

Convex functions on compact C*-convex sets

Ismail Nikoufar^a

^aDepartment of Mathematics, Payame Noor University, P.O. Box 19395-3697 Tehran, Islamic Republic of Iran.

ARTICLE INFO

Article history: Received 13 January 2020 Accepted 20 June 2020 Available online 7 August 2020 Communicated by Hossein Mohebi

Keywords:

C^{*}-convex set, *C*^{*}-extreme point, convex function, matrix convex function.

2000 MSC: 47L07 52A41 47A56.

Abstract

It is well known that if a real valued convex function on a compact convex domain contained in the real numbers attains its maximum, then it does so at least at one extreme point of its domain. In this paper, we consider a matrix convex function on a compact and C^* -convex set generated by self-adjoint matrices. An important issue is so that this function on a compact and C^* -convex domain attains its maximum at a C^* -extreme point.

© (2020) Wavelets and Linear Algebra

1. Introduction and Preliminaries

Matrix functions have played an important role in scientific computing and engineering. Well known examples of matrix function include \sqrt{A} (the square root function of a positive matrix), and

http://doi.org/10.22072/wala.2020.120065.1268 © (2020) Wavelets and Linear Algebra

^{*}Corresponding author

Email address: nikoufar@pnu.ac.ir (Ismail Nikoufar)

 e^A (the exponential function of a square matrix). For any real valued function f, a corresponding matrix valued function f(A) can be defined on the space of self-adjoint matrices by the spectral theorem and applying f to the eigenvalues in the spectral decomposition of A.

Let M_n denote the set of $n \times n$ matrices with complex entries, and let $H_n(\mathbb{I})$ denote the set of $n \times n$ self-adjoint matrices with eigenvalues in the interval \mathbb{I} . The identity matrix I_n will be denoted simply by 1, and correspondingly, a scalar λ will represent $\lambda 1$. For self-adjoint matrices A, B the order relation $A \leq B$ means that B - A is positive.

We consider the spectral representation of A given by $A = \sum_{i=1}^{m} \lambda_i P_i$, where $\lambda_1, ..., \lambda_m$ are the eigenvalues of A (not counting multiplicity) and $P_1, ..., P_m$ are orthogonal projections with the identity matrix as sum. This representation is unique and $f(A) = \sum_{i=1}^{m} f(\lambda_i) P_i$. The functional calculus can be extended to self-adjoint operators acting on an infinite-dimensional Hilbert space, but we will consider the theory only for matrices.

Let f be a real valued function defined on the interval \mathbb{I} of the real line. The function f is said to be convex if

$$f(ca + (1 - c)b) \le cf(a) + (1 - c)f(b) \ (a, b \in \mathbb{I}, 0 \le c \le 1).$$

Let $A \in H_n(\mathbb{I})$ and its eigenvalues λ_j contained in \mathbb{I} . We can choose a unitary matrix $U \in M_n$ such that $A = U^*DU$ and $D = diag(\lambda_1, ..., \lambda_n)$ is diagonal and then define $f(A) = U^*f(D)U$, where $f(D) = diag(f(\lambda_1), ..., f(\lambda_n))$. The function f is said to be matrix convex if the map $A \mapsto f(A)$ is convex on $H_n(\mathbb{I})$ in the sense that

$$f(cA + (1 - c)B) \le cf(A) + (1 - c)f(B) \ (A, B \in H_n(\mathbb{I}), 0 \le c \le 1).$$

Also, f is matrix concave if -f is matrix convex (see [7], [1]).

2. C*-convex sets

Recently, a notion of C^* -convexity has been studied by Farenick, Morenz [4, 6] and Magajna [8, 9]. C^* -convexity is the natural extension of the classical scalar-valued convex combination to include C^* -algebra valued coefficient. It therefore makes sense in a C^* -algebra and, more generally, for bimodules over C^* -algebras. In particular, there is a rich class of such C^* -convex sets in the $n \times n$ complex matrices. The matrix state spaces of a C^* -algebra are another class of examples.

A set $S \,\subset M_n$ is called C^* -convex, if S is closed under the formation of finite sums of the type $\sum_i T_i^* A_i T_i$, where $T_i \in M_n$, $A_i \in S$ and $\sum_i T_i^* T_i = 1$. This formation of finite sums is called C^* -convex combination in S and the T_i are called C^* -convex coefficients. If the coefficients T_i are invertible in M_n , then they are called proper C^* -convex coefficients and the C^* -convex combination is called a proper C^* -convex combination. A point A in the C^* -convex set S is a C^* -extreme point, if $A = \sum_i T_i^* A_i T_i$ is a proper C^* -convex combination of elements $A_i \in S$, then every A_i comes from the unitary orbit of A, i. e., for every i there exists a unitary element $U_i \in M_n$ such that $A = U_i^* A_i U_i$ (see [6]).

A point *A* in a compact and *C*^{*}-convex set $S \subset M_n$ is a structural element of size *n*, if whenever $A = \sum_i T_i^* A_i T_i$ is a *C*^{*}-convex combination of elements of *S*, then there exist unitary elements $U_i \in M_n$ and scalars $\lambda_i \in [0, 1]$ such that, $A = U_i^* A_i U_i$, $T_i = \lambda_i U_i$ and $\sum_i \lambda_i^2 = 1$. Following

[10] we write $A \in \text{str}(S, n)$. It is an immediate consequence that the structural elements of *S* of size *n* coincide with the irreducible *C*^{*}-extreme points. It is possible for a *C*^{*}-convex set has no structural elements of size *n*. So, we need to define structural elements of size less than *n*. Let S_k be the compression of *S* to M_k . The point $A \in M_k$ is called a structural element of size *k*, if *A* is a structural element of *S_k* of size *k* and *A* is not equal with the compressions of structural elements of size *j*, $(k < j \le n)$ to M_k . We show the structure set of *S* by $\text{str}(S) = \bigcup_{k=1}^n \text{str}(S, k)$. The definition of str(S) implies the elements of str(S) may not be all the same size. Thus, we extend the structural elements to $n \times n$ matrices. If $A \in M_k$ is a structural element of size k (k < n), then we denote the extension of *A* to M_n by A(n) and we define, $A(n) = A \oplus \lambda 1_{n-k}$, where λ is extreme in the numerical range of *A*. The numerical range of *A* is defined by

$$W(A) = \{ \langle Ax, x \rangle : x \in \mathbb{C}^n, ||x|| = 1 \},\$$

where $\langle \cdot, \cdot \rangle$ is the inner product on the Hilbert space \mathbb{C}^n . By [10, Corollary 5.3], any structural element can be extended to a C^* -extreme point. Therefore, A(n) is a C^* -extreme point of S (for more details we refer to [10]).

The C^{*}-convex hull of a subset $L \subset M_n$ is the smallest C^{*}-convex set containing L. An essential fact is that C^{*}-convex hull of L is compact whenever L is a compact subset of M_n [4]. A Carathèodory theorem for convex sets in finite dimensions says that every point in a convex set S contained in an *n*-dimensional (real) linear space is a convex combination of at most n + 1 extreme points of S. Morenz showed in [10] the following Carathèodory type theorem for C^{*}-convex sets in M_n .

Proposition 2.1. Let $S \subset M_n$ be compact and C^* -convex and let $A \in S$. Then, A is a C^* -convex combination of at most $3n^2$ elements of str(S).

3. The Main Results

In this section we are going to consider a matrix convex function on a C^* -convex set generated by a compact set of self-adjoint matrices and we obtain an upper bound for this function at a scalar C^* -extreme point. In the usual manner the same result holds for a matrix concave function.

Theorem 3.1. Suppose that $S \subset M_n$ is the C^* -convex hull of a compact set L of self-adjoint matrices and let the closed interval $[\alpha, \beta]$ be the convex hull of the spectra of L. Then, $A \in S$ is C^* -extreme in S if and only if A is either a scalar matrix with scalars α , β or unitary equivalent to the diagonal matrix $\begin{pmatrix} \alpha 1 & 0 \\ 0 & \beta 1 \end{pmatrix}$.

Proof. This follows from [6, Corollary 4.2].

We consider the standard norm $\|\cdot\|$ on the Hilbert space \mathbb{C}^n . For $A \in M_n$, we denote by $\|A\|$ the operator (bound) norm of $\|A\|$ defined as

$$||A|| = \sup_{||x||=1} ||Ax||.$$

We are recalling the following two theorems from [2]. Note that $T \in M_n$ is a contraction whenever $||T|| \le 1$.

Theorem 3.2. Let f be a convex function, let T be a contraction and set $X = f(T^*AT)$ and $Y = T^*f(A)T$ for $A \in H_n(\mathbb{I})$. Then, there exist unitaries U, V such that

$$X \le \frac{UYU^* + VYV^*}{2}.$$

Theorem 3.3. Let f be a convex function and set $X = f(\sum_{i=1}^{m} T_i^* A_i T_i)$ and $Y = \sum_{i=1}^{m} T_i^* f(A_i) T_i$ for $\{A_i\}_{i=1}^{m} \subset H_n(\mathbb{I})$, where $\sum_{i=1}^{m} T_i^* T_i = 1$. Then, there exist unitaries U, V such that

$$X \le \frac{UYU^* + VYV^*}{2}$$

We now prove the main results.

Theorem 3.4. Suppose that f is a convex function on $[\alpha, \beta]$.

- (a) If $S \subset M_n$ is a compact and C^* -convex set of self-adjoint matrices with spectra in the closed interval $[\alpha, \beta]$, then f has an upper bound on S.
- (b) If $S \subset M_n$ is the C*-convex hull of a compact set L of self-adjoint matrices and the closed interval $[\alpha, \beta]$ is the convex hull of the spectra of L, then f attains its upper bound at a scalar C*-extreme point of S.

Proof. (a) Let *A* be an arbitrary element of *S*. Then, the Carathèodory type theorem shows that $A = \sum_{i \in I} T_i^* A_i(n) T_i$ provided that $\sum_{i \in I} T_i^* T_i = 1$, $T_i \in M_n$, each $A_i(n)$ is *C*^{*}-extreme in *S* and $I \subseteq \{1, 2, ..., 3n^2\}$. It follows from Theorem 3.1 that either $A_i(n) = \alpha 1, \beta 1$ or there exist unitaries U_i such that $A_i(n) = U_i^* \begin{pmatrix} \alpha 1 & 0 \\ 0 & \beta 1 \end{pmatrix} U_i$. Define

$$I_1 := \{i \in I : A_i(n) = \alpha 1\}, \ I_2 := \{i \in I : A_i(n) = \beta 1\},\$$

and

$$I_3 := \{i \in I : A_i(n) = U_i^* \begin{pmatrix} \alpha 1 & 0 \\ 0 & \beta 1 \end{pmatrix} U_i \}.$$

It is clear that $f(\alpha 1) = f(\alpha)1$. Without loss of generality we may assume that $f(\beta) \le f(\alpha)$. It then follows that $f(A_i(n)) \le f(\alpha)1$ for $i \in I_1 \cup I_2$. Assume that $i \in I_3$. Apply Theorem 3.2 and the convexity of f to obtain unitaries V_i and W_i such that

$$\begin{aligned} f(A_{i}(n)) &= f(U_{i}^{*} \begin{pmatrix} \alpha 1 & 0 \\ 0 & \beta 1 \end{pmatrix} U_{i}) \\ &\leq \frac{1}{2} \left\{ V_{i}U_{i}^{*} \begin{pmatrix} f(\alpha)1 & 0 \\ 0 & f(\beta)1 \end{pmatrix} U_{i}V_{i}^{*} + W_{i}U_{i}^{*} \begin{pmatrix} f(\alpha)1 & 0 \\ 0 & f(\beta)1 \end{pmatrix} U_{i}W_{i}^{*} \right\} \\ &\leq \frac{1}{2} \left\{ V_{i}U_{i}^{*} \begin{pmatrix} f(\alpha)1 & 0 \\ 0 & f(\alpha)1 \end{pmatrix} U_{i}V_{i}^{*} + W_{i}U_{i}^{*} \begin{pmatrix} f(\alpha)1 & 0 \\ 0 & f(\alpha)1 \end{pmatrix} U_{i}W_{i}^{*} \right\} \\ &= f(\alpha)1. \end{aligned}$$

Hence, $f(A_i(n)) \le f(\alpha) 1$ for $i \in I_3$. By using Theorem 3.3 and the self-adjointness of $A_i(n)$ we get there exist unitaries U and V such that

$$\begin{aligned} f(A) &= f(\sum_{i \in I} T_i^* A_i(n) T_i) \\ &\leq \frac{1}{2} \left\{ U(\sum_{i \in I} T_i^* f(A_i(n)) T_i) U^* + V(\sum_{i \in I} T_i^* f(A_i(n)) T_i) V^* \right\} \\ &\leq f(\alpha) 1. \end{aligned}$$

This means that $f(\alpha)$ is the upper bound of f on S.

(b) Note that α is extreme in the convex hull of the spectra of L and so Theorem 3.1 asserts that the scalar matrix $\alpha 1$ is C^* -extreme in S. On the other hand, $f(\alpha)1 = f(\alpha 1)$, i.e., f attains this upper bound at $\alpha 1$.

Corollary 3.5. Suppose that $S \subset M_n$ is the C^{*}-convex hull of a compact set L of self-adjoint matrices and let the close interval $[\alpha, \beta]$ be the convex hull of the spectra of L. If f is convex on $[\alpha, \beta]$, then

$$||f(A)|| \le \min\{|f(\alpha)|, |f(\beta)|\}$$

for all $A \in S$. Moreover, there exists $A_0 \in S$ such that A_0 is C^* -extreme in S and

$$||f(A_0)|| = \min\{|f(\alpha)|, |f(\beta)|\}.$$

Proof. According to Theorem 3.4(a) either $f(\alpha)1$ or $f(\beta)1$ is the upper bound of f on S. Hence, $||f(A)|| \le ||f(\alpha)1|| = |f(\alpha)|$ or $||f(A)|| \le |f(\beta)|$ for every $A \in S$ and so $||f(A)|| \le \min\{|f(\alpha)|, |f(\beta)|\}$ for every $A \in S$. We remarked in Theorem 3.4(b) that f attains its upper bound at either $\alpha 1 \in S$ or $\beta 1 \in S$. Without loss of generality we may assume that $f(\beta) \le f(\alpha)$. Define $A_0 = \beta 1$. Then, $||f(A_0)|| = ||f(\beta 1)|| = |f(\beta)| = \min\{|f(\alpha)|, |f(\beta)|\}$. By the same reasoning as in the proof of Theorem 3.4(b), the matrix A_0 is C^* -extreme in S.

Bourin [3] remarked that the inequalities in Theorem 3.2 and 3.3 reverse for concave functions. The next corollaries list some consequences of our results for concave functions.

Corollary 3.6. Suppose that f is a concave function on $[\alpha, \beta]$.

- (a) If $S \subset M_n$ is a compact and C^* -convex set of self-adjoint matrices with spectra in the closed interval $[\alpha, \beta]$, then f has a lower bound on S.
- (b) If $S \subset M_n$ is the C^{*}-convex hull of a compact set L of self-adjoint matrices and the closed interval $[\alpha, \beta]$ is the convex hull of the spectra of L, then f attains its lower bound at a scalar C^{*}-extreme point of S.

Corollary 3.7. Suppose that $S \subset M_n$ is the C^{*}-convex hull of a compact set L of self-adjoint matrices and let the close interval $[\alpha, \beta]$ be the convex hull of the spectra of L. If f is concave on $[\alpha, \beta]$, then

$$\max\{|f(\alpha)|, |f(\beta)|\} \le \|f(A)\|$$

for all $A \in S$. Moreover, there exists $A_0 \in S$ such that A_0 is C^* -extreme in S and

 $||f(A_0)|| = \max\{|f(\alpha)|, |f(\beta)|\}.$

Proof. According to Corollary 3.6(a) either $f(\alpha)1$ or $f(\beta)1$ is the lower bound of f on S. Hence, $|f(\alpha)| = ||f(\alpha)1|| \le ||f(A)||$ or $|f(\beta)| \le ||f(A)||$ for every $A \in S$ and so $\max\{|f(\alpha)|, |f(\beta)|\} \le ||f(A)||$ for every $A \in S$. We remarked in Corollary 3.6(b) that f attains its lower bound at either $\alpha 1 \in S$ or $\beta 1 \in S$. Without loss of generality we may assume that $f(\beta) \le f(\alpha)$. Define $A_0 = \alpha 1$. Then, $||f(A_0)|| = ||f(\alpha 1)|| = |f(\alpha)| = \max\{|f(\alpha)|, |f(\beta)|\}$ and the matrix A_0 is C^* -extreme in S.

Acknowledgments

I would like to thank the referee for carefully reading the manuscript and for giving such constructive comments which substantially helped improving the quality of the paper.

References

- [1] J. Bendat and S. Sherman, Monotone and convex operator functions, Trans. Am. Math. Soc., 79 (1955), 58–71.
- [2] J.-C. Bourin, Hermitian operators and convex functions, JIPAM, J. Inequal. Pure Appl. Math., 6(5) (2005), Art 139.
- [3] J.-C. Bourin and E.-Y. Lee, Unitary orbits of Hermitian operators with convex or concave functions, *Bull. Lond. Math. Soc.*, **44** (2012), 1085–1102.
- [4] D.R. Farenick, C*-convexity and matricial ranges, Can. J. Math., 44 (1992), 280–297.
- [5] D.R. Farenick, Krein-Milman type problems for compact matricially convex sets, *Linear Algebra Appl.*, 162-164 (1992), 325–334.
- [6] D.R. Farenick and P.B. Morenz, C*-extreme points of some compact C*-convex sets, Proc. Am. Math. Soc., 118 (1993), 765–775.
- [7] K. Löwner, Über monotone Matrix funktionen, Math. Z., 38 (1934), 177–216.
- [8] B. Magajna, C*-convexity and the Numerical Range, Can. J. Math., 43(2) (2000), 193-207.
- [9] B. Magajna, On C*-extreme points, Proc. Am. Math., Soc., 129(3) (2000), 771-780.
- [10] P.B. Morenz, The structure of C*-convex sets, Can. J. Math., 46(5) (1994), 1007–1026.