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1. Introduction and Preliminaries

Frames were introduced by Duffin and Scheaffer [11] in the context of non-harmonic Fourier
series. They are very useful in characterization of function spaces and fields of applications such
as filter bank theory, signal and image processing, coding and wireless communications[17].

Nowadays, frames have a significant role in both pure and applied mathematics, so that these
are a fundamental research area in mathematics, computer science and engineering, but technical
advances and measure amounts of data which cannot be handled with a signal processing system
have been increased using the various frames as g-frame [18], fusion frame [7], K-frame [14] and
weaving frames [4] and etc.

Continuous frames (or briefly c-frames) were been proposed by Kaiser [15] and also indepen-
dently by Ali et al. [2] to a family indexed by some locally compact space endowed with a Radon
measure. C-frames are the first generalization frames to measure spaces. For more studies about
these frames, we refer to [12, 16]. By combining the above mentioned extensions of frames, the
new and more general notion called continuous g-frame has been introduced in [1, 10].

Recently, Bemrose et al. [4] introduced a new concept of weaving frames which is motivated
by a question in distributed signal processing. Also, the continuous version of weaving frames
and their properteis is introduced by Vashisht and Deepshikha in [19, 20, 21]. In this paper, we
introduce the concept of weaving continuous g-frames in Hilbert spaces and we generalize some
results in [4, 19] to c-g-frames.

Throughout this paper, (€2, 1) is a measure space with positive measure u, H and {H,,},cq are
Hilbert spaces and a family of Hilbert spaces, respectively, and B(H, K) is the set of all bounded
and linear operators from H to K. If H = K, then B(H, H) will be denoted by B(H). For each
m > 1 where m € N, we define [m] :={1,2,--- ,m}and [m]*={m+1,m+2,---}.

First, we will need to the pseudo-inverse operator. If an operator U has closed range, then there
exists a right-inverse operator U’ (pseudo-inverse of U) in the following sense (see [8])

Lemma 1.1. Let U € B(K, H) be a bounded operator with closed range R(U). Then there exists
a bounded operator U' € B(H, K) for which

UU'x =x, xeRWU).
We first recall the definition of continuous frame from [3, 16].

Definition 1.2. Suppose that (€2, i) is a measure space with positive measure . A mapping F :
Q) — H is called a continuous frame (or briefly c-frame) for H with respect to (€2, w), if

(1) Forall h € H, w — {(h, F(w)) is a measurable function on €2,

(i1) there exist positive constants A and B such that for each f € H,
Al < f \(h, F(w)) du(x) < BJIAII. (L.1)
Q

Now, we summarize some facts about c-g-frames from [1]. Define

HycoHy, ={F : Q — UyeoH,, @ F(w) € Hy}.
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We say that F € [1,cqoH,, is strongly measurable if F' as a mapping of Q to ®,qH,, is measurable.
Let

Q2(Hy, p) = {F € HyeaH,, : F is strongly measurable, fg IF(w)Pdu(w) < oo}.
With inner product given by
(F,G) = fg (F(w), G(w))du(w).
It can be proved that £2(H,, 1) is a Hilbert space ([1]). We will denote the norm of F € €*(H,,, i)

by [|F]l..

Definition 1.3. A family {A,, € B(H, H,)}.cq is called a continuous g-frame (or briefly c-g-frame)
for H with respect to {H,},cq, if

(1) the mapping

Q+— C,
w — ||ALfl,

is measurable for any f € H.

(i1) there exist constants 0 < A < B < oo such that for each f € H,
AllfIP < f IAGfIP du(w) < BfIP. (1.2)
Q

If A, B can be chosen such that A = B, then {A,},cq 1s called a tight c-g-frame and if A = B = 1,
it is called Parseval c-g-frame. A family {A,},cq 1s called a c-g-Bessel family if the right hand
inequality (1.2) holds and the number B is called the Bessel constant.

Theorem 1.4. ([1]). Let {A,}wecq 1S a continuous g-Bessel family for H with respect to {H,,}.co
with the bound B. Then the mapping T of 22(H,, 1) to H defined by

(TAF.g) = f (AL F(), g)du(w),  F € C(Ho,p), g € H,
Q

is linear and bounded with ||7y]| < VB. Furthermore, for each geHandw € Q,
Ty(®)(w) = Aug.
In the continuous g-frame, frame operator S 5 = TAT is defined by
Sr:H— H,
Safo= [(FANDd

Therefore,
Aldy < S < Bldy

and we obtain, if {A,}.cq 1S a c-g-frame, then S 4 is a positive, self-adjoint and invertible operator.
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Definition 1.5. ([19]). A family of c-frames {F ,;}weq.icim for H with respect to p is said to be
c-woven if there exist universal same positive constants 0 < A < B < oo such that for each
partition {0 }icim) of Q, the family {F ,i}wesicim) 1S a c-frame for H with bounds A and B. Each
Sfamily {F ,i}weo icim) 1S called a weaving.

2. Continuous Weaving g-Frames

In this section, we introduce the notation of continuous g-woven in Hilbert spaces and discuss
some of their properties.

Definition 2.1. A family of c-g-frames {A,; € B(H, H,)}weq.icm for H is said to be continuous
g-woven (or c-g-woven) if there exist universal constants 0 < A < B such that for each partition
{Ti}ierm Of Q, the family {A i} weo, icim) 18 @ c-g-frame for H with bounds A and B.

In the above definition, A and B is called universal c-g-frame bounds. It is easy to show that
every c-g-woven has an universal upper c-g-frame bound. Indeed, let {A,;},cq be a c-g-Bessel
family for H with bound B; for each i € [m]. Then, for any partition {0}, of Q and f € H we
have

> umm%m}lfmm%wqiﬁww.
icfm] ¥ i iefm] Y€ iclm]
In the next results, we construct a c-g-woven by using a bounded linear operator.

Theorem 2.2. Let {A,i}weq.icim be a c-g-woven for H with universal bounds A, B. If U € B(H)
has closed range, then {A,;U"},eq.icim i a c-g-woven for R(U) with frame bounds A||U |72 and
B||U|I”.

Proof. First, since U* f € H and w — ||A,;f]| is a measurable function for each f € H and i € [m],
then w +— ||[A,;U"f]| is measurable for any f € H and i € [m]. On the other hand, for each
f € R(U), we have
AllfIP = AlIKUTY U* fIP
< AIUTIPNU 17

stmewwwL
Q

i€[m]
The upper bound condition is given similarly. [

Corollary 2.3. Let {Ayi}weq.icim be a c-g-woven for H with universal bounds A, B. If U € B(H) is
invertible, then {A,;U)}weq.icim is a c-g-woven for H with frame bounds A||U™"||"* and B||U/|.

The next proposition shows that it is enough to check c-g-weaving on smaller measurable space
than the original which this is an extension of Proposition 3.10 in [19].
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Theorem 2.4. For each i € [m), let {A,i}weq be a c-g-frame for H with frame bounds A; and B,.
If there exists a measurable subset X C € such that the family of c-g-frame {A,i}wes.icim) 1S a c-g-
woven for H with universal frame bounds A and B, then {A.;}weq.icim IS a c-g-woven for H with
universal bounds A and ), Bi.

Proof. Suppose that {0;}ie[n 1s a partition of Q and f € H. The upper bound is clear. For the lower
bound, it is clear that {o; N X}, 18 a partition of X. Thus, {Ayilwernz icim) 1 a c-g-frame for H
with the lower frame bound A. Hence, for each f € H

> nAmedua»zzjixf‘znAmeduw»

ie[m] Y i i€[m]

> AllfIP.
[]

Casazza and Lynch in [6] showed that It is possible to remove vectors from woven frames and
still be left with woven frames. After, this topic was been presented in [19]. Now, we study it for
c-g-woven in the following Theorem.

Theorem 2.5. Let {A,i}weq.icim be a c-g-woven for H with universal bounds A and B. If there
exists 0 < D < A and a measurable subset ¥ C Q and n € [m] such that for each f € H,

f IAuifI du(w) < DIFIP,  Vf€H,
Q\X

i€[m]\{n}
Then the family {A i} wes.ieim) IS a c-g-woven for H with frame bounds A — D and B.

Proof. Suppose that {07} 18 @ partition of X and {7;};cs 1s a partition of Q \ X. For a given
f € H, we define
p:X2— C,

o) = > X (@)IAuifl

i€[m]

and
¢:N— C,
$@) = > Xoun@lIAufl,

ie[m]

where, ., 1s the characteristic function of o;. Since {A,;}werur icpm) 15 @ c-g-frame for H and
¢ = @ls, then ¢ and ¢ are measurable. So, for each f € H, we have

zjnmmwwst 1A w1 dp(w)

ic[m) Y i ie[m] Y oiYTi

< BIfIP.
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Now, for the lower frame bound, assume that {g;};c[,»,; 1S a partition of Q \ X such that ¢, = 0. Then
{6 U 0 i}iepm 1s a partition of € and so, for any f € H we have,

Do IAwif I duw)

ie[m] Y 9i

= > | f 1A I dpa(as) - f 1Aui 1P dia(@)) + f 1AL dps(ew)
GiVo; Si o

ie[m]\{n}
2 (f IIAwif||2du(w)—f ||Awif||2dﬂ(w))+f IALifII? du(w)
ie[m]\{n} SiVoi Q\X On
=), f 1A I dp(w) - f IAwif 1 dpa(w)
ictm) ¥ SiVoi iefm]\{n) ¥ \X
> (A - D)IfI

]

The following presents a relationship between the norms of the c-g-frame operator of original
c-g-frame and the weaving.

Theorem 2.6. Let {A,i}uco.icim) be a c-g-woven for H with universal bounds A and B. If SX) is
the c-g-frame operator of {A,i}weq for each i € [m], S, represents the c-g-frame operator of
{Awilweo,icim) for each partition {Ti}icim) of Q and S X)m denotes the c-g-frame operator S X) with
integral restricted to o, then for each f € H, ’

SIS, IR < BIS anllF-

i€[m]

Proof. Suppose that f € H. We can write

SISO, AP = (sup SY, £

i€[m] ic[m] ||g\|:1
= > (sup KT, (T Y £, 9)I)’
i€[m] llgli=1
< > BITY, Y IR
i€[m]
=B | lAufIP du(w)
ie[m] Y 9i
= BSnofs )
< BIIS a0 lILf1P.

[]

The next result provides a necessary and sufficient condition for c-g-woven which connects to
c-woven.
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Theorem 2.7. Let Q; C Q be measurable subsets for all i € [m], and let F; and G; be c-frame
mappings on Q; for H,, with the pair frame bounds (Ar,, Br,) and (Ag,, Bg,), respectively, for each
w € Q. Assume that A, ®,; € B(H, ;) for any i € [m] such that {\,i}weq.icim and {Oyi}we.icm)
are strongly measurable. Then the following assertions are equivalent.

(1) {N) Fi}oeq,icim and {O] .G}weq icim) are c-woven for H.
(1) {Aui}weqicim and {Oyitweq icim are c-g-woven for H.

Proof. (I) = (II). Suppose that o~ C € is a measurable subset and f € H. Let {A’ F},cqicm and
{07 ,Gi}weq,icpm are c-woven for H with universal frame bounds C, D and A = inf{Ar ,Ag,}. We
have for each i € [m],

Af”Awifllzd/l(w)+Af(”®wif”2d,u(w)

< f Ar NG fIP dpa() + f A 00 fI dya(w)

(o (o

< f fQ (Auifs FXGOVP dia() dpa() + f p fg (@uif, GNP du(x) du(e)

~ [ [ 1 AuEef duddu@ + [ [ K. 0LG 0 du du
o JQ; o¢ JQ;
< DIIfIP.
With the same way, we conclude that

Bf”Awif”zd,u(w)+Bf(”®wif”2d,u(w)

> f f s A FiCoD I di(x) du(w) + f f K f> 0G0 dp(x) dps(w)
o JQ; o¢ JQ;
> CIIfIP,

where B = sup{By,,, Bg,,}. Thus, we obtain {A,;}ucq icim) and {Oy;}weq.icim) are c-g-woven for H

with universal frame bounds — and —.

(II) = (I). Suppose that {A,;i}uen.icim and {Oy;}weq.icm are c-g-woven for H with universal
frame bounds C and D. Now, we can write for each f € H,

f fg AL AP duo) du(w) + f C fg (. 07, G dux) du(w)
_ f f (Auifs FCON dia() du(w) + f f (@ o, GiV dua() du(w)
o JQ, o JQ;
> f ArIAuif P du(e) + f A O 1P du(@)

> A( f 1w I du) + f 180fIP du(e)
> ACI|fIP-
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Also, we can get
[ [ wrnsront duoduer+ [ [ k.06 dutodue < BIFE

So, {A] . Fi}ueq,icim and (O] .Gi},eq,icim are c-woven for H. with universal bounds AC and BD. [
The following theorem is extension of Lemma 4.3 of [4] for c-g-frames.

Theorem 2.8. Let {A,i}weca.icim) be a family of c-g-frames for H with respect to a o-finite measure
W. Suppose that for a partition collection of disjoint finite sets {T;}icim) of Q and for any € > O there
exists a partition {0 }icim) of the set Q\ e Ti Such that {A,i}weo v icim) has a lower c-g-frame
bound less than . Then {A ,;}weq.icm) IS not a c-g-woven.

Proof. Since (Q, u) is a o-finite measure space, then QQ = U,cn€2;, where €Q; are disjoint measurable
sets and u(€);) < oo for all i € N. Assume that 7;; = @ for all i € [m] and € = 1. Then, by the
assumption, there exists a partition {07 }ie;m Of Q such that {A,}weo,ur).ierm) has a lower bound
(also, optimal lower bound) less that 1. Thus, there is a vector f; € H with ||f;|| = 1 such that

> f 1A fill2 dua(w) < 1.
ie[m] ¥ itYTil

Since

>, f 1w AilP dpa(e) < oo,
Q

i€[m]

> f IAwi il dp(w) < 1,
K

i€[m]

so, there is a k; € N such that

where, K| = Ujsg, 418
Continuing this way, for & = % and a partition {7, }iem; of Q1 U --- U _; such that

Tin = Tign-1) U (Tigu-1y N (Q U -+ U Qy 1))

for all i € [m], there exists a partition {07, }icpm of Q\ (Q; U--- Uy, _1) such that {A i} weoy,urs).ictm]

1
has a lower bound less than —. Therefore, there is a f,, € H and k,, € N such that ||f,|| = 1, k,, > k,,_;

n
) 1
Do MGl dp) < -,
K, n

i€[m]

and

where, K, = Ujs,+1€;. Choose a partition {g;}ien of Q, where ¢; 1= Ujen{7ij} = Tipey U (6i N
Q\ (Q;U---UQ,)). Assume that {A,;}ueg icim) 18 @ c-g-frame for H with the optimal lower frame
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bound A. Then, by the Archimedean Property, there exists a n € N such that r > %. Now, there
exists a f, € H with ||f,|| = 1 such that

Do | IAifIP du(w)

iclm] YSi

= Z f ||Awifr”2 du(w) + Z f IIAM‘frII2 du(w)
i€[m) ¥ Tir+1) ie[m) ¥ SiNEA(Q1U-UQ,)

< Z f A wiflI? du(w) + Z f 1A wi fo1? dua(w)
i€[m) ¥ TirYeir iclm] ¥ Vker+1<%
1 1

< —4 -
r r

< Allf I,

and this is a contradiction with the lower bound of A. ]

Corollary 2.9. Let {A,i}weq.icim be a c-g-woven for H with respect to a o-finite measure u. Then
there exists a collection of disjoint measurable subsets {T;}icm of Q and A > 0 such that for any
partition {0 }icpm of the set Q \ Ui, the family {A ,i}weruo).icpm 1S a c-g-frame for H with the
lower frame bound A.

Corollary 2.10. Suppose that {A,}weq and {®,}ucq are c-g-frames for H with optimal upper frame
bounds By and B,, respectively, and they are c-g-woven for H. Then, B, + B, is not an optimal
upper frame bound for the c-g-woven.

Proof. Let € > 0. Assume that B; + B, is an optimal upper frame bound for the c-g-woven. So,
there exists o C  such that

|S}|1P1( f IAwifIP du(w) + f 1001 dyu(w)) = By + Bs.

There exist a f; € H such that ||f;]| = 1 and

f 1A AP du(w) + f 1@ fiIP du(e) > By + By — .

Thus, by the assumption,

fg \ 1w fill? dpp(w) + f 10, fill* dp(w) < &.

Q\o°

Now, by Theorem 2.8, we conclude that {A,}.cq and {O,}.cq are not c-g-woven and this is a
contradiction. 0

A sufficient condition for c-g-woven is given in next theorem.
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Theorem 2.11. Let {A,;}ucq be a c-g-frame for H with frame bounds A; and B; for each i € [m].
Suppose that there exists M > 0 such that for all f € H, i # k € [m] and all measurable subset
AcCQ

fA (A wi = A fI* dpt(w) < M min { fA 1A fIP du(w), fA 1A fI dp(w).

Then, the family {A,i}weq.icim) IS a c-g-woven with universal bounds

A

d B
m-HM+H+1 P

where, A = Z,-e[m] A;and B = Zie[m] B;.

Proof. The upper bound is evident. For the lower bound, suppose that {0} e, 1s a partition of Q
and f € H. Therefore,

T DY f 1A 11> dp(w)

ictm iclm) V&

=220 | IAufIP du(w)

ie[m] ke[m] ¥ Tk

< 20 [ 1Mt IP duco

i€[m] gi

e [ {1Aif ~ AP di(@) + I d)

!
< U MAGifIPdu@)+ > [ M+ DIAGA dp(e))
i€[m] i ke[m] ¥ Tk
k#i
= {m =DM+ D+ 1} Y | IAuf I du(w).
ie[m] Y'Y

3. Perturbation For C-G-Woven

Perturbation of frames has been discussed by Cazassa and Christensen in [5]. For weaving
frames, Bemrose and et.al. have studied in [4], also Vashisht and Deepshikha presented for con-
tinuous case in [19]. we aim to present it for c-g-woven.

Theorem 3.1. Suppose for each i € [m)], the family {A,i}ocq be a c-g- frame for H with frame
bounds A; and B;. Assume that there exist constants A;, n; and y;(i € [m]) such that for some fixed

nelml,
Ai=A,— > (i+nvB,+yiVB)B,+ \B) >0

ie[m]\{n}
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and

| fQ (AL = ALDF (), &) di| < 11 fg (AL, FOw), gy
+%“ L <Az)iF(W),g>d/1'+/li||F||2

for every F € $*(H,,u) and g € H. Then for any partition {0 ;}jcim of Q, {Auidoeo . jeim) is a
c-g-frame for H with universal frame bounds A and } ., B;. Hence the family of c-g-frame
{Awilwea.icim) 1S woven for H.

Proof. 1t is clear that {A,;f}uer; jeim 18 strongly measurable for each f € H and any partition
{oj}jepm of Q, also the family {A,i}weq,icim 1S @ c-g-Bessel family with Bessel bound };c,, Bi.
Now, we show that {A,;}weq.icim has the lower frame condition. Assume that 7', is the synthesis
operator of {Ay;}weq.icim- Then for any F € Q%(H,, 1), we have

ITAFll = sup ]<TA,.F, g}‘ < sup ‘ f (AL F(w), g) d,u‘
llgll=1 llgll=1 Q

< sup ( fg VFIP du)'( fg 1Al i)

llgll=1
< VBilIFIp.

Now, for any F € 2(H,,,u), i € [m] \ {n}, we have

I(Ta, = Ta)FI
= sup [(Ta, = Ta)F. )
llgll=1
= sup | f (A5, = ALF (), g) di
ligli=1" JQ

< n; sup ‘ f <AZ,,1F(W),g>du'+%-
[lgll=1 Q

= nlITa, FIl + ¥illTs, Fll + A FL
< i VBIF|L + v: VBAIFI, + Al Fll
= (7 VB + i VB: + )IFlL.

sup | [ AL FO. 0] + AP

ligll=1

Thus,

ITa, = T ll < 1: /B, + vi \B: + Ai. (3.1)

For each i € [m] and o C X, we define

T (@uer Hoopt) , = H,

(TG, hy = f (AL GOw). B dt
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for all G € L2(H,, ), we have
IT VGl = ITA(G X < ITAMNIG x| < ITAMIFNL < VBIIF L.
Thus, 77|l < VB, for each i € [m]. Similarly with (2), we get for each i € [m] \ {n},

IS = TN < 7 v/By + i VB: + A (3.2)

Forevery f € H and i € [m] \ {n}, We compute
|(roaey - 1@y

< |y -Toaey )|

+|(roaey - roaey)|
Ty = Ty ]
+|T T = )
< (1 V/Bu + 7 VB: + 2)(\B, + \BIIfII

Now, suppose that {o7;}ie[») 1s a partition of € and T, be the synthesis operator associated with the
c-g-Bessel family {A,}weq.icpm)» DY using (4), we have,

IT3 AP = Kf, TATAD
= > | hALAGS du)

ie[m] Y'Y

<|

| [ gnsrandu@ ot [ AL du@
oo [ B AN dp(w)|

Y, [ Nt dutw

ie[m] Y i

:‘f(f,A;lAw1f>dy(w)+...+

= D | EAAGD @) + | F AL Ao f) d(w)

ic[m\{n) Vi m
4£ﬁ%Mwmw-Z(fm%Awmw>
i€lm\tn} ¥
- [ A A duw)

2‘ fQ (f,Aijwnﬁdﬂ(w)‘— Z ‘ f (fs NDon ) dp(w)

iefm\fn} v i

- [ AL A )
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> MR- Y [ TO@Oy =TTy g

i€[m]\{n}
> AP = WA@Y =TT
ie[m]\{n}
> AdIfIP = > IfIP@: VB, + i VB + 4)(VB, + VB)
i€[m]\{n}
= AllfIP.
This completes the proof. O]

With similar proof of Theorem 3.1, we can show the following result when the index 7 is not
fixed.

Corollary 3.2. For each i € [m], let the family {A,;},cq be a c-g- frame for H with frame bounds
A; and B;. Assume that there exist constants A;, n;, y;(i € [m — 1]) and n € [m] so that

A=A - Z (A +77i\/Ei+7i\/Bi+1)(\/§i+ VBir1) >0

ie[m—1]\{n}

and
I RCTE Sy
Q
= f (AL Fw),2)dp + ] f (A POV, @) i + AIFl
Q Q

for every F € $*(H,,,u) and g € H. Then for any partition {oj}jerm of & {Awi}weaj,je[m] is a
c-g-frame for H with universal frame bounds A and } ., B;. Hence the family of c-g-frame
{Awilwea.icim) 1s woven for H.
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