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Abstract
It is well known that if a real valued convex function on a com-
pact convex domain contained in the real numbers attains its
maximum, then it does so at least at one extreme point of its do-
main. In this paper, we consider a matrix convex function on a
compact and C∗-convex set generated by self–adjoint matrices.
An important issue is so that this function on a compact and
C∗-convex domain attains its maximum at a C∗-extreme point.

c© (2020) Wavelets and Linear Algebra

1. Introduction and Preliminaries

Matrix functions have played an important role in scientific computing and engineering. Well
known examples of matrix function include

√
A (the square root function of a positive matrix), and
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eA (the exponential function of a square matrix). For any real valued function f , a corresponding
matrix valued function f (A) can be defined on the space of self–adjoint matrices by the spectral
theorem and applying f to the eigenvalues in the spectral decomposition of A.

Let Mn denote the set of n × n matrices with complex entries, and let Hn(I) denote the set of
n×n self–adjoint matrices with eigenvalues in the interval I. The identity matrix In will be denoted
simply by 1, and correspondingly, a scalar λ will represent λ1. For self–adjoint matrices A, B the
order relation A ≤ B means that B − A is positive.

We consider the spectral representation of A given by A =
∑m

i=1 λiPi, where λ1, ..., λm are the
eigenvalues of A (not counting multiplicity) and P1, ..., Pm are orthogonal projections with the
identity matrix as sum. This representation is unique and f (A) =

∑m
i=1 f (λi)Pi. The functional

calculus can be extended to self–adjoint operators acting on an infinite-dimensional Hilbert space,
but we will consider the theory only for matrices.

Let f be a real valued function defined on the interval I of the real line. The function f is said
to be convex if

f (ca + (1 − c)b) ≤ c f (a) + (1 − c) f (b) (a, b ∈ I, 0 ≤ c ≤ 1).

Let A ∈ Hn(I) and its eigenvalues λ j contained in I. We can choose a unitary matrix U ∈ Mn such
that A = U∗DU and D = diag(λ1, ..., λn) is diagonal and then define f (A) = U∗ f (D)U, where
f (D) = diag( f (λ1), ..., f (λn)). The function f is said to be matrix convex if the map A 7−→ f (A) is
convex on Hn(I) in the sense that

f (cA + (1 − c)B) ≤ c f (A) + (1 − c) f (B) (A, B ∈ Hn(I), 0 ≤ c ≤ 1).

Also, f is matrix concave if − f is matrix convex (see [7], [1]).

2. C∗-convex sets

Recently, a notion of C∗-convexity has been studied by Farenick, Morenz [4, 6] and Magajna
[8, 9]. C∗-convexity is the natural extension of the classical scalar-valued convex combination to
include C∗-algebra valued coefficient. It therefore makes sense in a C∗-algebra and, more gener-
ally, for bimodules over C∗-algebras. In particular, there is a rich class of such C∗-convex sets in
the n× n complex matrices. The matrix state spaces of a C∗-algebra are another class of examples.

A set S ⊂ Mn is called C∗-convex, if S is closed under the formation of finite sums of the
type

∑
i T ∗i AiTi, where Ti ∈ Mn, Ai ∈ S and

∑
i T ∗i Ti = 1. This formation of finite sums is called

C∗-convex combination in S and the Ti are called C∗-convex coefficients. If the coefficients Ti are
invertible in Mn, then they are called proper C∗-convex coefficients and the C∗-convex combination
is called a proper C∗-convex combination. A point A in the C∗-convex set S is a C∗-extreme point,
if A =

∑
i T ∗i AiTi is a proper C∗-convex combination of elements Ai ∈ S , then every Ai comes from

the unitary orbit of A, i. e., for every i there exists a unitary element Ui ∈ Mn such that A = U∗i AiUi

(see [6]).
A point A in a compact and C∗-convex set S ⊂ Mn is a structural element of size n, if whenever

A =
∑

i T ∗i AiTi is a C∗-convex combination of elements of S , then there exist unitary elements
Ui ∈ Mn and scalars λi ∈ [0, 1] such that, A = U∗i AiUi, Ti = λiUi and

∑
i λ

2
i = 1. Following



Nikoufar/ Wavelets and Linear Algebra 7(1) (2020) 57-62 59

[10] we write A ∈ str(S , n). It is an immediate consequence that the structural elements of S of
size n coincide with the irreducible C∗-extreme points. It is possible for a C∗-convex set has no
structural elements of size n. So, we need to define structural elements of size less than n. Let S k

be the compression of S to Mk. The point A ∈ Mk is called a structural element of size k, if A is a
structural element of S k of size k and A is not equal with the compressions of structural elements
of size j, (k < j ≤ n) to Mk. We show the structure set of S by str(S ) =

⋃n
k=1 str(S , k). The

definition of str(S ) implies the elements of str(S ) may not be all the same size. Thus, we extend
the structural elements to n × n matrices. If A ∈ Mk is a structural element of size k (k < n), then
we denote the extension of A to Mn by A(n) and we define, A(n) = A ⊕ λ1n−k, where λ is extreme
in the numerical range of A. The numerical range of A is defined by

W(A) = {〈Ax, x〉 : x ∈ Cn, ||x|| = 1},

where 〈·, ·〉 is the inner product on the Hilbert space Cn. By [10, Corollary 5.3], any structural
element can be extended to a C∗-extreme point. Therefore, A(n) is a C∗-extreme point of S (for
more details we refer to [10]).

The C∗-convex hull of a subset L ⊂ Mn is the smallest C∗-convex set containing L. An es-
sential fact is that C∗-convex hull of L is compact whenever L is a compact subset of Mn [4]. A
Carathèodory theorem for convex sets in finite dimensions says that every point in a convex set S
contained in an n-dimensional (real) linear space is a convex combination of at most n + 1 extreme
points of S . Morenz showed in [10] the following Carathèodory type theorem for C∗-convex sets
in Mn.

Proposition 2.1. Let S ⊂ Mn be compact and C∗-convex and let A ∈ S . Then, A is a C∗-convex
combination of at most 3n2 elements of str(S ).

3. The Main Results

In this section we are going to consider a matrix convex function on a C∗-convex set generated
by a compact set of self–adjoint matrices and we obtain an upper bound for this function at a scalar
C∗-extreme point. In the usual manner the same result holds for a matrix concave function.

Theorem 3.1. Suppose that S ⊂ Mn is the C∗-convex hull of a compact set L of self–adjoint
matrices and let the closed interval [α, β] be the convex hull of the spectra of L. Then, A ∈ S is
C∗-extreme in S if and only if A is either a scalar matrix with scalars α, β or unitary equivalent to

the diagonal matrix
(
α1 0
0 β1

)
.

Proof. This follows from [6, Corollary 4.2].

We consider the standard norm || · || on the Hilbert space Cn. For A ∈ Mn, we denote by ||A|| the
operator (bound) norm of ||A|| defined as

||A|| = sup
||x||=1
||Ax||.

We are recalling the following two theorems from [2]. Note that T ∈ Mn is a contraction whenever
||T || ≤ 1.
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Theorem 3.2. Let f be a convex function, let T be a contraction and set X = f (T ∗AT ) and
Y = T ∗ f (A)T for A ∈ Hn(I). Then, there exist unitaries U, V such that

X ≤
UYU∗ + VYV∗

2
.

Theorem 3.3. Let f be a convex function and set X = f (
∑m

i=1 T ∗i AiTi) and Y =
∑m

i=1 T ∗i f (Ai)Ti for
{Ai}

m
i=1 ⊂ Hn(I), where

∑m
i=1 T ∗i Ti = 1. Then, there exist unitaries U, V such that

X ≤
UYU∗ + VYV∗

2
.

We now prove the main results.

Theorem 3.4. Suppose that f is a convex function on [α, β].

(a) If S ⊂ Mn is a compact and C∗-convex set of self–adjoint matrices with spectra in the closed
interval [α, β], then f has an upper bound on S .

(b) If S ⊂ Mn is the C∗-convex hull of a compact set L of self–adjoint matrices and the closed
interval [α, β] is the convex hull of the spectra of L, then f attains its upper bound at a scalar
C∗-extreme point of S .

Proof. (a) Let A be an arbitrary element of S . Then, the Carathèodory type theorem shows that
A =

∑
i∈I T ∗i Ai(n)Ti provided that

∑
i∈I T ∗i Ti = 1, Ti ∈ Mn, each Ai(n) is C∗-extreme in S and

I ⊆ {1, 2, ..., 3n2}. It follows from Theorem 3.1 that either Ai(n) = α1, β1 or there exist unitaries Ui

such that Ai(n) = U∗i

(
α1 0
0 β1

)
Ui. Define

I1 := {i ∈ I : Ai(n) = α1}, I2 := {i ∈ I : Ai(n) = β1},

and

I3 := {i ∈ I : Ai(n) = U∗i

(
α1 0
0 β1

)
Ui}.

It is clear that f (α1) = f (α)1. Without loss of generality we may assume that f (β) ≤ f (α). It
then follows that f (Ai(n)) ≤ f (α)1 for i ∈ I1 ∪ I2. Assume that i ∈ I3. Apply Theorem 3.2 and the
convexity of f to obtain unitaries Vi and Wi such that

f (Ai(n)) = f (U∗i

(
α1 0
0 β1

)
Ui)

≤
1
2

{
ViU∗i

(
f (α)1 0

0 f (β)1

)
UiV∗i + WiU∗i

(
f (α)1 0

0 f (β)1

)
UiW∗

i

}
≤

1
2

{
ViU∗i

(
f (α)1 0

0 f (α)1

)
UiV∗i + WiU∗i

(
f (α)1 0

0 f (α)1

)
UiW∗

i

}
= f (α)1.
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Hence, f (Ai(n)) ≤ f (α)1 for i ∈ I3. By using Theorem 3.3 and the self–adjointness of Ai(n) we get
there exist unitaries U and V such that

f (A) = f (
∑
i∈I

T ∗i Ai(n)Ti)

≤
1
2

U(
∑
i∈I

T ∗i f (Ai(n))Ti)U∗ + V(
∑
i∈I

T ∗i f (Ai(n))Ti)V∗


≤ f (α)1.

This means that f (α)1 is the upper bound of f on S .
(b) Note that α is extreme in the convex hull of the spectra of L and so Theorem 3.1 asserts

that the scalar matrix α1 is C∗-extreme in S . On the other hand, f (α)1 = f (α1), i.e., f attains this
upper bound at α1.

Corollary 3.5. Suppose that S ⊂ Mn is the C∗-convex hull of a compact set L of self–adjoint
matrices and let the close interval [α, β] be the convex hull of the spectra of L. If f is convex on
[α, β], then

|| f (A)|| ≤ min{| f (α)|, | f (β)|}

for all A ∈ S . Moreover, there exists A0 ∈ S such that A0 is C∗-extreme in S and

|| f (A0)|| = min{| f (α)|, | f (β)|}.

Proof. According to Theorem 3.4(a) either f (α)1 or f (β)1 is the upper bound of f on S . Hence,
|| f (A)|| ≤ || f (α)1|| = | f (α)| or || f (A)|| ≤ | f (β)| for every A ∈ S and so || f (A)|| ≤ min{| f (α)|, | f (β)|}
for every A ∈ S . We remarked in Theorem 3.4(b) that f attains its upper bound at either α1 ∈ S
or β1 ∈ S . Without loss of generality we may assume that f (β) ≤ f (α). Define A0 = β1. Then,
|| f (A0)|| = || f (β1)|| = | f (β)| = min{| f (α)|, | f (β)|}. By the same reasoning as in the proof of Theorem
3.4(b), the matrix A0 is C∗-extreme in S .

Bourin [3] remarked that the inequalities in Theorem 3.2 and 3.3 reverse for concave functions.
The next corollaries list some consequences of our results for concave functions.

Corollary 3.6. Suppose that f is a concave function on [α, β].

(a) If S ⊂ Mn is a compact and C∗-convex set of self–adjoint matrices with spectra in the closed
interval [α, β], then f has a lower bound on S .

(b) If S ⊂ Mn is the C∗-convex hull of a compact set L of self–adjoint matrices and the closed
interval [α, β] is the convex hull of the spectra of L, then f attains its lower bound at a scalar
C∗-extreme point of S .

Corollary 3.7. Suppose that S ⊂ Mn is the C∗-convex hull of a compact set L of self–adjoint
matrices and let the close interval [α, β] be the convex hull of the spectra of L. If f is concave on
[α, β], then

max{| f (α)|, | f (β)|} ≤ || f (A)||

for all A ∈ S . Moreover, there exists A0 ∈ S such that A0 is C∗-extreme in S and

|| f (A0)|| = max{| f (α)|, | f (β)|}.
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Proof. According to Corollary 3.6(a) either f (α)1 or f (β)1 is the lower bound of f on S . Hence,
| f (α)| = || f (α)1|| ≤ || f (A)|| or | f (β)| ≤ || f (A)|| for every A ∈ S and so max{| f (α)|, | f (β)|} ≤ || f (A)||
for every A ∈ S . We remarked in Corollary 3.6(b) that f attains its lower bound at either α1 ∈ S
or β1 ∈ S . Without loss of generality we may assume that f (β) ≤ f (α). Define A0 = α1. Then,
|| f (A0)|| = || f (α1)|| = | f (α)| = max{| f (α)|, | f (β)|} and the matrix A0 is C∗-extreme in S .
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