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1. Introduction and Preliminaries

Frames were introduced by Duffin and Scheaffer [11] in the context of non-harmonic Fourier
series. They are very useful in characterization of function spaces and fields of applications such
as filter bank theory, signal and image processing, coding and wireless communications[17].

Nowadays, frames have a significant role in both pure and applied mathematics, so that these
are a fundamental research area in mathematics, computer science and engineering, but technical
advances and measure amounts of data which cannot be handled with a signal processing system
have been increased using the various frames as g-frame [18], fusion frame [7], K-frame [14] and
weaving frames [4] and etc.

Continuous frames (or briefly c-frames) were been proposed by Kaiser [15] and also indepen-
dently by Ali et al. [2] to a family indexed by some locally compact space endowed with a Radon
measure. C-frames are the first generalization frames to measure spaces. For more studies about
these frames, we refer to [12, 16]. By combining the above mentioned extensions of frames, the
new and more general notion called continuous g-frame has been introduced in [1, 10].

Recently, Bemrose et al. [4] introduced a new concept of weaving frames which is motivated
by a question in distributed signal processing. Also, the continuous version of weaving frames
and their properteis is introduced by Vashisht and Deepshikha in [19, 20, 21]. In this paper, we
introduce the concept of weaving continuous g-frames in Hilbert spaces and we generalize some
results in [4, 19] to c-g-frames.

Throughout this paper, (Ω, µ) is a measure space with positive measure µ, H and {Hω}ω∈Ω are
Hilbert spaces and a family of Hilbert spaces, respectively, and B(H,K) is the set of all bounded
and linear operators from H to K. If H = K, then B(H,H) will be denoted by B(H). For each
m > 1 where m ∈ N, we define [m] := {1, 2, · · · ,m} and [m]c = {m + 1,m + 2, · · · }.

First, we will need to the pseudo-inverse operator. If an operator U has closed range, then there
exists a right-inverse operator U† (pseudo-inverse of U) in the following sense (see [8])

Lemma 1.1. Let U ∈ B(K,H) be a bounded operator with closed range R(U). Then there exists
a bounded operator U† ∈ B(H,K) for which

UU†x = x, x ∈ R(U).

We first recall the definition of continuous frame from [3, 16].

Definition 1.2. Suppose that (Ω, µ) is a measure space with positive measure µ. A mapping F :
Ω→ H is called a continuous frame (or briefly c-frame) for H with respect to (Ω, µ), if

(i) For all h ∈ H, ω 7→ 〈h, F(ω)〉 is a measurable function on Ω,

(ii) there exist positive constants A and B such that for each f ∈ H,

A‖h‖2 ≤
∫

Ω

|〈h, F(ω)〉|2 dµ(x) ≤ B‖h‖2. (1.1)

Now, we summarize some facts about c-g-frames from [1]. Define

Πω∈ΩHω = {F : Ω −→ ∪ω∈ΩHω : F(ω) ∈ Hω}.
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We say that F ∈ Πω∈ΩHω is strongly measurable if F as a mapping of Ω to ⊕ω∈ΩHω is measurable.
Let

L
2(Hω, µ) =

{
F ∈ Πω∈ΩHω : F is strongly measurable,

∫
Ω

‖F(ω)‖2dµ(ω) < ∞
}
.

With inner product given by

〈F,G〉 =

∫
Ω

〈F(ω),G(ω)〉dµ(ω).

It can be proved that L2(Hω, µ) is a Hilbert space ([1]). We will denote the norm of F ∈ L2(Hω, µ)
by ‖F‖2.

Definition 1.3. A family {Λω ∈ B(H,Hω)}ω∈Ω is called a continuous g-frame (or briefly c-g-frame)
for H with respect to {Hω}ω∈Ω, if

(i) the mapping

Ω 7−→ C,
ω 7−→ ‖Λω f ‖,

is measurable for any f ∈ H.

(ii) there exist constants 0 < A ≤ B < ∞ such that for each f ∈ H,

A‖ f ‖2 ≤
∫

Ω

‖Λω f ‖2 dµ(ω) ≤ B‖ f ‖2. (1.2)

If A, B can be chosen such that A = B, then {Λω}ω∈Ω is called a tight c-g-frame and if A = B = 1,
it is called Parseval c-g-frame. A family {Λω}ω∈Ω is called a c-g-Bessel family if the right hand
inequality (1.2) holds and the number B is called the Bessel constant.

Theorem 1.4. ([1]). Let {Λω}ω∈Ω is a continuous g-Bessel family for H with respect to {Hω}ω∈Ω

with the bound B. Then the mapping TΛ of L2(Hω, µ) to H defined by

〈TΛF, g〉 =

∫
Ω

〈Λ∗ωF(ω), g〉dµ(ω), F ∈ L2(Hω, µ), g ∈ H,

is linear and bounded with ‖TΛ‖ ≤
√

B. Furthermore, for each g ∈ H and ω ∈ Ω,

T ∗Λ(g)(ω) = Λωg.

In the continuous g-frame, frame operator S Λ = TΛT ∗
Λ

is defined by

S Λ : H −→ H,

〈S Λ f , g〉 =

∫
Ω

〈 f ,ΛωΛ∗ωg〉 dµ.

Therefore,
AIdH ≤ S Λ ≤ BIdH

and we obtain, if {Λω}ω∈Ω is a c-g-frame, then S Λ is a positive, self-adjoint and invertible operator.
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Definition 1.5. ([19]). A family of c-frames {Fωi}ω∈Ω,i∈[m] for H with respect to µ is said to be
c-woven if there exist universal same positive constants 0 < A ≤ B < ∞ such that for each
partition {σi}i∈[m] of Ω, the family {Fωi}ω∈σi,i∈[m] is a c-frame for H with bounds A and B. Each
family {Fωi}ω∈σi,i∈[m] is called a weaving.

2. Continuous Weaving g-Frames

In this section, we introduce the notation of continuous g-woven in Hilbert spaces and discuss
some of their properties.

Definition 2.1. A family of c-g-frames {Λωi ∈ B(H,Hω)}ω∈Ω,i∈[m] for H is said to be continuous
g-woven (or c-g-woven) if there exist universal constants 0 < A ≤ B such that for each partition
{σi}i∈[m] of Ω, the family {Λωi}ω∈σi,i∈[m] is a c-g-frame for H with bounds A and B.

In the above definition, A and B is called universal c-g-frame bounds. It is easy to show that
every c-g-woven has an universal upper c-g-frame bound. Indeed, let {Λωi}ω∈Ω be a c-g-Bessel
family for H with bound Bi for each i ∈ [m]. Then, for any partition {σi}i∈[m] of Ω and f ∈ H we
have ∑

i∈[m]

∫
σi

‖Λωi f ‖2 dµ ≤
∑
i∈[m]

∫
Ω

‖Λωi f ‖2 dµ ≤
( ∑

i∈[m]

Bi

)
‖ f ‖2.

In the next results, we construct a c-g-woven by using a bounded linear operator.

Theorem 2.2. Let {Λωi}ω∈Ω,i∈[m] be a c-g-woven for H with universal bounds A, B. If U ∈ B(H)
has closed range, then {ΛωiU∗}ω∈Ω,i∈[m] is a c-g-woven for R(U) with frame bounds A‖U†‖−2 and
B‖U‖2.

Proof. First, since U∗ f ∈ H and ω 7→ ‖Λωi f ‖ is a measurable function for each f ∈ H and i ∈ [m],
then ω 7→ ‖ΛωiU∗ f ‖ is measurable for any f ∈ H and i ∈ [m]. On the other hand, for each
f ∈ R(U), we have

A‖ f ‖2 = A‖(U†)∗U∗ f ‖2

≤ A‖U†‖2‖U∗ f ‖2

≤ ‖U†‖2
∑
i∈[m]

∫
Ω

‖ΛωiU∗ f ‖2 dµ.

The upper bound condition is given similarly.

Corollary 2.3. Let {Λωi}ω∈Ω,i∈[m] be a c-g-woven for H with universal bounds A, B. If U ∈ B(H) is
invertible, then {ΛωiU}ω∈Ω,i∈[m] is a c-g-woven for H with frame bounds A‖U−1‖−2 and B‖U‖2.

The next proposition shows that it is enough to check c-g-weaving on smaller measurable space
than the original which this is an extension of Proposition 3.10 in [19].
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Theorem 2.4. For each i ∈ [m], let {Λωi}ω∈Ω be a c-g-frame for H with frame bounds Ai and Bi.
If there exists a measurable subset Σ ⊂ Ω such that the family of c-g-frame {Λωi}ω∈Σ,i∈[m] is a c-g-
woven for H with universal frame bounds A and B, then {Λωi}ω∈Ω,i∈[m] is a c-g-woven for H with
universal bounds A and

∑
i∈[m] Bi.

Proof. Suppose that {σi}i∈[m] is a partition of Ω and f ∈ H. The upper bound is clear. For the lower
bound, it is clear that {σi ∩ Σ}i∈[m] is a partition of Σ. Thus, {Λωi}ω∈σi∩Σ,i∈[m] is a c-g-frame for H
with the lower frame bound A. Hence, for each f ∈ H∑

i∈[m]

∫
σi

‖Λωi f ‖2 dµ(ω) ≥
∑
i∈[m]

∫
σi∩Σ

‖Λωi f ‖2 dµ(ω)

≥ A‖ f ‖2.

Casazza and Lynch in [6] showed that It is possible to remove vectors from woven frames and
still be left with woven frames. After, this topic was been presented in [19]. Now, we study it for
c-g-woven in the following Theorem.

Theorem 2.5. Let {Λωi}ω∈Ω,i∈[m] be a c-g-woven for H with universal bounds A and B. If there
exists 0 < D < A and a measurable subset Σ ⊂ Ω and n ∈ [m] such that for each f ∈ H,∑

i∈[m]\{n}

∫
Ω\Σ

‖Λωi f ‖2 dµ(ω) ≤ D‖ f ‖2, ∀ f ∈ H,

Then the family {Λωi}ω∈Σ,i∈[m] is a c-g-woven for H with frame bounds A − D and B.

Proof. Suppose that {σi}i∈[m] is a partition of Σ and {τi}i∈[m] is a partition of Ω \ Σ. For a given
f ∈ H, we define

ϕ : Σ −→ C,

ϕ(ω) =
∑
i∈[m]

χσi(ω)‖Λωi f ‖,

and

φ : Λ −→ C,

φ(ω) =
∑
i∈[m]

χσi∪τi(ω)‖Λωi f ‖,

where, χσi is the characteristic function of σi. Since {Λωi}ω∈σi∪τi,i∈[m] is a c-g-frame for H and
ϕ = φ|Σ, then ϕ and φ are measurable. So, for each f ∈ H, we have∑

i∈[m]

∫
σi

‖Λωi f ‖2 dµ(ω) ≤
∑
i∈[m]

∫
σi∪τi

‖Λωi f ‖2 dµ(ω)

≤ B‖ f ‖2.
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Now, for the lower frame bound, assume that {ςi}i∈[m] is a partition of Ω \ Σ such that ςn = ∅. Then
{ςi ∪ σi}i∈[m] is a partition of Ω and so, for any f ∈ H we have,∑

i∈[m]

∫
σi

‖Λωi f ‖2 dµ(ω)

=
∑

i∈[m]\{n}

( ∫
ςi∪σi

‖Λωi f ‖2 dµ(ω) −
∫
ςi

‖Λωi f ‖2 dµ(ω)
)

+

∫
σn

‖Λωi f ‖2 dµ(ω)

≥
∑

i∈[m]\{n}

( ∫
ςi∪σi

‖Λωi f ‖2 dµ(ω) −
∫

Ω\Σ

‖Λωi f ‖2 dµ(ω)
)

+

∫
σn

‖Λωi f ‖2 dµ(ω)

=
∑
i∈[m]

∫
ςi∪σi

‖Λωi f ‖2 dµ(ω) −
∑

i∈[m]\{n}

∫
Ω\Σ

‖Λωi f ‖2 dµ(ω)

≥ (A − D)‖ f ‖2.

The following presents a relationship between the norms of the c-g-frame operator of original
c-g-frame and the weaving.

Theorem 2.6. Let {Λωi}ω∈Ω,i∈[m] be a c-g-woven for H with universal bounds A and B. If S (i)
Λ

is
the c-g-frame operator of {Λωi}ω∈Ω for each i ∈ [m], S Λ,σi represents the c-g-frame operator of
{Λωi}ω∈σi,i∈[m] for each partition {σi}i∈[m] of Ω and S (i)

Λ,σi
denotes the c-g-frame operator S (i)

Λ
with

integral restricted to σi, then for each f ∈ H,∑
i∈[m]

‖S (i)
Λ,σi

f ‖2 ≤ B‖S Λ,σi‖‖ f ‖
2.

Proof. Suppose that f ∈ H. We can write∑
i∈[m]

‖S (i)
Λ,σi

f ‖2 =
∑
i∈[m]

(
sup
‖g‖=1
|〈S (i)

Λ,σi
f , g〉|

)2

=
∑
i∈[m]

(
sup
‖g‖=1
|〈T (i)

Λ,σi
(T (i)

Λ,σi
)∗ f , g〉|

)2

≤
∑
i∈[m]

B‖(T (i)
Λ,σi

)∗ f ‖2

= B
∑
i∈[m]

∫
σi

‖Λωi f ‖2 dµ(ω)

= B〈S Λ,σi f , f 〉

≤ B‖S Λ,σi‖‖ f ‖
2.

The next result provides a necessary and sufficient condition for c-g-woven which connects to
c-woven.
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Theorem 2.7. Let Ωi ⊆ Ω be measurable subsets for all i ∈ [m], and let Fi and Gi be c-frame
mappings on Ωi for Hω with the pair frame bounds (AFi , BFi) and (AGi , BGi), respectively, for each
ω ∈ Ω. Assume that Λωi,Θωi ∈ B(H,Ωi) for any i ∈ [m] such that {Λωi}ω∈Ω,i∈[m] and {Θωi}ω∈Ω,i∈[m]

are strongly measurable. Then the following assertions are equivalent.

(I) {Λ∗ωiFi}ω∈Ω,i∈[m] and {Θ∗ωiGi}ω∈Ω,i∈[m] are c-woven for H.

(II) {Λωi}ω∈Ω,i∈[m] and {Θωi}ω∈Ω,i∈[m] are c-g-woven for H.

Proof. (I)⇒ (II). Suppose that σ ⊂ Ω is a measurable subset and f ∈ H. Let {Λ∗ωiFi}ω∈Ω,i∈[m] and
{Θ∗ωiGi}ω∈Ω,i∈[m] are c-woven for H with universal frame bounds C,D and A = inf{AFωi , AGωi}. We
have for each i ∈ [m],

A
∫
σ

‖Λωi f ‖2 dµ(ω) + A
∫
σc
‖Θωi f ‖2 dµ(ω)

≤

∫
σ

AFωi‖Λωi f ‖2 dµ(ω) +

∫
σc

AGωi‖Θωi f ‖2 dµ(ω)

≤

∫
σ

∫
Ωi

|〈Λωi f , Fi(x)〉|2 dµ(x) dµ(ω) +

∫
σc

∫
Ωi

|〈Θωi f ,Gi(x)〉|2 dµ(x) dµ(ω)

=

∫
σ

∫
Ωi

|〈 f ,Λ∗ωiFi(x)〉|2 dµ(x) dµ(ω) +

∫
σc

∫
Ωi

|〈 f ,Θ∗ωiGi(x)〉|2 dµ(x) dµ(ω)

≤ D‖ f ‖2.

With the same way, we conclude that

B
∫
σ

‖Λωi f ‖2 dµ(ω) + B
∫
σc
‖Θωi f ‖2 dµ(ω)

≥

∫
σ

∫
Ωi

|〈 f ,Λ∗ωiFi(x)〉|2 dµ(x) dµ(ω) +

∫
σc

∫
Ωi

|〈 f ,Θ∗ωiGi(x)〉|2 dµ(x) dµ(ω)

≥ C‖ f ‖2,

where B = sup{BFωi , BGωi}. Thus, we obtain {Λωi}ω∈Ω,i∈[m] and {Θωi}ω∈Ω,i∈[m] are c-g-woven for H

with universal frame bounds
C
B

and
D
A

.
(II) ⇒ (I). Suppose that {Λωi}ω∈Ω,i∈[m] and {Θωi}ω∈Ω,i∈[m] are c-g-woven for H with universal

frame bounds C and D. Now, we can write for each f ∈ H,∫
σ

∫
Ωi

|〈 f ,Λ∗ωiFi(x)〉|2 dµ(x) dµ(ω) +

∫
σc

∫
Ωi

|〈 f ,Θ∗ωiGi(x)〉|2 dµ(x) dµ(ω)

=

∫
σ

∫
Ωi

|〈Λωi f , Fi(x)〉|2 dµ(x) dµ(ω) +

∫
σc

∫
Ωi

|〈Θωi f ,Gi(x)〉|2 dµ(x) dµ(ω)

≥

∫
σ

AFωi‖Λωi f ‖2 dµ(ω) +

∫
σc

AGωi‖Θωi f ‖2 dµ(ω)

≥ A
( ∫

σ

‖Λωi f ‖2 dµ(ω) +

∫
σc
‖Θωi f ‖2 dµ(ω)

≥ AC‖ f ‖2.
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Also, we can get∫
σ

∫
Ωi

|〈 f ,Λ∗ωiFi(x)〉|2 dµ(x) dµ(ω) +

∫
σc

∫
Ωi

|〈 f ,Θ∗ωiGi(x)〉|2 dµ(x) dµ(ω) ≤ BD‖ f ‖2.

So, {Λ∗ωiFi}ω∈Ω,i∈[m] and {Θ∗ωiGi}ω∈Ω,i∈[m] are c-woven for H. with universal bounds AC and BD.

The following theorem is extension of Lemma 4.3 of [4] for c-g-frames.

Theorem 2.8. Let {Λωi}ω∈Ω,i∈[m] be a family of c-g-frames for H with respect to a σ-finite measure
µ. Suppose that for a partition collection of disjoint finite sets {τi}i∈[m] of Ω and for any ε > 0 there
exists a partition {σi}i∈[m] of the set Ω \

⋃
i∈[m] τi such that {Λωi}ω∈(σi∪τi),i∈[m] has a lower c-g-frame

bound less than ε. Then {Λωi}ω∈Ω,i∈[m] is not a c-g-woven.

Proof. Since (Ω, µ) is a σ-finite measure space, then Ω = ∪i∈NΩi, where Ωi are disjoint measurable
sets and µ(Ωi) < ∞ for all i ∈ N. Assume that τi1 = ∅ for all i ∈ [m] and ε = 1. Then, by the
assumption, there exists a partition {σi1}i∈[m] of Ω such that {Λωi}ω∈(σi1∪τi1),i∈[m] has a lower bound
(also, optimal lower bound) less that 1. Thus, there is a vector f1 ∈ H with ‖ f1‖ = 1 such that∑

i∈[m]

∫
σi1∪τi1

‖Λωi f1‖
2 dµ(ω) < 1.

Since ∑
i∈[m]

∫
Ω

‖Λωi f1‖
2 dµ(ω) < ∞,

so, there is a k1 ∈ N such that ∑
i∈[m]

∫
K1

‖Λωi f1‖
2 dµ(ω) < 1,

where, K1 = ∪i≥k1+1Ωi.
Continuing this way, for ε = 1

n and a partition {τin}i∈[m] of Ω1 ∪ · · · ∪Ωkn−1 such that

τin = τi(n−1) ∪
(
σi(n−1) ∩ (Ω1 ∪ · · · ∪Ωkn−1)

)
for all i ∈ [m], there exists a partition {σin}i∈[m] of Ω \ (Ω1∪ · · ·∪Ωkn−1) such that {Λωi}ω∈(σin∪τin),i∈[m]

has a lower bound less than
1
n

. Therefore, there is a fn ∈ H and kn ∈ N such that ‖ fn‖ = 1, kn > kn−1

and ∑
i∈[m]

∫
Kn

‖Λωi fn‖
2 dµ(ω) <

1
n
,

where, Kn = ∪i≥kn+1Ωi. Choose a partition {ςi}i∈[m] of Ω, where ςi := ∪ j∈N{τi j} = τi(n+1) ∪ (ςi ∩

Ω \ (Ω1 ∪ · · · ∪Ωn)). Assume that {Λωi}ω∈ςi,i∈[m] is a c-g-frame for H with the optimal lower frame
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bound A. Then, by the Archimedean Property, there exists a n ∈ N such that r > 2
A . Now, there

exists a fr ∈ H with ‖ fr‖ = 1 such that∑
i∈[m]

∫
ςi

‖Λωi fr‖2 dµ(ω)

=
∑
i∈[m]

∫
τi(r+1)

‖Λωi fr‖2 dµ(ω) +
∑
i∈[m]

∫
ςi∩Ω\(Ω1∪···∪Ωr)

‖Λωi fr‖2 dµ(ω)

≤
∑
i∈[m]

∫
τir∪σir

‖Λωi fr‖2 dµ(ω) +
∑
i∈[m]

∫
∪k≥r+1Ωk

‖Λωi fr‖2 dµ(ω)

<
1
r

+
1
r

< A‖ fr‖2,

and this is a contradiction with the lower bound of A.

Corollary 2.9. Let {Λωi}ω∈Ω,i∈[m] be a c-g-woven for H with respect to a σ-finite measure µ. Then
there exists a collection of disjoint measurable subsets {τi}i∈[m] of Ω and A > 0 such that for any
partition {σi}i∈[m] of the set Ω \ ∪i∈[m]τi, the family {Λωi}ω∈(τi∪σi),i∈[m] is a c-g-frame for H with the
lower frame bound A.

Corollary 2.10. Suppose that {Λω}ω∈Ω and {Θω}ω∈Ω are c-g-frames for H with optimal upper frame
bounds B1 and B2, respectively, and they are c-g-woven for H. Then, B1 + B2 is not an optimal
upper frame bound for the c-g-woven.

Proof. Let ε > 0. Assume that B1 + B2 is an optimal upper frame bound for the c-g-woven. So,
there exists σ ⊂ Ω such that

sup
‖ f ‖=1

( ∫
σ

‖Λωi f ‖2 dµ(ω) +

∫
σc
‖Θωi f ‖2 dµ(ω)

)
= B1 + B2.

There exist a f1 ∈ H such that ‖ f1‖ = 1 and∫
σ

‖Λωi f1‖
2 dµ(ω) +

∫
σc
‖Θωi f1‖

2 dµ(ω) ≥ B1 + B2 − ε.

Thus, by the assumption,∫
Ω\σ

‖Λωi f1‖
2 dµ(ω) +

∫
Ω\σc
‖Θωi f1‖

2 dµ(ω) ≤ ε.

Now, by Theorem 2.8, we conclude that {Λω}ω∈Ω and {Θω}ω∈Ω are not c-g-woven and this is a
contradiction.

A sufficient condition for c-g-woven is given in next theorem.
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Theorem 2.11. Let {Λωi}ω∈Ω be a c-g-frame for H with frame bounds Ai and Bi for each i ∈ [m].
Suppose that there exists M > 0 such that for all f ∈ H, i , k ∈ [m] and all measurable subset
∆ ⊂ Ω, ∫

∆

‖(Λωi − Λωk) f ‖2 dµ(ω) ≤ M min
{ ∫

∆

‖Λωi f ‖2 dµ(ω),
∫

∆

‖Λωk f ‖2 dµ(ω)
}
.

Then, the family {Λωi}ω∈Ω,i∈[m] is a c-g-woven with universal bounds

A
(m − 1)(M + 1) + 1

and B,

where, A :=
∑

i∈[m] Ai and B =
∑

i∈[m] Bi.

Proof. The upper bound is evident. For the lower bound, suppose that {σi}i∈[m] is a partition of Ω

and f ∈ H. Therefore,∑
i∈[m]

Ai‖ f ‖2 ≤
∑
i∈[m]

∫
Ω

‖Λωi f ‖2 dµ(ω)

=
∑
i∈[m]

∑
k∈[m]

∫
σk

‖Λωi f ‖2 dµ(ω)

≤
∑
i∈[m]

( ∫
σi

‖Λωi f ‖2 dµ(ω)

+
∑
k∈[m]

k,i

∫
σk

{
‖Λωi f − Λωk f ‖2 dµ(ω) + ‖Λωk f ‖2 dµ(ω)

})

≤
∑
i∈[m]

( ∫
σi

‖Λωi f ‖2 dµ(ω) +
∑
k∈[m]

k,i

∫
σk

(M + 1)‖Λωk f ‖2 dµ(ω)
)

=
{
(m − 1)(M + 1) + 1

} ∑
i∈[m]

∫
σi

‖Λωi f ‖2 dµ(ω).

3. Perturbation For C-G-Woven

Perturbation of frames has been discussed by Cazassa and Christensen in [5]. For weaving
frames, Bemrose and et.al. have studied in [4], also Vashisht and Deepshikha presented for con-
tinuous case in [19]. we aim to present it for c-g-woven.

Theorem 3.1. Suppose for each i ∈ [m], the family {Λωi}ω∈Ω be a c-g- frame for H with frame
bounds Ai and Bi. Assume that there exist constants λi, ηi and γi(i ∈ [m]) such that for some fixed
n ∈ [m],

A := An −
∑

i∈[m]\{n}

(λi + ηi

√
Bn + γi

√
Bi)(

√
Bn +

√
Bi) > 0
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and ∣∣∣∣ ∫
Ω

〈(Λ∗ωn − Λ∗ωi)F(w), g〉 dµ
∣∣∣∣ ≤ ηi

∣∣∣∣ ∫
Ω

〈Λ∗ωnF(w), g〉 dµ
∣∣∣∣

+ γi

∣∣∣∣ ∫
Ω

〈Λ∗ωiF(w), g〉 dµ
∣∣∣∣ + λi‖F‖2

for every F ∈ L2(Hω, µ) and g ∈ H. Then for any partition {σ j} j∈[m] of Ω, {Λωi}ω∈σ j, j∈[m] is a
c-g-frame for H with universal frame bounds A and

∑
i∈[m] Bi. Hence the family of c-g-frame

{Λωi}ω∈Ω,i∈[m] is woven for H.

Proof. It is clear that {Λωi f }ω∈σ j, j∈[m] is strongly measurable for each f ∈ H and any partition
{σ j} j∈[m] of Ω, also the family {Λωi}ω∈Ω,i∈[m] is a c-g-Bessel family with Bessel bound

∑
i∈[m] Bi.

Now, we show that {Λωi}ω∈Ω,i∈[m] has the lower frame condition. Assume that TΛi is the synthesis
operator of {Λωi}ω∈Ω,i∈[m]. Then for any F ∈ L2(Hω, µ), we have

‖TΛi F‖ = sup
‖g‖=1

∣∣∣∣〈TΛi F, g〉
∣∣∣∣ ≤ sup

‖g‖=1

∣∣∣∣ ∫
Ω

〈Λ∗ωiF(w), g〉 dµ
∣∣∣∣

≤ sup
‖g‖=1

( ∫
Ω

‖F‖2 dµ
) 1

2
( ∫

Ω

‖Λωig‖2 dµ
) 1

2

≤
√

Bi‖F‖2.

Now, for any F ∈ L2(Hω, µ), i ∈ [m] \ {n}, we have

‖(TΛn − TΛi)F‖

= sup
‖g‖=1

∣∣∣∣〈(TΛn − TΛi)F, g〉
∣∣∣∣

= sup
‖g‖=1

∣∣∣∣ ∫
Ω

〈(Λ∗ωn − Λ∗ωi)F(w), g〉 dµ
∣∣∣∣

≤ ηi sup
‖g‖=1

∣∣∣∣ ∫
Ω

〈Λ∗ωnF(w), g〉 dµ
∣∣∣∣ + γi sup

‖g‖=1

∣∣∣∣ ∫
Ω

〈Λ∗ωiF(w), g〉 dµ
∣∣∣∣ + λi‖F‖2

= ηi‖TΛn F‖ + γi‖TΛi F‖ + λi‖F‖2

≤ ηi

√
Bn‖F‖2 + γi

√
Bi‖F‖2 + λi‖F‖2

= (ηi

√
Bn + γi

√
Bi + λi)‖F‖2.

Thus,

‖TΛn − TΛi‖ ≤ ηi

√
Bn + γi

√
Bi + λi. (3.1)

For each i ∈ [m] and σ ⊂ X, we define

T (σ)
i :

(
⊕ω∈σ Hω, µ

)
L2
→ H,

〈T (σ)
i G, h〉 =

∫
σ

〈Λ∗ωiG(w), h〉 dµ,
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for all G ∈ L2(Hω, µ), we have
‖T (σ)

i G‖ = ‖TΛi(G.χσ)‖ ≤ ‖TΛi‖‖G.χσ‖ ≤ ‖TΛi‖‖F‖2 ≤
√

Bi‖F‖2.
Thus, ‖T (σ)

i ‖ ≤
√

Bi, for each i ∈ [m]. Similarly with (2), we get for each i ∈ [m] \ {n},

‖T (σ)
n − T (σ)

i ‖ ≤ ηi

√
Bn + γi

√
Bi + λi. (3.2)

For every f ∈ H and i ∈ [m] \ {n}, We compute∥∥∥∥(T (σ)
n (T (σ)

n )∗ − T (σ)
i (T (σ)

i )∗
)

f
∥∥∥∥

≤

∥∥∥∥(T (σ)
n (T (σ)

n )∗ − T (σ)
n (T (σ)

i )∗
)

f
∥∥∥∥

+
∥∥∥∥(T (σ)

n (T (σ)
n )∗ − T (σ)

n (T (σ)
i )∗

)
f
∥∥∥∥

≤
∥∥∥T (σ)

n

∥∥∥∥∥∥((T (σ)
n )∗ − (T (σ)

i )∗
)
f
∥∥∥

+
∥∥∥T (σ)

i

∥∥∥∥∥∥(T (σ)
n − T (σ)

i
)
f
∥∥∥

≤ (ηi

√
Bn + γi

√
Bi + λi)(

√
Bn +

√
Bi)‖ f ‖.

Now, suppose that {σi}i∈[m] is a partition of Ω and TΛ be the synthesis operator associated with the
c-g-Bessel family {Λωi}ω∈Ω,i∈[m], by using (4), we have,

‖T ∗Λ f ‖2 = |〈 f ,TΛT ∗Λ f 〉|

=
∣∣∣∣ ∑

i∈[m]

∫
σi

〈 f ,Λ∗ωiΛωi f 〉 dµ(ω)
∣∣∣∣

=
∣∣∣∣ ∫

σ1

〈 f ,Λ∗ω1Λω1 f 〉 dµ(ω) + ... +

∫
σn

〈 f ,Λ∗ωnΛωn f 〉 dµ(ω)

+ ...

∫
σm

〈 f ,Λ∗ωmΛωm f 〉 dµ(ω)
∣∣∣∣

=
∣∣∣∣ ∫

σ1

〈 f ,Λ∗ω1Λω1 f 〉 dµ(ω) + ... +
∑
i∈[m]

∫
σi

〈 f ,Λ∗ωiΛωi f 〉 dµ(ω)

−
∑

i∈[m]\{n}

∫
σi

〈 f ,Λ∗ωiΛωi f 〉 dµ(ω) +

∫
σm

〈 f ,Λ∗ωmΛωm f 〉 dµ(ω)
∣∣∣∣

=
∣∣∣∣ ∫

Ω

〈 f ,Λ∗ωnΛωn f 〉 dµ(ω) −
∑

i∈[m]\{n}

( ∫
σi

〈 f ,Λ∗ωnΛωn f 〉 dµ(ω)

−

∫
σi

〈 f ,Λ∗ωiΛωi f 〉 dµ(ω)
)∣∣∣∣

≥

∣∣∣∣ ∫
Ω

〈 f ,Λ∗ωnΛωn f 〉 dµ(ω)
∣∣∣∣ − ∑

i∈[m]\{n}

∣∣∣∣ ∫
σi

〈 f ,Λ∗ωnΛωn f 〉 dµ(ω)

−

∫
σi

〈 f ,Λ∗ωiΛωi f 〉 dµ(ω)
)∣∣∣∣
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≥ An‖ f ‖2 −
∑

i∈[m]\{n}

∣∣∣∣〈T (σ)
n (T (σ)

n )∗ f , f 〉 − 〈T (σ)
i (T (σ)

i )∗ f , f 〉
∣∣∣∣

≥ An‖ f ‖2 −
∑

i∈[m]\{n}

‖ f ‖‖(T (σ)
n (T (σ)

n )∗ − T (σ)
i (T (σ)

i )∗) f ‖

≥ An‖ f ‖2 −
∑

i∈[m]\{n}

‖ f ‖2(ηi

√
Bn + γi

√
Bi + λi)(

√
Bn +

√
Bi)

= A‖ f ‖2.

This completes the proof.

With similar proof of Theorem 3.1, we can show the following result when the index n is not
fixed.

Corollary 3.2. For each i ∈ [m], let the family {Λωi}ω∈Ω be a c-g- frame for H with frame bounds
Ai and Bi. Assume that there exist constants λi, ηi, γi(i ∈ [m − 1]) and n ∈ [m] so that

A := A1 −
∑

i∈[m−1]\{n}

(λi + ηi

√
Bi + γi

√
Bi+1)(

√
Bi +

√
Bi+1) > 0

and ∣∣∣∣ ∫
Ω

〈(Λ∗ωi − Λ∗ω(i+1))F(w), g〉 dµ
∣∣∣∣

≤ ηi

∣∣∣∣ ∫
Ω

〈Λ∗ωiF(w), g〉 dµ
∣∣∣∣ + γi

∣∣∣∣ ∫
Ω

〈Λ∗ω(i+1)F(w), g〉 dµ
∣∣∣∣ + λi‖F‖2,

for every F ∈ L2(Hω, µ) and g ∈ H. Then for any partition {σ j} j∈[m] of Ω, {Λωi}ω∈σ j, j∈[m] is a
c-g-frame for H with universal frame bounds A and

∑
i∈[m] Bi. Hence the family of c-g-frame

{Λωi}ω∈Ω,i∈[m] is woven for H.
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