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Abstract
Finite normalized tight frames are interesting because they

provide decompositions in applications and some physical in-
terpretations. In this article, we give a recursive method for
constructing them.
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1. Introduction

Frames were first introduced in 1952 by Duffin and Schaeffer [4] in the context of nonharmonic
Fourier series. They are system of functions in Hilbert spaces that provide numerically stable
methods for finding overcomplete decompositions of vectors, and such are useful tools in various
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signal processing applications, data compression, wireless communications and so on [6, 10, 11].
Frames in finite dimensional Hilbert spaces have become of interests for many of researches [1, 3].
One of the important subjects in these areas is the way for constructing such frames. Some methods
of construction finite tight frames are stated by researchers [7, 12, 5, 9].

In this paper, we provide a recursive method for constructing a finite normalized tight frame
(FNTF) for Rn+1 from the special FNTF of Rn, and we use it to figure out how we can construct a
FNTF for R3 which is akin to the Nth roots of unity in C.

2. Frames

Letting K be either the real or complex filed, a sequence of vectores { fi}i∈I in Hilbert space
H over K is said to be a frame (see also [2]) for H if there exist constants A and B such that
0 < A ≤ B < ∞ and

A ‖ f ‖2≤
∑
i∈I

|〈 f , fi〉|
2 ≤ B ‖ f ‖2 ∀ f ∈ H (2.1)

The frame { fi}i∈I is said to be tight(or A-tight) if A = B. In this case, A is said to be the frame
constant and it is a Parsval frame, if A = B = 1. When the index set I is a finite set, the frame will
be called finite. A normalized frame is the one which elements have the norm one. A normalized
frame with the property that there is a constant c so that |〈 fi, f j〉| = c, for all i , j, is called an
equiangular frame.

If only the right side of the inequalities (2.1) holds, then { fi}i∈I is called a Bessel sequence. If
H is finite dimensional and { fi}i∈I is a normalized Bessel sequence then { fi}i∈I is finite sequence
[1]. To each Bessel sequence { fi}i∈I , corresponds an operator

T : H → l2(I) T ( f ) = {〈 f , fi〉}i∈I

called analysis operator, where l2(I) is the space of all complex sequences {ci}i∈I such that
∑

i∈I |

ci |
2< ∞. This is well-defined and bounded operator. Its adjoint is the operator

T ∗ : l2(I)→ H T ∗({ci}i∈I) =
∑
i∈I

ci fi,

called the synthesis operator. If { fi}i∈I is a frame with frame bounds A and B, then the operator

T ∗T : H → H , T ∗T ( f ) =
∑
i∈I

〈 f , fi〉 fi

is called the frame operator of the frame { fi}i∈I . It is a positive, self-adjoint, bounded and hence
invertible operator with the inverse (T ∗T )−1. In fact, AI ≤ T ∗T ≤ BI and B−1I ≤ (T ∗T )−1 ≤ A−1I.
If {gi}i∈I is another sequence in H such that each f ∈ H can be represented as f =

∑
i∈I〈 f , fi〉gi,

then {gi}i∈I is called the dual frame for { fi}i∈I . The most often-used dual frame is the canonical
dual, namely the pseudoinverse {(T ∗T )−1 fi}i∈I . Note that computing a canonical dual involves the
inversion of the frame operator. Having this dual, we get the following reconstruction formula:

f = T ∗T (T ∗T )−1( f ) =
∑
i∈I

〈 f , (T ∗T )−1 fi〉 fi.
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If { fi}i∈I is a tight frame, i.e. A = B, then T ∗T = AI and hence we have f = 1
A

∑
i∈I〈 f , fi〉 fi for every

f ∈ H . A finite normalized tight frame with the frame constant A will be called A-FNTF. FNTFs
provide Parseval-like decomposition in terms of nonorthogonal vectors of unit norm.

FNTFs with k elements are known to exists for any Cn where k ≥ n. The standard example is
the harmonic frame, which synthesis operator is obtained by extracting any n distinct rows from a
suitably scaled k × k discrete Fourier transform matrix.

At the sequel, we suppose that H is a finite-dimensional Hilbert space with dimension n over
R. According to this, our frame will be the form { fi}

k
i=1 whenever k is some positive integer. Also

we will replace l2(I) by Rk. In this finite dimensional Hilbert space, every finite sequence { fi}
k
i=1

is a Bessel sequence. In particular, { fi}
k
i=1 is a frame if and only if the span{ fi}

k
i=1 = H , which

necessitates n ≤ k.
Any finite sequence { fi}

k
i=1 ⊂ H is necessarily Bessel, guaranteeing the existence of the analysis

and synthesis operator in the finite case. In fact, the operators

T : H → Rk, T ∗ : Rk → H , T ∗T : H → H ,

from left to right, can be represented as k × n, n × k and n × n matrices, respectively. In the
next section we state a method of making FNTF by using the following lemma, which is due to
Benedetto and Fickus [1].

Lemma 2.1. If { fi}
k
i=1 is an A-FNTF for a n-dimensional Hilbert spaceH , then A = k

n .

3. Generation of finite tight frames

In this section we provide general methods for constructing FNTFs. In brief, we want to
construct n × k synthesis matrices F which have:

i) columns of unit norm;

ii) orthogonal rows, meaning the frame operator FF∗ is diagonal;

iii) rows of constant norm, meaning FF∗ is a constant multiple of the identity matrix.

Despite a decade of study, very few general constructions of FNTF are known. Moreover, these
known methods unfortunately mainpulate all frame elements simultaneously. In this section, we
show that constructing certain examples of FNTFs need not be so difficult. In particular, we
provide a new, iterative method for constructing FNTF. The key idea is to iteratively build a matrix
F which, at each iteration, exactly satisfies (i), (ii) and (iii).

Benedetto and Fickus [1] have been brought some examples of FNTF for R2 and R3 such as,
Roots of unity (The N th roots of unity form a FNTF for R2) and Regular solid (vectors in R3

pointing to the vertices of regular solid inscribed with in a unit sphere S 2) (see also [9]). Example
of regular solids are the tetrahedron, cube, octahedron, dodecahedron, icosahedron and soccer ball.

A question of interest in this area is whether FNTF of a given k elements exist for the Hilbert
space Rn. Zimmermann [13] has been answered this by using the Fourier matrix in the complex
case. The next theorem state that if there exist FNTF { fi}

k
i=1 for Rn which

∑k
i=1 fi = 0 then there
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exist a FNTF with k + 1elements for Rn+1. We shall demonstrate an algorithm to construct FNTF
of n + 1elements for Rn. Our inspiration in this regard are generalization the roots of unity to three
dimensions.

Theorem 3.1. Suppose { fi}
k
i=1 is a FNTF for Rn which

∑k
i=1 fi = 0. Then we can construct a FNTF

{gi}
k+1
i=1 for Rn+1 from { fi}

k
i=1.

Proof. Let F =

 | | . . . |

f1 f2 . . . fk

| | . . . |

 synthesis matrix corresponding to the frame { fi}
k
i=1. Put Y =(

y1 y2 . . . yn

)t
, S =

(
1 1 . . . 1

)
1×k

, and define an (n + 1) × (k + 1) block matrix U by

U =

[ √
xF Y

√
1 − xS yn+1

]
It is enough to find x, yn+1 and the entries of Y, yi(1 ≤ i ≤ n), such that the columns of U form a
FNTF for Rn+1 with k + 1 elements i.e. UU∗ = k+1

n+1 I. Since

UU∗ =

[ √
xF∗ Y

√
1 − xS yn+1

] [ √
xF

√
1 − xS t

Y t yn+1

]
=

[
xFF∗ + YY t √

x(1 − x)FS t
√

x(1 − x)S F∗ k(1 − x) + y2
n+1

]
and FF∗ = k

n I, we have
k
n x + y2

1 = k+1
n+1

k
n x + y2

2 = k+1
n+1

...
k
n x + y2

n = k+1
n+1

k(1 − x) + y2
n+1 = k+1

n+1

and yiy j = 0 if i , j and 1 ≤ i, j ≤ n. Hence x =
n(k+1)
k(n+1) , yi = 0(1 ≤ i ≤ n) and yn+1 = 1 or −1. In

brief {gi}
k+1
i=1 where

gi =

√
n(k + 1)
k(n + 1)

fi +

√
k − n

k(n + 1)
en+1 (1 ≤ i ≤ k)

and gk+1 = −en+1 form FNTF for Rn+1.

In special case, if { fi}
n+1
i=1 is an equiangular tight frame for Rn with 〈 fi, f j〉 = −1

n , then the tight
frame that has been constructed by above construction, is also an equiangular [8].

The next corollary provide an algorithm to construct a normalized tight frame with k elements
for R3, by using the (k − 1)th roots of unity.

Corollary 3.2. For every positive integer k > 3 there exists a FNTF with k elements for R3.
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Proof. Let

F =

[
1 cos 2π

k−1 cos 4π
k−1 · · · cos 2(k−2)π

k−1
0 sin 2π

k−1 sin 4π
k−1 · · · sin 2(k−2)π

k−1

]
where the columns of matrix F are (k − 1)th roots of unity. By Theorem 3.1,

U =


√

2k
3(k−1) F 0√

k−3
3(k−1)S −1


is synthesis matrix of FNTF for R3. In other words, {gi}

k
i=1 is FNTF for R3 which

gi =
1

√
3k − 3

(√
2k cos(

2(i − 1)π
k − 1

)e1 +
√

2k sin(
2(i − 1)π

k − 1
)e2 +

√
k − 3e3

)
for 1 ≤ i ≤ k − 1 and gk = −e3.

In the next theorem we provide an algorithm to construct a normalized tight frame with n + 1
elements for Rn(n ≥ 3).

Theorem 3.3. For every positive integer n ≥ 2, there exists a FNTF with n + 1 elements for Rn.

Proof. The third roots of unity consist a FNTF for R2.

U2 =

[
1 cos 2π

3 cos 4π
3

0 sin 2π
3 sin 4π

3

]
=

[
1 −1

2
−1
2

0
√

3
2

−
√

3
2

]
Denote by Ut the t × (t + 1)-matrix such that the columns of Ut form a FNTF for Rt. By

Theorem 3.1, for every t > 2 the following recurrent relations hold:
Ut[i, j] =

√
t2−1
t Ut−1[i, j] 1 ≤ i ≤ t − 1, 1 ≤ j ≤ t

Ut[t, j] = 1
t 1 ≤ j ≤ t

Ut[i, t + 1] = 0 1 ≤ i ≤ t − 1
Ut[t, t + 1] = −1
The goal of constructing matrix Ut is to iteratively create larger FNTFs from U2, continuing

until t = n, at which point the matrix Ut is a FNTF with n + 1 elements for Rn.

Since the roots of unity (vertices of regular polygon) Form a FNTF for R2, so we have the
following corollary.

Corollary 3.4. Vertices of a right prism with (k − 1)−sided regular base and height 1 +

√
k−3
3k−3

which are located on sphere S 2 form a FNTF for R3.

Example 3.5. The third roots of the unity{(1, 0), (−1
2 ,
√

3
2 ), (−1

2 ,
−
√

3
2 )} form a FNTF for R2. So

{(

√
8

3
, 0,

1
3

), (−

√
2

3
,

√
2
3
,

1
3

), (−

√
2

3
,−

√
2
3
,

1
3

), (0, 0,−1)}
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form a FNTF for R3. Also the columns of the matrix
√

30
6 −

√
30

12 −
√

30
12 0 0

0
√

10
4 −

√
10
4 0 0

√
15

12

√
15

12

√
15

12 −
√

15
4 0

1
4

1
4

1
4

1
4 −1


form a FNTF for R4 and the columns of the matrix

2
√

5
5 −

√
5

5 −
√

5
5 0 0 0

0
√

15
5 −

√
15
5 0 0 0

√
10

10

√
10

10

√
10

10
3
√

10
10 0 0

√
6

10

√
6

10

√
6

10

√
6

10 −
√

24
5 0

1
5

1
5

1
5

1
5

1
5 −1


form a FNTF for R5, and so on for every Rn we can construct a frame with n + 1 elements.

Theorem 3.6. Rn has a FNTF with k = 2n elements.

Proof. We prove this theorem by induction. For n = 2, the fourth roots of unity form a FNTF with

k = 4 elements for R2. Suppose k = 2n and { fi}
k
i=1 is a FNTF for Rn and let F =

 | | . . . |

f1 f2 . . . fk

| | . . . |


be synthesis matrix corresponding to { fi}

k
i=1. Put S =

(
1 1 . . . 1

)
1×k

and define (n + 1) × 2k
matrix U by

U =

[ √
xF

√
xF

√
1 − xS −

√
1 − xS

]
.

We want to find x such that the columns of U make a FNTF for Rn+1. Hence

UU∗ =

[ √
xF

√
xF

√
1 − xS −

√
1 − xS

] [ √
xF∗

√
1 − xS t

√
xF∗ −

√
1 − xS t

]

=

[
2xFF∗ 0

0 2k(1 − x)

]
By lemma (2.1) we have FF∗ = k

n I and UU∗ = 2k
n+1 I. Hence, we have 2x( k

n ) = 2k
n+1 and 2k(1 − x) =

2k
n+1 , and so x must be equal to n

n+1 .

Example 3.7. The fourth roots of the unity, {(1, 0), (0, 1), (−1, 0), (0,−1)} form a FNTF for R2. By
the above theorem the columns of the matrix

√
6

3 0 0 −
√

6
3

√
6

3 0 0 −
√

6
3

0
√

6
3 −

√
6

3 0 0
√

6
3 −

√
6

3 0
√

3
3

√
3

3

√
3

3

√
3

3 −
√

3
3 −

√
3

3 −
√

3
3 −

√
3

3


form a FNTF with 23 elements for R3.
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Theorem 3.8. For Rn, there exists a FNTF with 2n elements.

Proof. Suppose {ek}
n
k=1 is the canonical orthonormal basis of Rn. For 1 ≤ i ≤ n let fi = − fi+n = ei

and define

F =

 | | . . . |

f1 f2 . . . f2n

| | . . . |

 .
It is clear that the columns of F are FNTF for Rn with A = 2.
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