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Abstract
In this paper a new quantity for real tensors, the sign-real spec-
tral radius, is defined and investigated. Various characteriza-
tions, bounds and some properties are derived. In certain aspects
our quantity shows similar behavior to the spectral radius of a
nonnegative tensor. In fact, we generalize the Perron Frobenius
theorem for nonnegative tensors to the class of real tensors.
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1. Introduction and Notation

Tensors have numerous applications in many branches of mathematics and physics. It arises in
diverse fields such as signal and image processing, data analysis, nonlinear continuum mechanics,
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higher order statistics, as well as independent component analysis [1, 5, 6, 8, 9, 15, 18, 19, 25, 27].
The concept of eigenvalues for tensors was first introduced and studied by Qi [21] and Lim [17]
independently in 2005, and initiated the rapid developments of the spectral theory of tensors. In
late studies of numerical multilinear algebra [3, 17, 21], eigenvalue problems for tensors have
been brought to special attention. In particular, the Perron Frobenius theorem for nonnegative
tensors is related to measuring higher order connectivity in linked objects [16] and hypergraphs
[11]. Also, the largest eigenvalue problem for nonnegative tensors has attracted special attention.
Perron Frobenius theorem for nonnegative tensors that includes existence, uniqueness of Perron
root and positivity of the Perron vector is established, Collectively in [4, 12, 17]. Ng et. al.
[20] gave a method to find the largest eigenvalue of a nonnegative irreducible tensor. Yang and
Yang [26] defined the spectral radius of a tensor and gave further results for the Perron Frobenius
theorem and proved that the spectral radius is the largest eigenvalue of any nonnegative tensor and
all eigenvalues with the spectral radius as their modulus distribute uniformly on the circle.

It was in 1997, S. Rump introduced and investigated a new quantity for real matrices, the sign-
real spectral radius, [23]. This quantity was shown to share certain properties with the Perron root
of nonnegative matrices and has intimate connections to the componentwise distance to the nearest
singular matrix. Componentwise distances, perturbation bounds, and error bounds have received
quite some attention in recent years (see [2, 13]). Any lower bound on the sign-real spectral radius
implies an upper bound on the componentwise distance to the nearest singular matrix [23]. This
was the original motivation for defining and investigating the sign-real spectral radius. It turns
out that the sign-real spectral radius is interesting in itself and, in certain aspects, shows similar
behavior to the Perron root of a nonnegative matrix, for example, the inheritance property on going
to principal submatrices [23]. Now, the question arises whether this quantity can be expressed and
checked for real tensors? In the other words, can we extend the Perron Frobenius theorem for
nonnegative tensors to the class of real tensors? In this paper, we will give a positive answer to
this question.

This paper is organized as follows. In Section 2, we recall the definitions and theorems con-
cerning the eigenvalues of the tensor. In Section 3, the sign-real spectral radius is defined for
tensors then the properties of this quantity, which is similar to the spectral radius for nonnegative
ones will be investigated. In Section 4, an extension of the Perron Frobenius theorem for nonnega-
tive tensors to real tensors is given. In fact we show that for every mth-order n-dimensional tensor
A, the sign-real spectral radius is a real eigenvalue of SA for some signature matrix S and the
associated eigenvector is nonnegative (see Theorem 4.2). Also it will be shown that the sign-real
spectral radius is equal to the spectral radius for nonnegative tensors.

We first add a comment on the notation that is used. Vectors are written as (x, y, ...), matrices
correspond to (A, B, ...) and tensors are written as (A,B, ...). The entry with row index i and column
index j in a matrix A, i.e. (A)i j is symbolized by ai j (also (A)i1i2...im = ai1i2...im). The symbol | . | used
on a matrix A ( tensor A) means that (|A|)i j =

∣∣∣ai j

∣∣∣ ( (|A|)i1i2...im =
∣∣∣ai1i2...im

∣∣∣). < and C denote the
real and complex field respectively.
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2. Preliminaries and some conclusions concerning the eigenvalue

A real mth-order n-dimensional tensor A consists of nm real entries:

ai1i2...im ∈ <,

where i j ∈ {1, ..., n} for j ∈ {1, ...,m}. We denote the set of all real mth-order n-dimensional tensors
by<[m,n]. For a vector x ∈ <n, we use xi to denote its components, and x[m] to denote a vector in
<n such that

x[m]
i = xm

i ,

for all i. Axm−1 for a vector x ∈ <n denotes a vector in<n, whose ith component is

(
Axm−1

)
i
=

n∑
i2,...,im=1

aii2...im xi2 ... xim . (2.1)

Definition 2.1. A pair (λ, x) ∈ C × (Cn\ {0}) is called an eigenvalue and an eigenvector of A ∈
<[m,n], if they satisfy

Axm−1 = λx[m−1]. (2.2)

Furthermore, we say λ is an H-eigenvalue with the corresponding H-eigenvector x (or (λ, x) is an
H-eigenpair) of A if they are both real.

In the case m = 2, (2.2) reduces to the definition of eigenvalues and corresponding eigenvectors
of a square matrix. This definition was introduced by Qi [21]. We denote the set of eigenvalues
of A with σ (A). An mth-order n-dimensional tensor A is called nonnegative if ai1i2...im ≥ 0. We
call an mth-order n-dimensional tensor the unit tensor, denoted by I, if its entries are δi1i2...im with
δi1i2...im = 1 if and only if i1 = · · · = im and the others are zero.

Theorem 2.2. [4] If A is a nonnegative tensor of order m dimension n, then there exist λ0 ≥ 0 and
a nonnegative vector x0 , 0 such that

Axm−1
0 = λ0x[m−1]

0 .

The spectral radius of tensor A is defined by Yang and Yang in [26] as follows:

Definition 2.3. The spectral radius of tensor A is defined as

ρ (A) = max
{
|λ| : λ is an eigenvalue o f A

}
. (2.3)

They proved that the spectral radius of a nonnegative tensor, is an eigenvalue of it.

Definition 2.4. [14] Let A be an mth-order n-dimensional tensor with m ≥ 2 and x = (x1, ..., xn)T .
Then the determinant of A, denoted by det(A), is the resultant of the ordered system of homo-
geneous equations Axm−1 = 0 (i.e. the system of homogeneous equations

(
Axm−1

)
i

= 0 for
i = 1, ..., n), where Axm−1 is as defined in (2.1).



Afshin, Shojaeifard/ Wavelets and Linear Algebra 5(1) (2018) 73- 87 76

By using the properties of the resultants, it can be shown [14] that the above definition for
determinant is equivalent to the following definition.

Definition 2.5. [14] Let A be an mth-order n-dimensional tensor with m ≥ 2. Then det (A) is the
unique polynomial on the entries of A satisfying the following three conditions:

(1) det(A) = 0 if and only if the system of homogeneous equations Axm−1 = 0 has a nonzero
solution.

(2) det(I) = 1, where I is the unit tensor.
(3) det(A) is an irreducible polynomial on the entries of A, when the entries ai1...im (1 ≤

i1, ..., im ≤ n) of A are all viewed as independent different variables.

By using the definition of determinants, we can define the characteristic polynomial of a tensor
A as the determinant det(λI − A), where I is the unit tensor. It is easy to see from the definitions
that, λ is an eigenvalue of A if and only if it is a root of the characteristic polynomial of A.

Definition 2.6. [24] Let A and B be order m ≥ 2 and order k ≥ 1, dimension n tensors, respectively.
The product AB is the following tensor C of order (m − 1) (k − 1)+1 and dimension n with entries:

ciα1...αm−1 =

n∑
i2,...,im=1

aii2...imbi2α1 ...bimαm−1(
i ∈ [n] := {1, ..., n} , α1, ..., αm−1 ∈ [n]k−1

)
.

(2.4)

It is easy to check from the definition that InA = A = AIn, where In is the identity matrix of
order n.

Theorem 2.7. [24] The tensor product defined in above has the following properties.
(i) (A + B)C = AC + BC.
(ii) A (B + C) = AB + AC, where A is an n × n matrix.
(iii) (αA)B = α(AB), for any (α ∈ C).
(iv) A (αB) = αm−1(AB), for any (α ∈ C).

Theorem 2.8. [24] (The associative law of the tensor product): Let A (and B, C) be an order
m + 1 (and order k + 1, order r + 1), dimension n tensor, respectively. Then we have

A (BC) = (AB)C.

Lemma 2.9. [24] Let A be an mth-order n-dimensional tensor, I be the mth-order n-dimensional
unit tensor, and P and Q are two matrices of order n. Then we have:

det (PAQ) = det (PIQ) det (A) .

Definition 2.10. [24] Let A and B be two order k tensors with dimension n and m, respectively.
Define the direct product A ⊗B to be the following tensor of order k and dimension nm (the set of
subscripts is taken as [n] × [m] in the lexicographic order):

(A ⊗ B)(i1, j1),(i2, j2),...,(ik , jk) = ai1i2...ikb j1 j2... jk .
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Theorem 2.11. [24] Let A and B be two order k + 1 tensors with dimension n and m, respectively.
Let C and D be two order r + 1 tensors with dimension n and m, respectively. Then we have:

(A ⊗ B) (C ⊗ D) = (AC) ⊗ (BD) .

Theorem 2.12. [24] Let A and B be two order k tensors with dimension n and m, respectively.
Suppose that we have Auk−1 = λu[k−1], and Bvk−1 = µv[k−1], and we also write w = u ⊗ v. Then we
have:

(A ⊗ B) wk−1 = (λµ) w[k−1].

Definition 2.13. A diagonal tensor is a tensor that only the entries of which all the indices are
equal can be different from zero.

Lemma 2.14. [26] Let A,B ∈ <[m,n]. If there is a diagonal nonsingular matrix D such that

A = B.D−(m−1).

m−1︷︸︸︷
D...D, then they have the same eigenvalues, where

ai1i2...im = bi1i2...imd−(m−1)
i1i1

di2i2 ...dimim . (2.5)

Definition 2.15. [14] Let A ∈ <[m,n]. Suppose that ai1i2...im = 0 if min {i2, ..., im} is less than i1, then
A is called an upper triangular tensor. Suppose that ai1i2...im = 0 if max {i2, ..., im} is greater than i1,
then A is called a lower triangular tensor. If A is either upper or lower triangular, then A is called
a triangular tensor. In particular, a diagonal tensor is a triangular tensor.

Theorem 2.16. [14] Suppose that A ∈ <[m,n] is a triangular tensor. Then

σ (A) =
{
aii...i : i = 1, ..., n

}
,

and the algebraic multiplicity of aii...i is (m − 1)n−1 for all i = 1, ..., n. Also we have

det(A) =

n∏
i=1

(ai...i)(m−1)(n−1)

Definition 2.17. [17] A tensor A ∈ <[m,n] is called reducible, if there exists a nonempty proper
index subset I ⊂ {1, ..., n} such that

ai1,...,im = 0, ∀i1 ∈ I, ∀i2, ..., im < I,

If A is not reducible, then we call A irreducible.

Theorem 2.18. Let A ∈ <[m,n]
+ be an irreducible tensor. Define the function fA from<n

+ to the set
of nonnegative numbers by

fA (x) = min
xi,0

(
Axm−1

)
i

xm−1
i

,

for all x , 0, x ≥ 0. If y is nonnegative, nonzero and ρ is the largest real number such that
Aym−1 − ρy[m−1] ≥ 0, then ρ = fA (y).

Proof. By definition of fA we have Aym−1 − fA (y) y[m−1] ≥ 0, and there exists an integer s, 1 ≤ s ≤
n, such that ys , 0 and sth coordinate of Aym−1 − fA (y) y[m−1] is zero. Therefore if ρ > fA (y), then
the sth coordinate of Aym−1 − ρy[m−1] is negative. The result follows.
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3. The sign-real spectral radius for real tensors

The purpose of this paper is to extend Perron Frobenius theorem for nonnegative tensors to
general real tensors. The key of this extension is the following nonlinear eigenvalue problem:

max
{
|λ| :

∣∣∣Axm−1
∣∣∣ =

∣∣∣λx[m−1]
∣∣∣ , x , 0

}
. (3.1)

For an m-order n-dimensional nonnegative tensor A we can in (3.1) clearly eliminate the abso-
lute values and obtain the spectral radius:

ρ (A) = max
{
|λ| :

∣∣∣Axm−1
∣∣∣ =

∣∣∣λx[m−1]
∣∣∣ , λ ∈ C , 0 , x ∈ Cn

}
= max

{
0 ≤ λ ∈ < : Axm−1 = λx[m−1] , 0 ≤ x ∈ <n , x , 0

}
. (3.2)

The reason comes from the Perron Frobenius theorem for nonnegative tensors (see Theorem 2.2),
and

∣∣∣∣(λx[m−1]
)

i

∣∣∣∣ = |λ|
∣∣∣xm−1

i

∣∣∣ =
∣∣∣∣(Axm−1

)
i

∣∣∣∣ =

∣∣∣∣∣∣∣
n∑

i2...im=1

aii2...im xi2 ...xim

∣∣∣∣∣∣∣
≤

n∑
i2...im=1

aii2...im

∣∣∣xi2

∣∣∣ ... ∣∣∣xim

∣∣∣
=

(
A|x|m−1

)
i
,

thus A|x|m−1
− |λ|

∣∣∣x[m−1]
∣∣∣ ≥ 0. By Theorem (2.18) we have |λ| ≤ fA (|x|) ≤ ρ (A).

For the extension to general real tensors we consciously restrict attention to real eigenvalues
(if it exists [see Definition 3.2])(and eigenvectors), that is we consider the quantity

max
{
|λ| :

∣∣∣Axm−1
∣∣∣ =

∣∣∣λx[m−1]
∣∣∣ , A ∈ <[m,n], λ ∈ <, 0 , x ∈ <n

}
. (3.3)

A real diagonal matrix S with diagonal entries of modulus one is called a real signature matrix.
Real signature matrices are the set of diagonal orthogonal matrices, which are in the real case
2n matrices with diagonal entries ±1. In our entrywise notation of absolute value, real signature
matrix S is characterized by |S | = I where I denotes the identity matrix. For brevity we denote
the set of all signature matrices by ϕ. For a real vector x ∈ <n, there is always a signature matrix
S ∈ Mn

(
<

)
with S x = |x|. If all entries of x are nonzero, S is unique. Hence, for our nonlinear

eigenvalue problem (3.1) there are signature matrices S 1 and S 2 with S 1Axm−1 =
∣∣∣Axm−1

∣∣∣ and
S 2λx[m−1] =

∣∣∣λx[m−1]
∣∣∣, such that∣∣∣Axm−1

∣∣∣ =
∣∣∣λx[m−1]

∣∣∣⇔ S 1Axm−1 = S 2λx[m−1]. (3.4)

Therefore the quantity in (3.3) is for A ∈ <[m,n] and S = S 2S 1 the same as

max
{
|λ| : SAxm−1 = λx[m−1] , λ ∈ < , 0 , x ∈ <n , S ∈ Mn

(
<

)
, |S | = I

}
. (3.5)
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And this integrated view also extends to (3.3), the Perron root (3.2), because there is exactly one
nonnegative real signature matrix, namely the identity matrix, and the Perron vector and the Perron
root are known to be nonnegative. Refer to [4]. This leads us to the following unified definition of
the quantities (3.3).

Definition 3.1.

ρs
0 (A) := max

{
|λ| : SAxm−1 = λx[m−1], λ ∈ <, 0 , x ∈ <n, S ∈ Mn

(
<

)
, |S | = I

}
.

This quantity is called the sign-real spectral radius for real tensors. In 2015 Ding and Wei intro-
duced sign-complex spectral radius, Which proves the accuracy of this definition [10].

We note that the index zero in ρs
0 referred to Rohn’s definition of the real spectral radius of a

real matrix [22], we have also introduced for real tensors:

Definition 3.2. Let A ∈ <[m,n], the real spectral radius is defined by

ρ0 (A) := max
{
|λ| : λ ∈ σ (A) ∩<

}
,

where ρ0 (A) = 0 if A has no real eigenvalues.

It easily follows that
ρs

0 (A) = max
S∈ϕ

ρ0 (SA) . (3.6)

Note. Let A be a real mth-order n-dimensional tensor and S ∈ ϕ then by Definition (2.6) SA and
AS are also real mth-order n-dimensional tensors with entries

(SA)iα1 =

n∑
i1=1

sii1ai1α1

(
i ∈ [n] , α1 ∈ [n]m−1

)
.

If α1 = i2...im then we have
(SA)ii2...im = siiaii2...im ,

and

(AS )iα1...αm−1 =

n∑
i2,...,im=1

aii2...im si2α1 ...simαm−1

(
i ∈ [n] , α1, ..., αm−1 ∈ [n]

)
.

Since S ∈ ϕ we have
(AS )iα1...αm−1 = aiα1...αm−1 sα1α1 ...sαm−1αm−1 .

Theorem 3.3. Let A ∈ <[m,n], then ρs
0 (αA) = |α| ρs

0 (A) , for all α ∈ <.
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Proof. If α = 0 the assertion is clear. Now let α , 0.

ρs
0

(
αA

)
= max

T∈ϕ
ρ0

(
TαA

)
= max

T∈ϕ
max

{∣∣∣∣λ∣∣∣∣ : λ ∈ σ (TαA) ∩<
}

= max
T∈ϕ

max
{∣∣∣∣λ∣∣∣∣ : λ ∈ σ (αTA) ∩<

}
= max

T∈ϕ
max

{∣∣∣∣λ∣∣∣∣ :
λ

α
∈ σ (TA) ∩<

}
= max

T∈ϕ
max

{∣∣∣∣αγ∣∣∣∣ : γ ∈ σ (TA) ∩<
}

=
∣∣∣∣α∣∣∣∣ max

T∈ϕ
max

{∣∣∣∣γ∣∣∣∣ : γ ∈ σ (TA) ∩<
}

=
∣∣∣∣α∣∣∣∣ ρs

0 (A) .

Theorem 3.4. For upper or lower triangular tensor ρs
0 (A) = max

i
|ai...i| .

Proof. Since A is triangular tensor therefore SA is also triangular tensor, thus by Theorem (2.16)
the assertion is clear.

Note. Since TT = I and TA = T (AT ) T then we have σ (TA) = σ (AT ) therefore ρ0 (TA) =

ρ0 (AT ) for any T ∈ ϕ. Hence we can use the definition below for sign-real spectral radius,

ρs
0 (A) = max

T∈ϕ
ρ0 (TA) = max

T∈ϕ
ρ0 (AT ) .

Note. Let A,B ∈ <[m,n]. In general ρs
0 (AB) , ρs

0 (BA) and ρs
0 (A) , ρs

0

(
QTAQ

)
for any orthogonal

matrix Q.

Definition 3.5. A signature tensor S of order m and dimension n, is a diagonal tensor with diagonal
entries +1 or −1. we denote the set of all signature tensors of order m and dimension n, by φn.

Theorem 3.6. Let A,B ∈ <[m,n] and S,T ∈ φn. For direct product of tensors we have
(i). ρs

0 (A ⊗ S) = ρs
0 (S ⊗ A) = ρs

0 (S ⊗ A ⊗ T) = ρs
0 (A) .

(ii). ρs
0 (A ⊗ B) = ρs

0 (B ⊗ A) .
(iii). ρs

0 (A) ρs
0 (B) ≤ ρs

0 (A ⊗ B) .

Proof. By definition there exists T ∈ φn2 and T1,T2 ∈ φn such that T = T1 ⊗ T2 thus

ρs
0 (A ⊗ S) = max

T∈φn2
ρ0

(
T (A ⊗ S)

)
= max

T1,T2∈φn
ρ0

(
(T1 ⊗ T2) (A ⊗ S)

)
= max

T1,T2∈φn
ρ0

(
(T1A) ⊗ (T2S)

)
= ρs

0 (A) .
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Theorem (2.12) and σ (T2S) ⊆ {±1} implies the last equality.
Also similarly we have ρs

0 (S ⊗ A) = ρs
0 (A). Therefore the third equation is clear.

(ii). There exists T ∈ φn2 such that

ρs
0 (A ⊗ B) = ρ0

(
T (A ⊗ B)

)
= ρ0

(
(T1 ⊗ T2) (A ⊗ B)

)
= ρ0

(
(T1A) ⊗ (T2B)

)
= ρ0

(
(T2B) ⊗ (T1A)

)
= ρ0

(
(T2 ⊗ T1) (B ⊗ A)

)
= ρ0

(
S (B ⊗ A)

)
≤ ρs

0 (B ⊗ A) ,

thus
ρs

0 (A ⊗ B) ≤ ρs
0 (B ⊗ A) .

If we just exchange A, B we have

ρs
0 (B ⊗ A) ≤ ρs

0 (A ⊗ B) .

(iii). Let there exists T1 ∈ φn such that λ ∈ σ (T1A), ρs
0 (A) = |λ| and also there exists T2 ∈ φn such

that µ ∈ σ (T2B) and ρs
0 (B) = |µ| then by Theorem (2.12) we have

λµ ∈ σ
(
(T1A) ⊗ (T2B)

)
,

λµ ≤ ρ0

(
(T1A) ⊗ (T2B)

)
≤ max

S∈φn2
ρ0

(
S
(
(T1A) ⊗ (T2B)

))
= ρs

0

(
(T1A) ⊗ (T2B)

)
.

Therefore ∣∣∣∣λµ∣∣∣∣ ≤ ρs
0

(
(T1A) ⊗ (T2B)

)
= ρs

0

(
(T1 ⊗ T2) (A ⊗ B)

)
= ρs

0 (A ⊗ B) .

This finishes the proof.

4. Extension of the Perron Frobenius theory to real tensors

In this section we state and prove the main conclusion of this paper which is a generalization
of Theorem (2.2) to the class of real tensors. First, we mention one widely used theorem in the
following.

Lemma 4.1. Suppose that A ∈ <[m,n]. Then for every S ∈ ϕ there is T ∈ ϕ such that
∣∣∣SAxm−1

∣∣∣ =

(TSA) xm−1. In particular
∣∣∣Axm−1

∣∣∣ = (TA) xm−1.
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Proof. By definition we have(∣∣∣SAxm−1
∣∣∣)

i
=

∣∣∣∣∣∣∣
n∑

i2,...,im=1

(SA)ii2...im xi2 ...xim

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
n∑

i2,...,im=1

S iiAii2...im xi2 ...xim

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣S ii

n∑
i2,...,im=1

Aii2...im xi2 ...xim

∣∣∣∣∣∣∣
=

∣∣∣∣(Axm−1
)

i

∣∣∣∣ .
Also (

(TSA) xm−1
)

i
=

n∑
i2,...,im=1

TiiS iiAii2...im xi2 ... xim

= (Tii) (S ii)

 n∑
i2,...,im=1

Aii2...im xi2 ... xim


= TiiS ii

(
Axm−1

)
i
.

Therefore we can find T ∈ ϕ such that the assertion is true.

Theorem 4.2. Suppose that A ∈ <[m,n]. Then for every T ∈ ϕ there exists some S ∈ ϕ such that
SA has an eigenvector in that orthant corresponding to a real nonnegative eigenvalue, i.e.,

∀T ∈ ϕ ∃ S ∈ ϕ ∃ 0 , x ∈ <n :

x ≥ 0 and SA(T x)m−1 = λ(T x)[m−1] f or some 0 ≤ λ ∈ <.

Proof. Let T ∈ ϕ be given. If there exists 0 , x ∈ <n, x ≥ 0 such that A(T x)m−1 = 0 then λ = 0
and S = I. This finishes the proof. (Note if 0 , x then T x , 0.)
Now we assume that A(T x)m−1 , 0 for all nonzero x ≥ 0. We define

E =

x = (x1, x2, ..., xn) ∈ <n : xi ≥ 0 , 1 ≤ i ≤ n ,
n∑

i=1

xi = 1

 ,
which is a nonempty, compact, and convex set. Now we define the function f : E → E such that

( f (x))i =

(∣∣∣A(T x)m−1
∣∣∣) 1

m−1

i
n∑

j=1

((∣∣∣A(T x)m−1
∣∣∣) 1

m−1

j

) , , 1 ≤ i ≤ n,
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that is well defined on E and continuous. By Brouwer’s fixed-point theorem, there exists x0 ∈ E
such that f (x0) = x0. Therefore

(∣∣∣A(T x0)m−1
∣∣∣) 1

m−1

i
=

n∑
j=1

((∣∣∣A(T x0)m−1
∣∣∣) 1

m−1

j

)
(x0)i, 1 ≤ i ≤ n,

Tii

(∣∣∣A(T x0)m−1
∣∣∣) 1

m−1

i
=

n∑
j=1

((∣∣∣A(T x0)m−1
∣∣∣) 1

m−1

j

)
Tii(x0)i, 1 ≤ i ≤ n,

T m−1
ii

(∣∣∣A(T x0)m−1
∣∣∣)

i
=

 n∑
j=1

((∣∣∣A(T x0)m−1
∣∣∣) 1

m−1

j

)
m−1

(T x0)m−1
i , 1 ≤ i ≤ n,

It follows that
T m−1

∣∣∣A(T x0)m−1
∣∣∣ = λ0(T x0)[m−1].

By previous lemma, there exists S ∈ ϕ such that

SA(T x0)m−1 = λ0(T x0)[m−1],

where λ0 =

(
n∑

j=1

((∣∣∣A(T x0)m−1
∣∣∣) 1

m−1

j

))m−1

.

This theorem shows that there is always some S ∈ ϕ such that SA has a real eigenvalue, which
means that ρs

0 (A) is always equal to a real eigenvalue of some SA and also this theorem shows
that for every A ∈ <[m,n] there exists S ∈ ϕ such that SA has an H-eigenvalue.

Theorem 4.3. Suppose that A ∈ <[m,n], 0 , x ∈ <n and 0 ≤ r ∈ <. Then∣∣∣∣Ax
∣∣∣∣ ≥ r

∣∣∣x[m−1]
∣∣∣ ⇒ ρs

0 (A) ≥ r.

Proof. Define diagonal D by

Dii =


r
∣∣∣xm−1

i

∣∣∣
(Ax)i

(Ax)i , 0

0 otherwise

If (Ax)i = 0 then |(Ax)i| ≥ r
∣∣∣x[m−1]

∣∣∣ implies rxm−1
i = 0. Thus D |Ax| = r

∣∣∣x[m−1]
∣∣∣ where 0 ≤ Dii ≤ 1.

There are signture matrices S 1, S 2 such that S 1Ax = |Ax| and x[m−1] = S 2

∣∣∣x[m−1]
∣∣∣. Now DS 1Ax =

rS 2 x[m−1] hence S 2DS 1Ax = rx[m−1]. For D1 = S 2DS 1 it follows D1Ax = rx[m−1]. Now 0 , x
yield

det
(
rI − D1A

)
= 0, −1 ≤ (D1)ii ≤ 1. (4.1)
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We construct a signature matrix S with det (rI − SA) ≤ 0. For fixed index i, 1 ≤ i ≤ n, define
D2 = D2 (α) by

(D2) j j :=


(D1) j j j , i

α j = i

By using (4.1) and especially −1 ≤ (D1)ii ≤ 1 it follows that

det
(
rI − D2A

)
≤ 0,

by choosing appropriate α = 1 or α = −1. Repeating this argument for all indices i, 1 ≤ i ≤ n, we
obtain a signature matrix S such that det (rI − SA) ≤ 0.
This is the value of the characteristic polynomial P (t) = det (tI − SA) of SA at the nonnegative
point t = r. Since the characteristic polynomial P (t) is a one variable monic polynomial, thus it
tends to +∞ as t tends to +∞. Thus P (t) must cross the real axis for some s ≥ r. Now

r ≤ s ≤ ρ0 (SA) ≤ ρs
0 (A) .

Similar to the Collatz Wielandt theorem, Chang et al. extended the minimax characterization
of the spectral radius ρ (A) in [4]. Now we generalize the maxmin theorem of nonnegative tensors
to the class of real tensors.

Theorem 4.4. Let A ∈ <[m,n] then

ρs
0 (A) = max

x∈<n\{0}
min
xi,0

∣∣∣∣∣∣∣∣
(
Axm−1

)
i

xm−1
i

∣∣∣∣∣∣∣∣ .
Proof. Let S be a signature matrix such that SAym−1 = λy[m−1], 0 , y ∈ <n with |λ| = ρs

0 (A).
Then

min
yi,0

∣∣∣∣∣∣∣∣
(
Aym−1

)
ym−1

i

∣∣∣∣∣∣∣∣ = |λ| = ρs
0 (A)

and

ρs
0 (A) ≤ max

x∈<n\{0}
min
xi,0

∣∣∣∣∣∣∣∣
(
Axm−1

)
xm−1

i

∣∣∣∣∣∣∣∣ .
Conversly, Theorem 4.3 implies for any nonzero vector x

ρs
0 (A) ≥ min

xi,0

∣∣∣∣∣∣∣∣
(
Axm−1

)
xm−1

i

∣∣∣∣∣∣∣∣ .
The theorem is proved.
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Note. If A ∈ <[m,n] and A ≥ 0 then ρs
0 (A) = ρ (A).

Following are more properties of the sign-real spectral radius, showing similarities to Perron
Frobenius theory for nonnegative tensors.

Lemma 4.5. Suppose that A,B ∈ <[m,n] be diagonal, and D be an n × n diagonal matrix. Then
(i). det(AB) = det(A) det(B).
(ii). det(DA) = det(DI) det(A), where I is a unit tensor.

Proof. By Theorem (2.16) and Lemma (2.9) the proof is clear.

Theorem 4.6. Suppose that A be a real mth-order n-dimensional tensor. Then there are S ,T ∈ ϕ
and 0 , x ∈ <n with x ≥ 0 and

(SAT ) xm−1 = ρs
0 (A) x[m−1].

Proof. Let λ ∈ σ (SA) then there is 0 , x ∈ <n such that SAxm−1 = λx[m−1] and |λ| = ρs
0 (A).

Now
∣∣∣SAxm−1

∣∣∣ = ρs
0 (A)

∣∣∣x[m−1]
∣∣∣ . By Theorem (4.2) there exists T1 ∈ ϕ such that

(T1SA) xm−1 = ρs
0 (A)

∣∣∣x[m−1]
∣∣∣ ,

by using the properties of signature matrix we have

(T1SA) S 2S 2xm−1 = ρs
0 (A)

∣∣∣x[m−1]
∣∣∣ ,

by Theorem (4.2)
(T1SA) S 2T2

∣∣∣xm−1
∣∣∣ = ρs

0 (A)
∣∣∣x[m−1]

∣∣∣ .
Define S := T1S and T := S 2T2. This finishes the proof.

Theorem 4.7. If ρs
0 (A) = 0 then det(A) = 0.

Proof. By Theorem (4.6) there exists S ∈ ϕ such that

det
(
ρs

0 (A) I − SA
)

= 0.

By Lemma (4.5) we have 0 = det (−SA) = det(−S I) det(A). Since det(−S I) , 0 therefore
det(A) = 0.

Theorem 4.8. For every A ∈ <[m,n] and diagonal matrix D we have

ρs
0 (A) = max

{
ρ0 (DA) : |D| ≤ I

}
.

Proof. Since every S ∈ ϕ is a diagonal matrix D such that |D| ≤ I thus for every S ∈ ϕ we have

ρ0 (SA) ≤ max
{
ρ0 (DA) : |D| ≤ I

}
,

therefore
ρs

0 (A) ≤ max
{
ρ0 (DA) : |D| ≤ I

}
.

On the other hand since there exists T ∈ ϕ such that |T | ≤ I and ρs
0 (A) = ρ0 (TA) thus the proof is

complete.
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