + m_2 + \cdots + m_k) \times p$ matrix. Put

$$\mathbf{a} := \max\{t_{ij} \mid 1 \le i \le n, 1 \le j \le p\}, \mathbf{b} := \min\{t_{ij} \mid 1 \le i \le n, 1 \le j \le p\}.$$
(1.1)

We also use the notation P for the permutation matrix such that $P(e_i) = e_{i+1}$, $1 \le i \le p - 1$, $P(e_p) = e_1$. Let I denote the $p \times p$ identity matrix, and let $r, s \in \mathbb{R}$ be such that rs < 0. Define the $p(p-1) \times p$ matrix $\mathcal{P}_p(r, s) = [P_1/P_2/.../P_{p-1}]$ where $P_j = rI + sP^j$, for all j ($1 \le j \le p - 1$). It is clear that up to a row permutation the matrices $\mathcal{P}_p(r, s)$ and $\mathcal{P}_p(s, r)$ are equal. Also define $\mathcal{P}_p(r, 0) := rI$, $\mathcal{P}_p(0, s) := sI$ and $\mathcal{P}_p(0, 0)$ as $1 \times p$ zero matrix.

Throughout the paper, for a given vector $x \in \mathbb{R}^n$, max x and min x denote the maximum and minimum values of components of x, respectively.

Let $T : \mathbb{R}^2 \to \mathbb{R}^n$ be a linear operator and let $[T] = [T_1 / ... / T_n]$, where $T_i = [t_{i1}, t_{i2}]$, for every $i \ (1 \le i \le n)$. Let

$$\Delta := \operatorname{Conv}(\{(t_{i1}, t_{i2}), (t_{i2}, t_{i1}), 1 \le i \le n\}) \subseteq \mathbb{R}^2,$$
(1.2)

where Conv(A) denotes the convex hull of a set A. Also, let C(T) denote the set of all corners of Δ .

Now, we recall the characterization of linear preservers of \prec_{ℓ} from \mathbb{R}^p to \mathbb{R}^n , beginning with p = 2.

Theorem 1.1. [9, *Theorem* 3.3] Let $T : \mathbb{R}^2 \to \mathbb{R}^n$ be a linear operator. Then, T is a linear preserver of \prec_{ℓ} if and only if $\mathcal{P}_2(x, y)$ is a submatrix of [T] and $xy \leq 0$ for all $(x, y) \in C(T)$.

For the case $p \ge 3$ we first need some definitions.

Definition 1.2. Let $T : \mathbb{R}^p \to \mathbb{R}^n$ be a linear operator. We denote by P_i (resp. N_i) the sum of the nonnegative (resp. *nonpositive*) entries in the *i*th row of [*T*]. If all the entries in the *i*th row are positive (resp. *negative*), we define $N_i = 0$ (resp. $P_i = 0$).

Definition 1.3. Let $T : \mathbb{R}^p \to \mathbb{R}^n$ be a linear operator. Define

$$\Delta := \text{Conv}(\{(P_i, N_i), (N_i, P_i) : 1 \le i \le n\}),$$

$$E(T) := \{(P_i, N_i) : (P_i, N_i) \text{ is a corner of } \Delta\},$$

where P_i , N_i are as in Definition 1.2.

Theorem 1.4. [9, *Theorem* 4.6] Let $T : \mathbb{R}^p \to \mathbb{R}^n$, $p \ge 3$, and let E(T) be as in Definition 1.3. Then T preserves \prec_{ℓ} if and only if $\mathcal{P}_p(\alpha, \beta)$ is a submatrix of [T] for all $(\alpha, \beta) \in E(T)$.

For $X, Y \in \mathbb{R}^p$, we define $X \sim_{\ell} Y$, when $X \prec_{\ell} Y \prec_{\ell} X$. To obtain our main result (a complete characterization of linear preservers of \sim_{ℓ} from \mathbb{R}^p to \mathbb{R}^n), we consider the case $p \ge 3$, and recall the case p = 2 which is characterized in [10], as follows.

For $x, y \in R$, define $Q_2(x, y) = \begin{bmatrix} x & y \\ y & x \end{bmatrix}$, if $x \neq y$ and $Q_2(x, x) = \begin{bmatrix} x & x \end{bmatrix}$.

Theorem 1.5. [8 and 10, Theorem 2.6] Let $T : \mathbb{R}^2 \to \mathbb{R}^n$ be a linear operator. Then T is a linear preserver of \sim_{ℓ} if and only if $Q_2(x, y)$ is a submatrix of [T], for all $(x, y) \in C(T)$, where C(T) denote the set of all corners of Δ as in (1.2).

Obviously, if $T : \mathbb{R}^p \to \mathbb{R}^n$ is a linear preserver of \prec_{ℓ} , then *T* is a linear preserver of \sim_{ℓ} . But by the following example the converse is not true for p = 2.

Let $[T] = \begin{bmatrix} 3 & 2 \\ 2 & 3 \end{bmatrix}$. Then *T* is a linear preserver of \sim_{ℓ} , but by Theorem 1.1, *T* is not a linear preserver of $<_{\ell}$.

2. Linear Preservers of \sim_{ℓ} on \mathbb{R}^p , $p \geq 3$

Lemma 2.1. Let $x, y \in \mathbb{R}^n$. Then the following assertions are true

- (a) $x \prec_{\ell} y$ if and only if min $y \le \min x \le \max x \le \max y$.
- (b) $x \sim_{\ell} y$ if and only if min $x = \min y$ and max $x = \max y$.

Proof. Let $x = (x_1, ..., x_n)$, $y = (y_1, ..., y_n) \in \mathbb{R}^n$ and let $x \prec_{\ell} y$. Therefore x = Ry for some $n \times n$ row stochastic matrices R. It follows that $x_i \in \text{Conv}(\{y_1, ..., y_n\})$ for all $i \ (1 \le i \le n)$ and hence $\min y \le \min x \le \max x \le \max y$. Since $x \sim_{\ell} y$ when $x \prec_{\ell} y \prec_{\ell} x$, (b) is a consequence of (a).

Lemma 2.2. Let T be a linear operator on \mathbb{R}^p . Let $[T] = [T_1/.../T_k]$ such that T_i is a linear preserver of \sim_{ℓ} , for all $i \ (1 \le i \le k)$. Then T is a linear preserver of \sim_{ℓ} .

Proof. Let $x \in \mathbb{R}^p$, min $T_i x = \alpha_i$ and max $T_i x = \beta_i$, for all $i (1 \le i \le k)$. Then min $T x = \min \alpha_i$ and max $T x = \max \beta_i$. Since $T x = [T_1 x / ... / T_k x]$, for all $x \in \mathbb{R}^p$, T is a linear preserver of \sim_{ℓ} .

Lemma 2.3. Let T be a linear operator on \mathbb{R}^p , and let $p \ge 3$. If $[T] = \mathcal{P}_p(\alpha, \beta)$, $\beta \le 0 \le \alpha$, then T is a linear preserver of \sim_{ℓ} . In general, if

$$[T] = [\mathcal{P}_p(\alpha_1, \beta_1) / \cdots / \mathcal{P}_p(\alpha_k, \beta_k)], \ \beta_i \le 0 \le \alpha_i, \ \forall i = 1, \dots, k$$

then T is a linear preserver of \sim_{ℓ} .

Proof. Let $x = (x_1, ..., x_p)^t$, $y = (y_1, ..., y_p)^t \in \mathbb{R}^p$ and $x \sim_{\ell} y$. By Lemma 2.1, min $x = \min y$ and max $x = \max y$. Let $m = \min x = \min y$ and $M = \max x = \max y$. It is easy to show that $\alpha m + \beta M \le \alpha x_i + \beta x_j$, also $\alpha m + \beta M \le \alpha y_i + \beta y_j$, $\forall i \ne j \in \{1, ..., p\}$. Hence min $Tx = \alpha m + \beta M = \min Ty$. Similarly, max $Tx = \alpha M + \beta m = \max Ty$. Thus by Lemma 2.1, $Tx \sim_{\ell} Ty$. The second statement is a consequence of Lemma 2.2.

Definition 2.4. Let $T : \mathbb{R}^p \to \mathbb{R}^n$ be a linear operator and let $[T] = [T_1 / ... / T_n]$. Define

$$\Omega := \operatorname{Conv}(\{T_i = (t_{i1}, \dots, t_{ip}), 1 \le i \le n\}) \subseteq \mathbb{R}^p.$$

Also, let C(T) be the set of all corners of Ω .

Lemma 2.5. Let $T : \mathbb{R}^p \to \mathbb{R}^n$, $p \ge 3$, be a linear preserver of \sim_{ℓ} and $[T] = [T_1/.../T_n]$, where $T_i = (t_{i1}, t_{i2}, ..., t_{ip})$, for all $i (1 \le i \le n)$. Suppose there exists $i (1 \le i \le n)$ such that $t_{il} > 0$, for all $l (1 \le l \le p)$ or $t_{il} < 0$, for all $l (1 \le l \le p)$. Then $T_i \notin C(T)$.

Proof. Without loss of generality we can assume [*T*] has no identical rows. Since *T* is a linear preserver of \sim_{ℓ} if and only if ηT is a linear preserver of \sim_{ℓ} for all $\eta \neq 0$, we can assume that there exists some *i* such that $T_i \in C(T)$ and $t_{il} > 0$ for all $l (1 \le l \le p)$, and reach a contradiction. Since $T_i \in C(T)$, there exists $x = (x_1, \ldots, x_p)^t \in \mathbb{R}^p$ such that

$$t_{i1}x_1 + t_{i2}x_2 + \dots + t_{ip}x_p < t_{j1}x_1 + t_{j2}x_2 + \dots + t_{jp}x_p, \ \forall j \neq i.$$
(2.1)

Let $m = \min x$ and $M = \max x$. Assuming $x_1 = m$ and $x_p = M$, will cause no loss of generality. Also, without loss of generality, we can assume $m \neq M$ and there exists some 1 < k < n such that $m < x_k < M$, because by (2.1) we can choose $\varepsilon_0 > 0$ small enough so that for all $0 < \varepsilon \le \varepsilon_0$,

$$t_{i1}(m-\varepsilon) + t_{i2}x_2 + \dots + t_{ip}(M+\varepsilon) < t_{i1}(m-\varepsilon) + t_{i2}x_2 + \dots + t_{ip}(M+\varepsilon), \ \forall j \neq i.$$

Fix $0 < \varepsilon \le \varepsilon_0$ and define $x_{\varepsilon} = (m - \varepsilon, x_2, \dots, x_{p-1}, M + \varepsilon)^t \in \mathbb{R}^p$, thus min $Tx_{\varepsilon} = t_{i1}(m - \varepsilon) + \dots + t_{ip}(M + \varepsilon)$ and min $x_{\varepsilon} = m - \varepsilon \neq M + \varepsilon = \max x_{\varepsilon}$. Suppose $m \neq M$ and $m < x_k < M$ for some 1 < k < n. Choose $\alpha > 0$ small enough such that $m < x_k + \alpha < M$ and

$$t_{i1}x_1 + \dots + t_{ik}(x_k + \alpha) + \dots + t_{ip}x_p < t_{j1}x_1 + \dots + t_{jk}(x_k + \alpha) + \dots + t_{jp}x_p, \forall j \neq i.$$

Define $y = (x_1, ..., x_k + \alpha, ..., x_p)^t$. Since $t_{ik} > 0$,

$$\min T x = t_{i1}x_1 + \dots + t_{ip}x_p < t_{i1}x_1 + \dots + t_{ik}(x_k + \alpha) + \dots + t_{ip}x_p = \min T y.$$

But $y \sim_{\ell} x$, a contradiction.

Let $T : \mathbb{R}^p \to \mathbb{R}^n$ be a linear operator. Without loss of generality, we assume that $[T] = [T^p/T^n/\widetilde{T}]$, where all entries of T^p (resp. T^n) are positive (resp. negative) and each row of \widetilde{T} has nonnegative and nonpositive entries.

Corollary 2.6. Let T and \tilde{T} be as above, then T is a linear preserver of \sim_{ℓ} if and only if $C(T) = C(\tilde{T})$ and \tilde{T} is a linear preserver of \sim_{ℓ} .

Proof. Let T be a linear preserver of \sim_{ℓ} . By Lemma 2.5, the rows of T^p and T^n can not be in C(T), hence $C(T) = C(\widetilde{T})$. Thus if $x \in \mathbb{R}^p$, min $Tx = \min \widetilde{T}x$ and max $Tx = \max \widetilde{T}x$. Therefore \widetilde{T} is a linear preserver of \sim_{ℓ} . Conversely, let $C(T) = C(\widetilde{T})$, and suppose \widetilde{T} is a linear preserver of \sim_{ℓ} . Then max $Tx = \max \widetilde{T}x$ and min $Tx = \min \widetilde{T}x$, for all $x \in \mathbb{R}^p$. Hence T is a linear preserver of \sim_{ℓ} .

Lemma 2.7. Let $p \ge 3$ and let $T : \mathbb{R}^p \to \mathbb{R}^n$, be a linear preserver of \sim_{ℓ} . Let $[T] = [T_1/\cdots/T_n]$, where $T_i = (t_{i1}, \ldots, t_{ip})^t$, for every $i \ (1 \le i \le n)$. Then $\mathbf{b} \le \sum_{l=1}^p t_{il} \le \mathbf{a}$, for all i, where \mathbf{a} and \mathbf{b} are as in (1).

Proof. Without loss of generality we can assume [*T*] has no identical rows. If $i, j \in \{1, ..., p\}$, we have $e_i \sim_{\ell} e_j$ and so $Te_i \sim_{\ell} Te_j$ which implies that max $Te_i = \max Te_j$ and $\min Te_i = \min Te_j$. Hence max $Te_i = \mathbf{a}$ and $\min Te_i = \mathbf{b}$, for all $i \in \{1, ..., n\}$. Since $\sum_{j \in J} e_j \sim_{\ell} e_1$, for all $J \subset \{1, ..., p\}$, $\min T(\sum_{j \in J} e_j) = \min Te_1 = \mathbf{b}$ and $\max T(\sum_{j \in J} e_j) = \max Te_1 = \mathbf{a}$. Therefore if |J| = p - 1 then $\mathbf{b} \leq \sum_{j \in J} t_{il} \leq \mathbf{a}$, for all $i (1 \leq i \leq n)$. Which implies, if $\sum_{l=1}^{p} t_{il} > \mathbf{a}$ (resp. $\sum_{l=1}^{p} t_{il} < \mathbf{b}$) for some $i (1 \leq i \leq n)$, then $t_{il} > 0$ (resp. $t_{il} < 0$) for all $l (1 \leq l \leq p)$. Without loss of generality let $t_{il} > 0$ for all $l (1 \leq l \leq p)$ and $\sum_{l=1}^{p} t_{il} > \mathbf{a}$. There exists $k (1 \leq k \leq n)$ such that $t_{kl} > 0$ for all $l (1 \leq l \leq n)$ and $\sum_{l=1}^{p} t_{kl} = \max\{\sum_{l=1}^{p} t_{il} : 1 \leq i \leq n\}$. It is clear that $\sum_{l=1}^{p} t_{kl} > \mathbf{a}$ and max $Te = \sum_{l=1}^{p} t_{kl}$, where $e = (1, ..., 1)^t \in \mathbb{R}^p$. Since [*T*] has no identical rows, there exists some $\varepsilon > 0$ and some $x \in \mathbb{R}^p$ with max $x = 1 + \varepsilon$ and min $x \geq 1$ such that

$$t_{k1}x_1 + \ldots + t_{kp}x_p > t_{i1}x_1 + \ldots + t_{ip}x_p, \ \forall i \neq k.$$

Hence $T_k \in C(T)$, a contradiction.

Since $T : \mathbb{R}^p \to \mathbb{R}^n$ is a linear preserver of \sim_{ℓ} if and only if ηT is so for all nonzero real number η , we can assume $\mathbf{a} > 0$ and $|\mathbf{b}| \le \mathbf{a}$.

Corollary 2.8. Let $T : \mathbb{R}^p \to \mathbb{R}^n$, $p \ge 3$, be a linear preserver of \sim_{ℓ} . Then $p \le n$, moreover, if a row of [T] contains an entry equal to **a** (resp. **b**), then all other entries of that row are nonpositive (resp. nonnegative).

Proof. As in the proof of Lemma 2.7, max $Te_i = \mathbf{a}$ and min $Te_i = \mathbf{b}$, for all $i \in \{1, ..., n\}$. Therefore every column of [T] contains at least one entry equal to \mathbf{a} and at least one entry equal to \mathbf{b} . Also by Lemma 2.7, since $\mathbf{b} \leq \sum_{l=1}^{p} t_{il} \leq \mathbf{a}$, for all $i (1 \leq i \leq p)$, every row of [T] has at most one entry equal to \mathbf{a} and at most one entry equal to \mathbf{b} . Now, $\mathbf{a} > 0$, since every column of [T] has at least one entry equal to \mathbf{a} , it follows that $p \leq n$. The second statement is a consequence of Lemma 2.7.

Theorem 2.9. Let $T : \mathbb{R}^p \to \mathbb{R}^n$ be a linear preserver of \sim_{ℓ} , and let E(T) be as in Definition 1.3. If $(P_r, N_r) \in E(T)$ for some $r \ (1 \le r \le n)$ then there exists $k \in [r] = \{1 \le i \le n : P_i = P_r, N_i = N_r\}$ such that $T_k \in C(T)$.

Proof. Let $(P_r, N_r) \in E(T)$ for some $r (1 \le r \le n)$. Then there exist $m \le M$ such that

$$P_r m + N_r M < P_j m + N_j M, \ j \notin [r].$$

$$(2.2)$$

Now we have the following cases for the entries of the r^{th} row of [T].

Case 1. If $t_{rl} > 0$ for all $l (1 \le l \le p)$, then $P_r > 0$ and $N_r = 0$, which together with (2.2) implies that $P_rm < P_jm + N_jM$, $j \notin [r]$.

It is easy to check that

$$P_{r}m < P_{j}m + N_{j}M \le P_{j}m + N_{j}m = (P_{j} + N_{j})m, \ j \notin [r].$$
 (2.3)

Thus $P_rm < (P_j + N_j)m$ and hence min $T(me) = P_rm$. By Lemma 2.5, there exists $k \neq r$ such that $P_rm = \min T(me) = \sum_{l=1}^{p} t_{kl}m = P_km + N_km$, and $T_k \in C(T)$. By (2.3) $k \in [r]$. Thus there exists $k \in [r]$ such that $T_k \in C(T)$.

Case 2. If $t_{ri} \le 0$ for some $i (1 \le i \le p)$ and $t_{rj} > 0$ for some $j \ne i$, $(1 \le j \le p)$. Define $x \in \mathbb{R}^p$ such that min x = m and max x = M. Then there exists $k (1 \le k \le n)$, such that min $Tx = \sum_{l=1}^{p} t_{kl} x_{l}$. Hence (2.2) implies

$$P_r m + N_r M \le P_k m + N_k M \le \sum_{l=1}^p t_{kl} x_l = \min T x_l$$

Define $y \in \mathbb{R}^p$ by $y_l = m$ if $t_{rl} > 0$ and $y_l = M$ if $t_{rl} \le 0$. Obviously $y \sim_{\ell} x$. Since T is a linear preserver of \sim_{ℓ} , $Ty \sim_{\ell} Tx$ which implies that

$$P_k m + N_k M \le \sum_{l=1}^p t_{kl} x_l = \min T x = \min T y \le P_r m + N_r M.$$

Therefore by (2.2) $P_k m + N_k M = P_r m + N_r M$. Thus $k \in [r]$ and min $Tx = \sum_{l=1}^p t_{kl} x_l$. Hence $T_k \in C(T)$ for some $k \in [r]$.

Case 3. If $t_{rl} < 0$ for all $l (1 \le l \le p)$ then $N_r < 0$ and $P_r = 0$, which together with (2.2) implies that $N_rM < P_jm + N_jM$, $j \notin [r]$. Like the Case 1

$$N_r M < P_j m + N_j M \le P_j M + N_j M = (P_j + N_j) M, \ j \notin [r].$$
 (2.4)

Therefore min $T(Me) = N_r M$. By Lemma 2.5, there exists $k \neq r$ such that $N_r M = \min T(Me) = \sum_{l=1}^{p} t_{kl} M = P_k M + N_k M$, and $T_k \in C(T)$. By (2.4) $k \in [r]$. Thus there exists $k \in [r]$ such that $T_k \in C(T)$.

Case 4. If $t_{ri} < 0$ for some $i (1 \le i \le p)$ and $t_{rj} \ge 0$ for some $j \ne i (1 \le j \le p)$. We can prove it the same as Case 2 and conclude that there exists $k \in [r]$ such that $T_k \in C(T)$.

Corollary 2.10. Let $T : \mathbb{R}^p \to \mathbb{R}^n$ be a linear preserver of \sim_{ℓ} . If $1 \le r \le n$ and for some $m \le M$, $P_rm + N_rM < P_jm + N_jM$, for all $j \notin [r]$. Then there exists $k \in [r]$ and $x \in \mathbb{R}^p$ with min x = m and max x = M such that min $Tx = P_rm + N_rM = \sum_{l=1}^p t_{kl}x_l$.

Proof. Consider four Cases of the proof of Theorem 2.9. As we see in the proof of Case 1 $T_k \in C(T)$, $k \neq r$ and $k \in [r]$. By Lemma 2.5 there exists l $(1 \leq l \leq p)$ such that $t_{kl} = 0$. Define $x \in \mathbb{R}^p$ such that $x_l = M$ and $x_i = m$ for all $i \neq l$. There exists j $(1 \leq j \leq p)$ such that $\min Tx = \sum_{l=1}^{p} t_{jl}x_l$. Hence $P_rm + N_rM \leq P_jm + N_jM \leq \sum_{l=1}^{p} t_{jl}x_l \leq \min Tx$. Since $(Tx)_k = P_km + N_kM = P_rm + N_rM$, $\min Tx = P_rm + N_rM$. By a similar proof, the statement holds in Case 3. As in the proof of Cases 2 and 4 of Theorem 2.9, the statement is immediate. **Theorem 2.11.** Let $T : \mathbb{R}^p \to \mathbb{R}^n$ $(p \ge 3)$ be a linear operator. T preserves \sim_{ℓ} if and only if $\mathcal{P}_p(P, N)$ is a submatrix of [T] for all $(P, N) \in E(T)$.

Proof. To prove necessity, let *T* be a preserver of \sim_{ℓ} and let $(P_r, N_r) \in E(T)$. Then there exists $m \leq M$ such that $P_rm + N_rM < P_jm + N_jM$ for all $j, j \notin [r]$. Choose ε_0 small enough so that for all $0 < \varepsilon < \varepsilon_0$,

$$P_r(m-\varepsilon) + N_r(M+\varepsilon) < P_j(m-\varepsilon) + N_j(M+\varepsilon), \quad \forall j \notin [r].$$

Let $0 < \varepsilon < \varepsilon_0$, be fixed and let $x_{\varepsilon} = (x_1, \dots, x_p)^t \in \mathbb{R}^p$ with min $x_{\varepsilon} = m - \varepsilon$ and max $x_{\varepsilon} = M + \varepsilon$. By Corollary 2.10 there exists $k \in [r]$ such that $\min T(x_{\varepsilon}) = \sum_{l=1}^{p} t_{kl} x_l = P_r(m - \varepsilon) + N_r(M + \varepsilon)$. Fix $i \neq j \in \{1, ..., p\}$ and define $y_{\varepsilon} = (y_1, ..., y_p)^t \in \mathbb{R}^p$ such that $y_i = m - \varepsilon, y_j = M + \varepsilon$ and $y_l = \alpha_l$, $m - \varepsilon < \alpha_l < M + \varepsilon$, $l \neq i, j$. Since $x_{\varepsilon} \sim_{\ell} y_{\varepsilon}$, $Tx_{\varepsilon} \sim_{\ell} Ty_{\varepsilon}$, there exists $s \in [r]$ such that $\min T(y_{\varepsilon}) = t_{si}(m-\varepsilon) + t_{sj}(M+\varepsilon) + \sum_{l \neq i,j} t_{sl}\alpha_l = P_r(m-\varepsilon) + N_r(M+\varepsilon) = \min T(x_{\varepsilon}).$ Since $0 < \varepsilon < \varepsilon_0$ and $m - \varepsilon \le \alpha_l \le M + \varepsilon$, $l \ne i, j$ are arbitrary and the number of rows of [T] is finite, there exists $q \in [r]$ such that $t_{qi} = P_r$ and $t_{qj} = N_r$ and $t_{ql} = 0$, for all $l, l \neq i, j$. Also, since $i, j \in \{1, ..., n\}$ are arbitrary, [T] has $\mathcal{P}_p(P_r, N_r)$ as a submatrix. For sufficiency, let $E(T) = \{(P_{i_1}, N_{i_1}), \dots, (P_{i_k}, N_{i_k})\}$. Then up to a row permutation [T] = [T/Q], where T is the operator on \mathbb{R}^p such that $\widehat{T} = [\mathcal{P}_p(P_{i_1}, N_{i_1}) / \dots / \mathcal{P}_p(P_{i_k}, N_{i_k})]$. By Lemma 2.3, \widehat{T} is a linear preserver of \sim_{ℓ} . To prove T is a linear preserver of \sim_{ℓ} , we are going to show that min $Tx = \min \widehat{T}x$ and $\max Tx = \max Tx$, for all $x \in \mathbb{R}^p$. Let $x \in \mathbb{R}^p$, obviously $\min Tx \leq \min Tx$, it is enough to prove $\min \widehat{T}x \leq \min Tx$. If $\min T(x) = \sum_{l=1}^{p} t_{ll}x_{ll}$, for some $i, T_{i} \in Q$. Let $m = \min x$ and $M = \max x$, therefore $P_i m + N_i M \leq \sum_{l=1}^p t_{il} x_l$. There is $1 \leq r \leq n$ such that $(P_r, N_r) \in E(T)$ and $P_r m + N_r M \leq N_r M$ $P_im + N_iM$, because $(P_i, N_i) \in \Delta$ and Δ is convex. By Corollary 2.10 min $Tx = P_rm + N_rM$. Then $\min \widehat{T}x \le \min Tx$ and hence $\min \widehat{T}x = \min Tx$. Similarly $\max \widehat{T}x = \max Tx$ and therefore T is a linear preserver of \sim_{ℓ} .

Corollary 2.12. Let $T : \mathbb{R}^p \to \mathbb{R}^n$, $p \ge 3$ be a linear operator then the following assertions are equivalent

- (a) *T* preserves \prec_{ℓ} ,
- (b) *T* preserves \sim_{ℓ} ,
- (c) $\mathcal{P}_p(P, N)$ is a submatrix of [T] for all $(P, N) \in E(T)$.

Problem. [7] characterizes all linear preservers of \prec_r from M_n to M_n , and also from \mathbb{R}^n to \mathbb{R}^n . It would be nice to characterize all linear preservers of \prec_r (or \sim_r) from \mathbb{R}^p to \mathbb{R}^n .

References

- [1] T. Ando, *Majorization, doubly stochastic matrices, and comparison of eigenvalues*, Linear Algebra Appl., 118 (1989), 163-248.
- [2] A. Armandnejad, F. Akbarzadeh and Z. Mohamadi, *Row and column-majorization on* $M_{n,m}$, Linear Algebra Appl., 437(2012), 1025-1032.
- [3] L. B. Beasley, S.-G. Lee and Y.-H. Lee, A characterization of strong preservers of matrix majorization, Linear Algebra Appl. 367 (2003), 341-346.

- [4] R. Bhatia, Matrix Analysis, Springer-Verlag, New York, 1997.
- [5] R. A. Brualdi and G. Dahl, Majorization classes of integral matrices, Linear Algebra Appl., 436(2012), 802-813.
- [6] A. M. Hasani and M. Radjabalipour, *Linear preserver of matrix majorization*, International Journal of Pure and Applied Mathematics, 32(4) (2006), 475-482.
- [7] A. M. Hasani and M. Radjabalipour, *On linear preservers of (right) matrix majorization*, Linear Algebra Appl., 423(2-3)(2007), 255-261.
- [8] F. Khalooei, M. Radjabalipour and P. Torabian, Linear preservers of left matrix majorization, Electron. J. Linear Algebra, 17(2008), 304-315.
- [9] F. Khalooei and A. Salemi, *The structure of linear preservers of left matrix majorization on* \mathbb{R}^p , Electron. J. Linear Algebra, 18(2009), 88-97.
- [10] F. Khalooei and A. Salemi, *Linear preservers of majorization*, Iranian Journal of Mathematical Siences and Informatics, 6(2) (2011), 43-50.
- [11] C. K. Li and E. Poon, *Linear operators preserving directional majorization*, Linear Algebra Appl., 325 (2001), 141-146.
- [12] F. D. Martínez Pería, P. G. Massey, and L. E. Silvestre, Weak Matrix-Majorization, Linear Algebra Appl., 403(2005), 343-368.