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1. Introduction and Preliminaries

Matrix functions have played an important role in scientific computing and engineering. Well
known examples of matrix function include VA (the square root function of a positive matrix), and
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e (the exponential function of a square matrix). For any real valued function f, a corresponding
matrix valued function f(A) can be defined on the space of self—adjoint matrices by the spectral
theorem and applying f to the eigenvalues in the spectral decomposition of A.

Let M, denote the set of n X n matrices with complex entries, and let H,(I) denote the set of
n X n self—adjoint matrices with eigenvalues in the interval I. The identity matrix 7,, will be denoted
simply by 1, and correspondingly, a scalar A will represent A1. For self-adjoint matrices A, B the
order relation A < B means that B — A is positive.

We consider the spectral representation of A given by A = 7', A;P;, where Ay, ..., 4,, are the
eigenvalues of A (not counting multiplicity) and Py, ..., P,, are orthogonal projections with the
identity matrix as sum. This representation is unique and f(A) = Y}, f(4;)P;. The functional
calculus can be extended to self—adjoint operators acting on an infinite-dimensional Hilbert space,
but we will consider the theory only for matrices.

Let f be a real valued function defined on the interval I of the real line. The function f is said
to be convex if

fca+ (1 =) <cf@+1-o)f®b) @bel,0<c<1).

Let A € H,(I) and its eigenvalues A; contained in I. We can choose a unitary matrix U € M,, such
that A = U*DU and D = diag(4,, ..., 4,) is diagonal and then define f(A) = U*f(D)U, where
f(D) = diag(f(d,), ..., f(1,)). The function f is said to be matrix convex if the map A +—— f(A) is
convex on H,(I) in the sense that

flcA+(1-0c)B)<cf(A)+(1-0o)f(B) (A, B H,(I),0<c<1).

Also, f is matrix concave if —f is matrix convex (see [7], [1]).

2. C*-convex sets

Recently, a notion of C*-convexity has been studied by Farenick, Morenz [4, 6] and Magajna
[8, 9]. C*-convexity is the natural extension of the classical scalar-valued convex combination to
include C*-algebra valued coefficient. It therefore makes sense in a C*-algebra and, more gener-
ally, for bimodules over C*-algebras. In particular, there is a rich class of such C*-convex sets in
the n X n complex matrices. The matrix state spaces of a C*-algebra are another class of examples.

A set S C¢ M, is called C*-convex, if S is closed under the formation of finite sums of the
type >, T7A;T;, where T; € M,,, A; € § and }; TT; = 1. This formation of finite sums is called
C*-convex combination in S and the T; are called C*-convex coefficients. If the coefficients T are
invertible in M,,, then they are called proper C*-convex coefficients and the C*-convex combination
is called a proper C*-convex combination. A point A in the C*-convex set S 1s a C*-extreme point,
if A =3, TFA;T; is a proper C*-convex combination of elements A; € §, then every A; comes from
the unitary orbit of A, i. e., for every i there exists a unitary element U; € M,, such that A = UA;U;
(see [6]).

A point A in a compact and C*-convex set S C M, is a structural element of size n, if whenever
A = 3, T'AT; is a C*-convex combination of elements of S, then there exist unitary elements
Ui € M, and scalars A; € [0,1] such that, A = U:A;U;, T; = A4;U; and Zi/l? = 1. Following
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[10] we write A € str(S,n). It is an immediate consequence that the structural elements of S of
size n coincide with the irreducible C*-extreme points. It is possible for a C*-convex set has no
structural elements of size n. So, we need to define structural elements of size less than n. Let S
be the compression of S to M. The point A € M; is called a structural element of size k, if A is a
structural element of S of size k and A is not equal with the compressions of structural elements
of size j, (k < j < n) to M. We show the structure set of S by str(S) = (J;_, str(S,k). The
definition of str(S) implies the elements of str(S) may not be all the same size. Thus, we extend
the structural elements to n X n matrices. If A € My is a structural element of size k (k < n), then
we denote the extension of A to M, by A(n) and we define, A(n) = A & A1,_;, where A is extreme
in the numerical range of A. The numerical range of A is defined by

W(A) = {(Ax,x) : x € C", ||x]| = 1},

where (-,-) is the inner product on the Hilbert space C". By [10, Corollary 5.3], any structural
element can be extended to a C*-extreme point. Therefore, A(n) is a C*-extreme point of S (for
more details we refer to [10]).

The C*-convex hull of a subset L € M, is the smallest C*-convex set containing L. An es-
sential fact is that C*-convex hull of L is compact whenever L is a compact subset of M, [4]. A
Caratheodory theorem for convex sets in finite dimensions says that every point in a convex set S
contained in an n-dimensional (real) linear space is a convex combination of at most n + 1 extreme
points of . Morenz showed in [10] the following Caratheéodory type theorem for C*-convex sets
in M,.

Proposition 2.1. Let S C M, be compact and C*-convex and let A € S. Then, A is a C*-convex
combination of at most 3n* elements of str(S).

3. The Main Results

In this section we are going to consider a matrix convex function on a C*-convex set generated
by a compact set of self—adjoint matrices and we obtain an upper bound for this function at a scalar
C*-extreme point. In the usual manner the same result holds for a matrix concave function.

Theorem 3.1. Suppose that S C M, is the C*-convex hull of a compact set L of self-adjoint
matrices and let the closed interval [a, 3] be the convex hull of the spectra of L. Then, A € S is
C*-extreme in S if and only if A is either a scalar matrix with scalars a,  or unitary equivalent to

. . [al O
the dlagonalmamx( 0 Bl )

Proof. This follows from [6, Corollary 4.2]. ]

We consider the standard norm || - || on the Hilbert space C". For A € M,,, we denote by ||A|| the
operator (bound) norm of ||A|| defined as

Al = sup [|Ax]].
=1

We are recalling the following two theorems from [2]. Note that 7 € M, is a contraction whenever
ITll < 1.
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Theorem 3.2. Let f be a convex function, let T be a contraction and set X = f(T*AT) and
Y =T"f(A)T for A € H,(I). Then, there exist unitaries U, V such that

X < uyu*+Vvyv .
2
Theorem 3.3. Let f be a convex function and set X = f(3iL, TTAT;) and Y = Y12, T! f(A)T; for
{Ar, c H,(I), where 3, T T; = 1. Then, there exist unitaries U, V such that

uyuv:+vyve
X < > .

We now prove the main results.
Theorem 3.4. Suppose that f is a convex function on [, ).

(a) If S € M, is a compact and C*-convex set of self—adjoint matrices with spectra in the closed
interval [, B], then f has an upper bound on S.

(b) If S € M, is the C*-convex hull of a compact set L of self-adjoint matrices and the closed
interval [a, B] is the convex hull of the spectra of L, then f attains its upper bound at a scalar
C*-extreme point of S.

Proof. (a) Let A be an arbitrary element of S. Then, the Carathe¢odory type theorem shows that
A = Y T;A(m)T; provided that .., T/T; = 1, T; € M,, each Ay(n) is C*-extreme in § and
I C{1,2,...,3n%}. It follows from Theorem 3.1 that either A;(n) = a1, 81 or there exist unitaries U;

[ al O
such that A;(n) = U]} ( 0 Bl )Ui. Define

L:={iel: A(n)=cal}, L:={iel:An) =pl1},

and
) ) sl al 0
I; = {leI.Ai(l’l)—Ui( 0 Bl )Ul}

It is clear that f(al) = f(a)l. Without loss of generality we may assume that f(8) < f(a). It
then follows that f(A;(n)) < f(a)l fori € I U I,. Assume that i € I;. Apply Theorem 3.2 and the
convexity of f to obtain unitaries V; and W; such that

f(Ai(n))

. al O

Lfoo(f@l 0 \ o o f@l 0\
< Z{V,Ui( 0 e )U,Vi +W,U,.( 0 e )U,Wi}

1 S fl@l 0 . S fl@l 0 .
< E{VIUL( 0 f(a)l)UlVl +WiUi( 0 f(CZ)l)UlWl}

= f(a)l.
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Hence, f(A;(n)) < f(a)]1 fori € I5. By using Theorem 3.3 and the self—adjointness of A;(n) we get
there exist unitaries U and V such that

fA) = fOTIAMT)
i€l
1
< 3 {U(Z T} AU + V() T;‘f(Ai(n»Ti)v*}
i€l i€l
< fla)l.

This means that f(a)1 is the upper bound of f on S.

(b) Note that « is extreme in the convex hull of the spectra of L and so Theorem 3.1 asserts
that the scalar matrix a1 is C*-extreme in S. On the other hand, f(a@)1 = f(al), i.e., f attains this
upper bound at a1. ]

Corollary 3.5. Suppose that S C M, is the C*-convex hull of a compact set L of self-adjoint
matrices and let the close interval [, 8] be the convex hull of the spectra of L. If f is convex on
[a,B], then

£ (Il < min{|f ()], |fBI}

forall A € S. Moreover, there exists Ay € S such that Ay is C*-extreme in S and

Lf (Al = min{|f(a)], [ f(BI}.

Proof. According to Theorem 3.4(a) either f(a)1 or f(5)1 is the upper bound of f on S. Hence,
AN < If @)1l = [f(@)l or [|f(AIl < [f(B)] for every A € S and so [|f(A)]l < min{|f(@)], [f (B}
for every A € §. We remarked in Theorem 3.4(b) that f attains its upper bound at either @l € §
or B1 € S. Without loss of generality we may assume that f(8) < f(«@). Define Ag = 81. Then,
I[f (Al = lFBDIl = | f(B)] = min{|f(a)I,|f(B)|}. By the same reasoning as in the proof of Theorem
3.4(b), the matrix Ay is C*-extreme in S. O

Bourin [3] remarked that the inequalities in Theorem 3.2 and 3.3 reverse for concave functions.
The next corollaries list some consequences of our results for concave functions.

Corollary 3.6. Suppose that f is a concave function on [«, S].

(a) If S € M, is a compact and C*-convex set of self—adjoint matrices with spectra in the closed
interval [a, 5], then f has a lower bound on S .

(b) If S € M, is the C*-convex hull of a compact set L of self-adjoint matrices and the closed
interval [a, B] is the convex hull of the spectra of L, then f attains its lower bound at a scalar
C*-extreme point of S.

Corollary 3.7. Suppose that S C M, is the C*-convex hull of a compact set L of self-adjoint
matrices and let the close interval [a, 8] be the convex hull of the spectra of L. If f is concave on

[a,B], then
max{|f (@), |[f(BI} < [If(Al

forall A € S. Moreover, there exists Ay € S such that A is C*-extreme in S and

1Lf (Al = max{| f(a)l, |F(B)I}-
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Proof. According to Corollary 3.6(a) either f(a)1 or f(8)1 is the lower bound of f on S. Hence,
If (@] = llf @1l < [If(All or [f(B)I < [If(A)ll for every A € § and so max{|f(a)l, [f (B} < |/ (Al
for every A € §. We remarked in Corollary 3.6(b) that f attains its lower bound at either a1 € §
or B1 € S. Without loss of generality we may assume that f(8) < f(a). Define Ay = al. Then,
Ilf(ADI = llf(aD)]| = |f(e@)| = max{|f(a)|, |f(B)|} and the matrix Ay is C*-extreme in S. O
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