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Abstract
Trace and some other interesting properties of Haar wavelets
matrix of size 2K are studied by Shiralashetti and Kumbinara-
saiah [6], results related to the trace of Haar wavelets matrix
derived based on K is even or odd and the same is concluded in
Theorem 3.2. This article deals with the trace of Haar wavelets
matrix in depth by identifying and overcoming the pitfalls occur
in the proof of Theorem 3.2.

c© (2020) Wavelets and Linear Algebra

1. Introduction and Preliminaries

Haar wavelet is the only wavelet having analytic expression with compact support which
were introduced by Alfred Haar [2] and treated as basis for other family of wavelets. Analytic
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expression and compact support allow us to integrate Haar wavelets arbitrary number of times
and local analysis of functions respectively in easier way. Haar wavelets are applied in almost all
branches of science and engineering [1, 3, 4, 5]. Discretization of Haar wavelet transform leads to
a matrix called Haar wavelets matrix or Haar matrix. Some of the results on Haar wavelets matrix
are obtained using linear transformation [6]. One of the quite attractive results on Haar matrix is
its trace. In this article, a counterexample is provided to show that the conclusion of Theorem 3.2
[6] does not holds and proposed an algorithm to compute the trace of Haar wavelets matrix.

The rest of the paper is organized as follows: Section 2 contains the necessary basic concepts
related to Haar family and the trace of Haar wavelets matrix existing in literature. Section 3 contais
a counterexample to illustrate the validation of conclusion on the trace of Haar matrix discussed
in section 2. Section 4 deals with occurance of pitfalls in the proof of existing results on the trace
of Haar matrix. Section 5 contains an amendment to result on trace of Haar matrix mentioned in
section 2 and an algorithm to compute the same.

2. Haar family and the trace of Haar wavelets matrix existing in literature

2.1. Haar family
For a given resolution J ∈ N, we have 2J+1 Haar wavelets on [0, 1), among these wavelets

two wavelets are important namely father and mother wavelets, remaining 2J+1 − 2 are called
daughter wavelets and these can be obtained through scaling(dilation) and translation(shift) of
mother wavelet. This family is an orthogonal subset of the Hilbert space L2([0, 1)) with the inner
product 〈 f , g〉 =

∫ 1

0
f (t)g(t)dt. For the sake of completeness, we recall the Haar family and its

properties defined on continuous domain [0, 1)[1, 4]:
Father wavelet:

h1(t) =

1, t ∈ [0, 1)
0, otherwise.

(2.1)

Mother wavelet:

h2(t) =


1, t ∈ [0, 0.5)
−1, t ∈ [0.5, 1)
0, otherwise.

(2.2)

Daughter wavelets: For j ∈ {1, 2, . . . , J} , there are 2 j daughter wavelets and are given by

hi(t) = h2(2 jt − k) =


1, t ∈ [ k

2 j ,
k+0.5

2 j )
−1, t ∈ [ k+0.5

2 j ,
k+1
2 j )

0, otherwise,
(2.3)

where i = 2 j + k + 1 and k = 0, 1, . . . , 2 j − 1. Here j and k are called coarser resolution level and
translation parameters respectively.

Definition (Compact Support): Let f : R → R be the function.Then the compact support of f is
denoted as Comp( f ) and is defined by the smallest compact subset of R on which f is nonzero.
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Example 2.1. Comp(h3) = [0, 0.5] and Comp(h4) = [0.5, 1].

Theorem 2.2. For a fixed j ∈ {1, 2, . . . , J}. The set of all jth stage daughter wavelets
{h2 j+1, h2 j+2, . . . , h2 j+1} is orthogonal.

Proof. Proof follows from the fact that Comp(hi) and Comp(hi′ ) is either disjoint or singleton.

Corollary 2.3. For a given resolution J ∈ N. The Haar family {hi : i = 1, 2, ..., 2J+1} is an
orthogonal set.

Proof. Proof follows from the fact that area of each wavelet except the father wavelet is zero.

2.2. Haar wavelets matrix
For a given K = J + 1(J ∈ N). Divide the interval [0, 1] into 2K subintervals and denote the

lth subinterval by Il = [ (l−1)
2K ,

l
2K ] for l = 1, 2, . . . , 2K . Midpoint of each subinterval is called the

lth collocation point and defined by 2l−1
2K+1 . We denote the set of all collocation points by C and is

defined by C = {tl = 2l−1
2K+1 : l = 1, 2, . . . , 2K}.

Haar wavelets matrix(H) of size 2J+1 = 2K can be obtained by evaluating above 2K Haar
wavelets defined on [0, 1) at the points of C and put them in rows of H. In other words (i, l)th entry
of H is formulated as below:

H(i, l) = hi(tl), for i, l ∈ {1, 2, . . . , 2K}. (2.4)

Behavior of each wavelet hi for i = 1, 2, . . . , 2K on C studied with the help of equations (2.1)−
(2.3) and simplified versions are the following.

h1(tl) =

1, tl ∈ [0, 1)
0, otherwise.

(2.5)

hi(tl) =

±1, tl ∈ [ k
2 j ,

k+1
2 j )

0, otherwise.
(2.6)

Let Ci = {tl ∈ C : hi(tl) = ±1}. Arrange elements in Ci in increasing order and divide Ci into two
subsets C+

i and C−i , tl ∈ C+
i if and only if hi(tl) = +1 and tl ∈ C−i if and only if hi(tl) = −1. More

precisely the various Ci(s) are: 
C1 = C; C+

1 = C; C−1 = ∅.

Ci = {tk∆ j+1, . . . , t(k+1)∆ j}

C+
i = {tk∆ j+1, . . . , tk∆ j+

∆ j
2
}

C−i = {t
k∆ j+

∆ j
2 +1
, . . . , t(k+1)∆ j}

(2.7)

Where j ∈ {0, 1, ...,K − 1}, ∆ j = 2K− j, i = 2 j + k + 1, k = 0, 1, 2, . . . , 2 j − 1.
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Further the equations (2.5) and (2.6) simplified as below.

H(1, l) = 1, for l = 1, 2, ...., 2K . (2.8)

H(i, l) =


1, tl ∈ C+

i

−1, tl ∈ C−i
0, tl ∈ C −Ci.

(2.9)

Equations (2.8) and (2.9) describe each entry in the Haar wavelets matrix of size 2K .

2.3. The trace of Haar wavelets matrix existing in literature
Main goal of this article is to compute the trace of Haar wavelets matrix of size 2K for a given

K. i.e., we have to compute
∑2K

i=1 H(i, i). Existing results related to this goal is the following.

Statement(Theorem 3.2 of Siddu Channabasappa Shiralashetti and Kumbinarasaiah [6]).
Let H be the 2K × 2K Haar matrix. Then

Trace(H) = tr(H) =

0 if K is odd
K − 1 if K is even.

(2.10)

3. Counterexample

We use equations:(2.7)-(2.9) to construct a counterexample to support that the conclusion of
above statement [Equation (2.10)] is not valid in two parts.

Part-1 (K is odd): For K = 7 (Equation (2.10) is true for K = 3 and 5), H is a size of 27 = 128.
We show that tr(H) , 0.

Solution: Here K = 7, the set of all collocation points: C = {tl = 2l−1
256 : l = 1, 2, ..., 128}.

We construct the Haar matrix of size 128 row-wise by considering eight(K + 1) cases.

Case 1 [First row of H]: For i = 1, we have C1 = C; C+
1 = C; C−1 = ∅. The father wavelet

h1 is +1 at all collocation points. Hence all columns of 1st row are 1. i.e., H(1, l) = 1,∀l. Particu-
larly

H(1, 1) = 1. (3.1)

Case 2 [Second row( j = 0) of H]: For j = 0 and k = 0, we obtain i = 2 j + k + 1 = 2. We have
C2 = C; C+

2 = {tl : l = 1, 2, ..., 64}; C−2 = {tl : l = 65, 66, ..., 128}. The mother wavelet h2 is +1 at
first half of collocation points and h2 is −1 at second half of collocation points. Particularly

H(2, 2) = 1. (3.2)

Case 3 [Third and fourth rows( j = 1) of H]: For j = 1, we have 2 j daughter wavelets. Third(k =

0) and fourth(k = 1) rows of H can be obtained as follows.
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For i = 21 + 0 + 1 = 3. We have C3 = {tl : l = 1, 2, ..., 64}; C+
3 = {tl : l = 1, 2, ..., 32};

C−3 = {tl : l = 33, 34, ..., 64}.i.e., nonzero entries in 3rd of H are formulated as below.

H(3, l) = 1 for l = 1, 2, ..., 32; H(3, l) = −1 for l = 33, 34, ..., 64.

Particularly:
H(3, 3) = 1. (3.3)

For i = 21 + 1 + 1 = 4. We have C4 = {tl : l = 65, 66, ..., 128}; C+
4 = {tl : l = 65, 66, ..., 96};C−4 =

{tl : l = 97, 98, ..., 128}.i.e., nonzero entries in 4th of H are formulated as below.

H(4, l) = 1 for l = 65, 66, ..., 96; H(4, l) = −1 for l = 97, 98, ..., 128.

H(4, 4) = 0. (3.4)

Case 4 [Rows 5 to 8 ( j = 2) of HHH]: Here i = 22 + k + 1, for k = 0, 1, 2, 3.We obtain entries in 5-8
rows of H.
k = 0 implies i = 5. Hence C5 = {tl : l = 1, . . . , 32},C+

5 = {tl : l = 1, . . . , 16},C−5 = {tl : l =

17, . . . , 32}. Nonzero entries in 5th row of H formulated as below:

H(5, l) = 1 for l = 1, 2, . . . , 16.; H(5, l) = −1 for l = 17, 18, . . . , 32.

k = 1 implies i = 6. C6 = {tl : l = 33, . . . , 64},C+
6 = {tl : l = 33, . . . , 48},C−6 = {tl : l =

49, . . . , 64}. In other words, nonzero entries in 6th row of H formulated as below:

H(6, l) = 1 for l = 33, . . . , 48.; H(5, l) = −1 for l = 49, . . . , 64.

k = 2 implies i = 7. C7 = {tl : l = 65, . . . , 96},C+
7 = {tl : l = 65, . . . , 80},C−6 = {tl : l =

81, , . . . , 96}. In other words, nonzero entries in 7th row of H formulated as below:

H(7, l) = 1 for l = 65, . . . , 80.; H(7, l) = −1 for l = 81, . . . , 96.

k = 3 implies i = 8. C8 = {tl : l = 97, . . . , 128},C+
8 = {tl : l = 97, . . . , 112},C−8 = {tl : l =

113, , . . . , 128}. In other words, nonzero entries in 8th row of H formulated as below:

H(8, l) = 1 for l = 97, . . . , 112.; H(8, l) = −1 for l = 113, . . . , 128.

Therefore ,
H(5, 5) = 1,H(6, 6) = 0,H(7, 7) = 0,H(8, 8) = 0 (3.5)

Case 5 [Rows 9 to 16 ( j = 3) of HHH]: Nonzero entries in 9 to 16 rows of H are as follows:

H(9, l) = 1, l = 1, 2, . . . , 8; H(9, l) = −1, l = 9, . . . , 16.

H(10, l) = 1, l = 17, 18, . . . , 24; H(10, l) = −1, l = 25, . . . , 32.

H(11, l) = 1, l = 33, 34, . . . , 40; H(11, l) = −1, l = 41, . . . , 48.

H(12, l) = 1, l = 49, 50, . . . , 56; H(12, l) = −1, l = 57, . . . , 64.
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H(13, l) = 1, l = 65, 66, . . . , 72; H(13, l) = −1, l = 73, . . . , 80.

H(14, l) = 1, l = 81, . . . , 88; H(14, l) = −1, l = 89, . . . , 96.

H(15, l) = 1, l = 97, . . . , 104; H(15, l) = −1, l = 105, . . . , 112.

H(16, l) = 1, l = 113, . . . , 120; H(16, l) = −1, l = 121, . . . , 128.

Therefore, H(9, 9) = −1; H(10, 10) = 0; H(11, 11) = 0; H(12, 12) = 0;
H(13, 13) = 0; H(14, 14) = 0; H(15, 15) = 0; H(16, 16) = 0.

(3.6)

Case 6 [Rows 17 to 32 ( j = 4) of HHH]:Nonzero entries in the rows from 17 to 32 of H are listed
below.

H(17, 1) = 1, l = 1, . . . , 4; H(17, 1) = −1, l = 5, . . . , 8.

H(18, 1) = 1, l = 9, . . . , 12; H(18, 1) = −1, l = 13, . . . , 16.

Nonzero entries in 18th row obtained by shifting the nonzero entries in previous(17th) row by 8
units (columns), use this procedure to obtain the remaining rows up to 32nd row.

H(19, l) = 1, l = 17, . . . , 20; H(19, l) = −1, l = 21, . . . , 24.

...

H(32, l) = 1, l = 121, . . . , 124; H(32, l) = −1, l = 125, . . . , 128.

Nonzero value lies on the diagonal of H is H(19, 19) = 1. i.e.,H(i, i) = 0 for i ∈ {17, 18, . . . , 32} − {19} and
H(19, 19) = 1.

(3.7)

Case 7 [Rows 33 to 64 ( j = 5) of HHH]: Nonzero entries in 33rd row are : H(33, 1) = 1, for l =

1, 2; H(33, 1) = −1, for l = 3, 4. To obtain nonzero entries in rows from: 34 to 64, we shift the
nonzero entries in previous row by 4 columns. Hence nonzero value lies on the diagonal of H is
H(43, 43) = −1.

i.e., H(i, i) = 0 for i ∈ {33, 34, . . . , 64} − {43} and H(43, 43) = −1. (3.8)

Case 8 [Rows 65 to 128 ( j = 6) of HHH]: Nonzero entries in 65th row are:H(65, 1) = 1; H(65, 2) =

−1. To obtain nonzero entries in rows: 66 to 128, we shift the nonzero entries in previous row by
2 columns. Hence nonzero value contribution in the sum involving of trace of H is H(128, 128) =

−1. i.e.,

H(i, i) = 0 for i ∈ {65, 66, . . . , 128} − {128} and H(128, 128) = −1. (3.9)

Use above equations (3.1)-(3.9) to compute the required tr(H).

tr(H) =

128∑
i=1

H(i, i),
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tr(H) =

H(1, 1) + H(2, 2) + H(3, 3) + H(5, 5) + H(9, 9)+
H(19, 19) + H(43, 43) + H(128, 128),

.

= 1 + 1 + 1 + 1 + (−1) + 1 + (−1) + (−1).

Therefore, tr(H) = 2(, 0).tr(H) = 2(, 0).tr(H) = 2(, 0).

Remark 3.1. If H is Haar wavelets matrix of size 2K , then there are only K +1 nonzero values (±1)
among the sum involving of 2K terms in the computation of trace of H.

Part-2( K is even) : Haar wavelets matrix of size 256 = 28 i.e., K = 8 (Statement (2.10) is true for
K = 2, 4 and 6). We show that tr(H) , 7.

Solution: Collocation points: C = {tl = 2l−1
512 : l = 1, 2, . . . , 256}.

Following are the K + 1 = 8 + 1 = 9 nonzero values in the computation of trace of H of size 256.

tr(H) =

H(1, 1) + H(2, 2) + H(3, 3) + H(5, 5) + H(9, 9) + H(18, 18)
+H(37, 37) + H(86, 86) + H(256, 256).

.

tr(H) = 1 + 1 + 1 + 1 + 1 + 1 + (−1) + 1 + (−1). (3.10)

Therefore, tr(H) = 5(, 8 − 1)tr(H) = 5(, 8 − 1)tr(H) = 5(, 8 − 1).

4. Identification of pitfalls

Now, we look at the proof provided to the statement (2.10) [Theorem 3.2 [6]]. Proof contains
two parts depends on K is even(first part) and odd(second part). Second part uses the first part.
Hence it is enough to identify the pitfall in the first part. As there are K + 1 cases and hence K + 1
non zero values lie on the diaognal of H. Part-1 concluded that: only one nonzero is −1(Case:
K + 1), remaining are +1(Cases:1 to K), hence tr(H) = K − 1. In counterexample for K = 8, we
found that there are two −1 values on the diagonal of H (Equation (3.10)).

5. Results and algorithm

To meet the goal of this article we have to concentrate on how to find the K + 1 nonzero values
lie on the diagonal of H of size 2K . The journey to reach this goal is through the following theorem
and algorithm.

Theorem 5.1. Let H be a Haar wavelets matrix of size n = 2K(K > 1). Then

tr(H) = 2 +

K−1∑
j=1

H( j)(i, i), (5.1)

where i = 2 j + k + 1 is unique for a given j and satifies the constrained Diophnatine equation:
2 j + 1 = k(2K− j − 1) + p, for some k ∈ {0, 1, ..., 2 j − 1} and p ∈ {1, 2, ..., 2K− j}.
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Proof. Let H be a Haar wavelets matrix of size n = 2K(K > 1). We have

tr(H) =

2K∑
i=1

H(i, i). (5.2)

Clearly t1 ∈ C1 and t2 ∈ C2. Hence H(1, 1) = 1 and H(2, 2) = 1. Then above equation reduces to

tr(H) = 2 +

2K∑
i=3

H(i, i). (5.3)

For each j ∈ {1, 2, ...,K − 1}, there are 2 j rows of H namely 2 j + 1, 2 j + 2, ..., 2 j+1. Each row have
2K− j number of nonzero columns and their pattern is explicitly given below.
Nonzero column indices in (2 j + 1)th row of H are: 1, 2, ..., 2K− j. i.e.,

H(2 j + 1, l) = ±1, l = 1, 2, ..., 2K− j. (5.4)

Nonzero columns in subsequent rows(up to (2 j+1)th ) can be obtained by shifting nonzero
columns in previous row by 2K− j units. Among these 2 j rows, only one nonzero column lie on
the diagonal of H, we denote this by H( j)(i, i). Hence (5.3) simplified to:

tr(H) = 2 +

K−1∑
j=1

H( j)(i, i). (5.5)

We complete the proof by exploring the relation between i and j in the above equation. For a fixed
j ∈ {1, 2, ...,K − 1} and i ∈ {2 j + 1, 2 j + 2, ..., 2 j+1}. Recall H(i, i) = ±1 if and only if ti ∈ Ci.
i.e ti = tk(2K− j)+p or i = k(2K− j) + p, for some p ∈ {1, 2, ..., 2K− j}. Hence, we have the following
constrained Diophantine equation.

ithrow = ithnonzero column i.e., 2 j + k + 1 = k(2K− j) + p, (5.6)

where k ∈ {0, 1, ..., 2 j − 1} and p ∈ {1, 2, ..., 2K− j}.

Remark 5.2. The trace of the matrix H of size 2K can be computed by summing the K + 1 nonzero
values, among these, three nonzero values are: H(1, 1) = 1,H(2, 2) = 1 and H(2K , 2K) = −1.
As a consequence of Theorem 5.1, an algorithm is proposed to compute the remaining the K − 2
nonzero values (K > 2).

Algorithm to compute the trace of H

Input: K ∈ N(K > 2).

Output: K − 2 nonzero values or tr(H)
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Step 1: Choose j = 1, 2, . . . ,K − 2. Denote ∆ j = 2K− j.

Solve the unique pair k and p (Theorem 5.1) using following constrained Diophantine equa-
tion:

2 j + 1 = k(∆ j − 1) + p;

for some k in {0, 1, . . . , 2 j−1} and p in {1, 2, . . . ,∆ j}.

Obtained k used for i, i.e., i = 2 j + k + 1. i.e., we picked the (i, i) entry in the band of 2 j rows
such that H(i, i) = ±1. Obtained p used for deciding exactly 1 or −1 by ensuring that tp in C+

i or
C−i respectively.

H( j)(i, i) =

1, i f p ≤ ∆ j

2

−1, otherwise.
(5.7)

Step 2:

tr(H) = 1 +

K−2∑
j=1

H( j)(i, i). (5.8)

Algorithm implemented using MATLAB programming for various sizes of H and the same is
recorded in the Table 1.

K tr(H) K tr(H) K tr(H)
2 1 12 11 22 21
3 0 13 8 23 10
4 3 14 9 24 21
5 0 15 8 25 20
6 5 16 15 26 21
7 2 17 8 27 18
8 5 18 17 28 27
9 4 19 10 29 16

10 9 20 15 30 29
11 2 21 16 31 22

Table 1: Trace of Haar matrices for different (2K) sizes.

Goal of this article achieved by providing a counterexample to the result on the trace of Haar
wavelets matrix existing in the literature and correspondingly amendment has done. During the
journey of this goal, a fast algorithm developed to compute the trace of Haar matrix. Table 1.
contains the amendement results on trace of Haar matrices with different sizes.
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