

# **Linear preservers of Miranda-Thompson** majorization on $M_{m,n}$

## Ahmad Mohammadhasani<sup>a,\*</sup>, Asma Ilkhanizadeh Manesh<sup>b</sup>

<sup>a</sup>Department of Mathematics, Sirjan University of technology, Sirjan, Islamic Republic of Iran. <sup>b</sup>Department of Mathematics, Vali-e-Asr University of Rafsanjan, P.O. Box: 7713936417, Rafsanjan, Islamic Republic of Iran.

## **ARTICLE INFO**

Article history: Received 9 April 2017 Accepted 6 November 2017 Available online 03 January 2018 Communicated by Abbas Salemi

Abstract

Miranda-Thompson majorization is a group-induced cone ordering on  $\mathbb{R}^n$  induced by the group of generalized permutation with determinants equal to 1. In this paper, we generalize Miranda-Thompson majorization on the matrices. For X,  $Y \in \mathbf{M}_{m,n}$ , X is said to be Miranda-Thompson majorized by Y (denoted by  $X \prec_{mt} Y$ ) if there exists some  $D \in \text{Conv}(G)$  such that X = DY. Also, we characterize linear preservers of this concept on  $\mathbf{M}_{m,n}$ .

© (2017) Wavelets and Linear Algebra

Keywords:

Majorization, Linear preserver, Group -induced Cone ordering,

2000 MSC: 15A04, 15A21.

\*Corresponding author

http://doii.org/10.22072/wala.2017.61736.1113 © (2017) Wavelets and Linear Algebra

Email addresses: a.mohammadhasani53@gmail.com (Ahmad Mohammadhasani), a.ilkhani@vru.ac.ir (Asma Ilkhanizadeh Manesh)

#### 1. Introduction

In matrix theory, majorization plays a significant role. The best general reference on this subject is *Inequalities: Theory of majorization and its applications* by A. W. Marshall, I. Olkin, and B. C. Arnold [8]. Some kinds of majorization with their linear preservers can be found in [1]-[2] and [4]-[6].

Let *V* be a finite-dimensional real vector space, O(V) the orthogonal group acting on *V* and *G* a closed subgroup of O(V). The group *G* induces an equivalence relation on *V*, defined by  $x \approx y$  if and only if y = gx for some  $g \in G$ . The equivalence classes of this relation are called the orbits of *G*. For each  $y \in V$  the orbit of *y* is  $O_G(y) = \{gy \mid g \in G\}$ . A vector *x* is G-majorized by *y*, denoted by  $x \prec_G y$ , if  $x \in Conv(O_G(y))$ , where the notation Conv(A) is the convex hull of a set *A*. The group majorization  $\prec_G$  generates an equivalence relation  $\sim_G$  on *V* defined as follows.  $x \sim_G y$  if and only if  $x \prec_G y \prec_G x$ . In [3], A. Giovagnoli and H. P. Wynn observed that  $x \sim_G y$  if and only if y = gx for some  $g \in G$ . The classical majorization is a vector pre-ordering on  $\mathbb{R}^n$  induced by the permutation group. In [9], M. Soleymani and A. Armandnejad introduced the concept of even majorization, and they characterized the linear preservers and strong linear preservers of this concept on  $\mathbf{M}_{m,n}$ .

In the persent paper, let  $V = \mathbb{R}^n$  with the standard inner product and  $G = \{PC \mid P \in \mathbb{P}_n, C \in \mathbb{C}_n, \det(C) = 1\}$ , where  $\mathbb{P}_n$  is the group of *n*-by-*n* permutation matrices and  $\mathbb{C}_n$  is the group of *n*-by-*n* diagonal orthogonal matrices. Notice that  $\mathbb{C}_n = \{diag(\lambda_1, \ldots, \lambda_n) \mid \lambda_i \in \{1, -1\}, 1 \le i \le n\}$ .  $\prec_G$  will display with  $\prec_{mt}$ . In [7, Section 6], M. Niezgoda proved for any  $x, y \in \mathbb{R}^n$  we have  $x \prec_{mt} y$  if and only if

$$\sum_{k=1}^{i} |x|_{[k]} \le \sum_{k=1}^{i} |y|_{[k]}, \text{ for all } i \ (1 \le i \le n-2),$$

$$\sum_{k=1}^{n-1} |x|_{[k]} + sing(x)|x|_{[n]} \le \sum_{k=1}^{n-1} |y|_{[k]} + sing(y)|y|_{[n]},$$
$$\sum_{k=1}^{n-1} |x|_{[k]} - sing(x)|x|_{[n]} \le \sum_{k=1}^{n-1} |y|_{[k]} - sing(y)|y|_{[n]},$$

where  $|x| = (|x_1|, |x_2|, ..., |x_n|)$ ,  $sign(x) = sgn(\prod_{i=1}^n x_i)$  and by  $(|x|_{[1]}, |x|_{[2]}, ..., |x_n|)$ 

 $|x|_{[n]})^t$  we denote the entries of a vector  $x = (x_1, x_2, ..., x_n)^t \in \mathbb{R}^n$  arranged in decreasing order. Now, we generalize this concept on matrices.

**Definition 1.1.** For  $X, Y \in \mathbf{M}_{m,n}$ , X is said to be Miranda-Thompson majorized by Y (denoted by  $X \prec_{mt} Y$ ) if there exists some  $D \in \text{Conv}(G)$  such that X = DY. That is,  $X = \sum_{i=1}^{k} \lambda_i P_i C_i Y$ , where  $P_i \in \mathbb{P}_m$ ,  $C_i \in \mathbb{C}_m$ , det $(C_i) = 1$ ,  $\lambda_i \ge 0$ , for each  $i (1 \le i \le k)$ , and  $\sum_{i=1}^{k} \lambda_i = 1$ .

The present paper continues in three further sections. Section 2 presents the structure of all linear preservers of  $\prec_{mt}$  on  $\mathbb{R}^2$ . The third section contains the structure of all linear functions  $T : \mathbb{R}^n \to \mathbb{R}^n$  preserving Miranda-Thompson majorization. Section 4 states all linear preservers of  $\prec_{mt}$  from  $\mathbf{M}_{m,n}$  to  $\mathbf{M}_{m,n}$ .

### **2.** Miranda-Thompson majorization on $\mathbb{R}^2$ and its linear preservers

This section studies facts of Miranda-Thompson majorization that are necessary for studying the linear preservers of this concept. Also, we characterize the structure of all linear preservers of  $<_{mt}$  on  $\mathbb{R}^2$ .

**Lemma 2.1.** Let  $P \in \mathbb{P}_n$  and  $C \in \mathbb{C}_n$ . Then there exists some  $C_* \in \mathbb{C}_n$  such that  $PC = C_*P$ .

*Proof.* Let  $C = [C_{ij}]$  and  $\delta$  be the corresponding permutation with P. Put  $J = \{1 \le j \le n \mid C_{jj} = -1\}$  and  $J_* = \{\delta_j \mid j \in J\}$ . Now, we define  $C_* := diag(d_{11}, \ldots, d_{nn}) \in \mathbb{C}_n$ , where  $d_{ii} = \begin{cases} +1 & \text{if } i \notin J_* \\ -1 & \text{if } i \in J_*. \end{cases}$  We observe that  $PC = C_*P$ , as desired.

In the following lemma, we express linear preservers of Miranda-Thompson majorization  $T : \mathbb{R}^2 \to \mathbb{R}^2$ . Suppose that  $e_i$  is the *i*<sup>th</sup> unit vector.

**Lemma 2.2.** Let  $T : \mathbb{R}^2 \to \mathbb{R}^2$  be a linear function. Then T preserves  $\prec_{mt}$  if and only if there exist  $P \in \mathbb{P}_2$ ,  $a \in \mathbb{R}^2$ , and  $s \in \{1, -1\}$  such that  $T\begin{pmatrix} x \\ y \end{pmatrix} = xa + syPa$  for all  $\begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2$ .

*Proof.* It is obvious the proof of sufficient condition.

For the converse, we prove the necessity of the condition. Assume that T preserves  $\prec_{mt}$ . Let  $[T] = \begin{pmatrix} a_1 & a_3 \\ a_2 & a_4 \end{pmatrix}$ , where [T] is the matrix representation of T on the standard basis  $\{e_1, e_2\}$  on  $\mathbb{R}^2$ . For each  $\binom{z}{t}$ ,  $\binom{x}{y} \in \mathbb{R}^2$ , we have  $\binom{z}{t} \sim_{mt} \binom{x}{y}$  if and only if  $\binom{z}{t} \in \{\binom{x}{y}, -\binom{x}{y}, \binom{y}{x}, -\binom{y}{x}\}$ . We conclude from  $e_2 \sim_{mt} e_1$  that  $Te_2 \sim_{mt} Te_1$ , hence  $\binom{a_3}{a_4} \sim_{mt} \binom{a_1}{a_2}$ , and finally that  $\binom{a_3}{a_4} \in \{\binom{a_1}{a_2}, -\binom{a_1}{a_4}, -\binom{a_2}{a_1}\}$ . If  $\mathbf{a} = \binom{a_1}{a_2}$ , then for some  $2 \times 2$  permutation matrix  $P T\binom{x}{y} = x\binom{a_1}{a_2} + yPC\binom{a_1}{a_2} = x\mathbf{a} + yPC\mathbf{a} = \begin{cases} x\mathbf{a} + yP\mathbf{a} & \text{if } C = +I \\ x\mathbf{a} - yP\mathbf{a} & \text{if } C = -I \end{cases}$ , and the proof is complete.

**Lemma 2.3.** Let  $T_1$  and  $T_2$  be two linear preservers of  $\prec_{mt}$  on  $\mathbb{R}^2$ . If  $T_1 + T_2$  preserves  $\prec_{mt}$ , then there exist some  $a, b \in \mathbb{R}^2$ ,  $P \in \mathbb{P}_2$ , and  $s \in \{1, -1\}$  such that  $T_1\begin{pmatrix} x \\ y \end{pmatrix} = xa + syPa$  and  $T_2\begin{pmatrix} x \\ y \end{pmatrix} = xb + syPb$  for all  $\begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2$ .

*Proof.* As  $T_1$ ,  $T_2$ , and  $T_1 + T_2$  preserve  $\prec_{mt}$  on  $\mathbb{R}^2$ , Lemma 2.2 ensures that for each  $\binom{x}{y} \in \mathbb{R}^2$  we have  $T_1\binom{x}{y} = x\mathbf{a} + s_1yP_1\mathbf{a}$ ,  $T_2\binom{x}{y} = x\mathbf{b} + s_2yP_2\mathbf{b}$ , and  $(T_1 + T_2)\binom{x}{y} = x\mathbf{c} + syP\mathbf{c}$ , for some  $\mathbf{a}$ ,  $\mathbf{b}$ ,  $\mathbf{c} \in \mathbb{R}^2$ ,  $P_1, P_2, P \in \mathbb{P}_2$ , and  $s_1, s_2, s \in \{-1, 1\}$ . It suffices to show that we can choose equal  $s_1$  and  $s_2$  also equal the permutations  $P_1$  and  $P_2$ . We observe that  $x(\mathbf{a} + \mathbf{b}) + y(s_1P_1\mathbf{a} + s_2P_2\mathbf{b}) = x\mathbf{c} + y(sP\mathbf{c})$ , for all  $x, y \in \mathbb{R}$ . If x = 1 and y = 0, then  $\mathbf{a} + \mathbf{b} = \mathbf{c}$ . Choose x = 0 and y = 1. It follows that  $ss_1(PP_1)\mathbf{a} + ss_2(PP_2)\mathbf{b} = \mathbf{a} + \mathbf{b}$ . Put  $\mathbf{a} = \binom{a_1}{a_2}$ ,  $\mathbf{b} = \binom{b_1}{b_2}$ ,  $t_i = ss_i$ , and  $Q_i = PP_i$ , for i = 1, 2. So we prove that if  $t_1Q_1\mathbf{a} + t_2Q_2\mathbf{b} = \mathbf{a} + \mathbf{b}$ , where  $t_1, t_2 \in \{-1, 1\}$  and  $Q_1, Q_2 \in \mathbb{P}_2$ , then we can choose equal  $t_1$  and  $t_2$  also equal  $Q_1$  and  $Q_2$ . Given that  $t_1 \neq t_2$  or  $Q_1 \neq Q_2$ , we consider three cases. Case(1).  $Q_1 = Q_2 = I$  and  $t_1 \neq t_2$ . If  $t_1 = -t_2 = 1$ , then  $\mathbf{b} = \mathbf{0}$ , and so we can select  $t_1 = t_2 = 1$ . In the same way, if  $t_1 = -t_2 = -1$ , then  $\mathbf{a} = \mathbf{0}$ , and choose  $t_1 = t_2 = 1$ .

Case(2). 
$$Q_1 = Q_2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 and  $t_1 \neq t_2$ . If  $t_1 = -t_2 = 1$ , then  $\mathbf{a} = \begin{pmatrix} a_1 \\ a_1 \end{pmatrix}$  and  $\mathbf{b} = \begin{pmatrix} b_1 \\ -b_1 \end{pmatrix}$ . If  $t_1 = -t_2 = -1$ , then  $\mathbf{a} = \begin{pmatrix} a_1 \\ -a_1 \end{pmatrix}$  and  $\mathbf{b} = \begin{pmatrix} b_1 \\ b_1 \end{pmatrix}$ . We can choose  $Q_1 = Q_2 = I$  and  $t_1 = t_2 = 1$ .  
Case(3).  $Q_1 \neq Q_2$ . Without loss of generality, assume that  $Q_1 = I$  and  $Q_2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ . If  $t_1 = -t_2 = 1$ , then  $\mathbf{b} = \begin{pmatrix} b_1 \\ -b_1 \end{pmatrix}$ , and hence  $t_2Q_2b = t_1Q_1b$ . It implies that we can choose  $Q_1 = Q_2 = I$  and  $t_1 = t_2 = 1$ .  
If  $t_1 = t_2 = 1$ . If  $t_1 = -t_2 = -1$ , then  $\mathbf{a} = \begin{pmatrix} a_1 \\ -a_1 \end{pmatrix}$ . So we have  $t_1Q_1\mathbf{a} = t_2Q_2\mathbf{a}$ . Thus, we can select  $Q_1 = Q_2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$  and  $t_1 = t_2 = 1$ . If  $t_1 = t_2 = 1$ . If  $t_1 = t_2 = 1$ . If  $t_1 = t_2 = 1$ , then  $\mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$ , and it shows that we can choose  $Q_1 = Q_2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ .

Let T preserve  $\prec_{mt}$  on  $\mathbb{R}^2$ . That is,  $[T] = [\mathbf{a} \mid sP\mathbf{a}]$ , where  $\mathbf{a} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \in \mathbb{R}^2$ ,  $s \in \{-1, 1\}$ , and  $P \in \mathbb{P}_2$ .

(1) If  $|a_1| \neq |a_2|$ ; We say *T* is of the first type. In this case, *s* and *P* are unique. So in the previous lemma if *s* and *P* are related to  $T_1$ , then *s* and *P* are related to  $T_2$ , too. Notice that if  $|a_1| = |a_2|$ , then  $T(e_1) = T(e_2)$  or  $T(e_1) = -T(e_2)$ .

(2) If  $a_1 = -a_2 \neq 0$ ; We say T is of the second type. Then  $[T] = a_1 \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix}$  or  $[T] = a_1 \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$ .

s and P are not unique. Because we can replace -s and  $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} P$  with s and P.

(3) If  $a_1 = a_2 \neq 0$ ; We say T is of the third type, and  $[T] = a_1 \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$  or  $[T] = a_1 \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix}$ . Only s is unique.

### **3.** Miranda-Thompson majorization on $\mathbb{R}^n$ ( $n \ge 3$ ) and its linear preservers

This section contains all linear preservers of  $\prec_{mt}$  from  $\mathbb{R}^n$  to  $\mathbb{R}^n$ .

Let  $\| \cdot \|$  be the Euclidean norm. In the following theorem the structure of linear functions  $T : \mathbb{R}^n \to \mathbb{R}^n$  preserving Miranda-Thompson majorization will be characterized.

**Theorem 3.1.** Let  $T : \mathbb{R}^n \to \mathbb{R}^n$  be a linear function whenever  $n \ge 3$ . Then T preserves  $\prec_{mt}$  if and only if there exist  $a \in \mathbb{R}$ ,  $P \in \mathbb{P}_n$ , and  $C \in \mathbb{C}_n$  such that [T] = aPC.

*Proof.* First, assume that [T] = aPC, for some  $a \in \mathbb{R}$ ,  $P \in \mathbb{P}_n$ , and  $C \in \mathbb{C}_n$ . Let  $x, y \in \mathbb{R}^n$  such that  $y \sim_{mt} x$ . It implies that there exist some  $Q \in \mathbb{P}_n$  and  $D \in \mathbb{C}_n$ , where det(D) = 1 such that y = QDx. We observe that  $Ty = (aPC)y = (PCQDCP^t)(aPCx)$ . Lemma 2.1 ensures that  $CQ = QC_1$  for some  $C_1 \in \mathbb{C}_n$ . So  $Ty = (PQC_1DCP^t)Tx$ . As  $C_1DC \in \mathbb{C}_n$ , there is some  $C_2 \in \mathbb{C}_n$  such that  $(C_1DC)P^t = P^tC_2$ . Then  $Ty = (PQP^tC_2)Tx$ . Since  $PQP^t \in \mathbb{P}_n$  and  $C_2 \in \mathbb{C}_n$ , we deduce that  $Ty \sim_{mt} Tx$ . Therefore, T preserves  $\sim_{mt}$ . Now, let  $x, y \in \mathbb{R}^n$  such that  $y \prec_{mt} x$ . So there exist some  $P_i \in \mathbb{P}_n$ ,  $C_i \in \mathbb{C}_n$ , det $(C_i) = 1$ ,  $\lambda_i \ge 0$ , for each i  $(1 \le i \le k)$ , and  $\sum_{i=1}^k \lambda_i = 1$  such that  $y = \sum_{i=1}^k \lambda_i P_i C_i x$ . We have  $Ty = T(\sum_{i=1}^k \lambda_i P_i C_i x) = \sum_{i=1}^k \lambda_i T(P_i C_i x)$ . We proved that for each i

 $(1 \le i \le k)$  there exist some  $Q_i \in \mathbb{P}_n$ , and  $D_i \in \mathbb{C}_n$ , det $(D_i) = 1$  such that  $T(P_iC_ix) = Q_iD_iTx$ . It follows that  $Ty = \sum_{i=1}^k \lambda_iQ_iD_iTx$ , and hence  $Ty \prec_{mt} Tx$ .

Next, assume that *T* preserves  $\prec_{mt}$ . If T = 0, then there is no thing to prove. Let  $T \neq 0$ , and  $A = [T] = [A_1/A_2/.../A_n]$ . So Tx = Ax for all  $x \in \mathbb{R}^n$ . Suppose that  $A_{i_0}$  is a row of *A* which has the maximum Euclidean norm. That is,  $||A_i|| \le ||A_{i_0}||$  for each  $i (1 \le i \le n)$ . Let  $P \in \mathbb{P}_n$ ,  $C \in \mathbb{C}_n$ , and det(C) = 1. Consider  $x = A_{i_0}^t$  and  $y = PCA_{i_0}^t$ . As  $x \sim_{mt} y$ , we see that  $Tx \sim_{mt} Ty$ . It shows that Ty = QDTx for some  $Q \in \mathbb{P}_n$ ,  $D \in \mathbb{C}_n$ , where det(D) = 1. So  $Ty = QD[A_1/A_2/.../A_n]A_{i_0}^t = QD(\lambda_1 < A_1, A_{i_0} >, ..., \lambda_n < A_n, A_{i_0} >)^t$ , where  $\lambda_j \in \{-1, 1\}$  for all j = 1, ..., n. Selecting positive or negative depends on *D*. On the other hand, we have

$$Ty = [A_1/A_2/\dots/A_n]PCA_{i_0}^t = (\langle A_1, A_{i_0}C^tP^t \rangle, \dots, \langle A_n, A_{i_0}C^tP^t \rangle)^t.$$
(3.1)

Let  $\delta$  be the corresponding permutation with Q. If  $\delta_r = i_0$ ; By calculating  $r^{th}$  component, we observe that  $\langle A_r, A_{i_0}C^tP^t \rangle = + \langle A_{\delta_r}, A_{i_0} \rangle = + \langle A_{i_0}, A_{i_0} \rangle = + ||A_{i_0}||^2$  or  $\langle A_r, A_{i_0}C^tP^t \rangle = - \langle A_{\delta_r}, A_{i_0} \rangle = - ||A_{i_0}||^2$ . The Cauchy-Schwarz inequality states that  $||A_{i_0}||^2 = |\langle A_r, A_{i_0}C^tP^t \rangle || = ||A_r|| ||A_{i_0}|| \leq ||A_{i_0}|| ||A_{i_0}|| = ||A_{i_0}||^2$ . So

$$| < A_r, A_{i_0}C^t P^t > | = ||A_r|| ||A_{i_0}C^t P^t||.$$
(3.2)

Then there exists some  $\lambda \in \mathbb{R} \setminus \{0\}$  such that  $PCA_{i_0}^t = \lambda A_r^t$ . By putting this relation in 3.2 we conclude that  $\lambda = 1$  or  $\lambda = -1$ . Thus  $GA_{i_0}^t = \{QDA_{i_0}^t \mid Q \in \mathbb{P}_n, D \in \mathbb{C}_n, \det(D) = 1\} \subseteq \{\lambda_1 A_1^t, \dots, \lambda_n A_n^t \mid |\lambda_i| = 1, 1 \le i \le n\}$ . Right-hand set has at most 2n elements, and so  $GA_{i_0}^t$  has exactly a non-zero component, namely *a*. It follows that  $GA_{i_0}^t = \{\lambda_1 A_1^t, \dots, \lambda_n A_n^t \mid |\lambda_i| = 1, 1 \le i \le n\}$ , and hence A = aPC, for some  $P \in \mathbb{P}_n, C \in \mathbb{C}_n$ .

**Lemma 3.2.** Let  $T_1$  and  $T_2$  be two linear preservers of  $\prec_{mt}$  on  $\mathbb{R}^n$  where  $n \ge 3$ . If  $T_1 + T_2$  preserve  $\prec_{mt}$ , then there exist some  $\alpha_1, \alpha_2 \in \mathbb{R}$ ,  $P \in \mathbb{P}_n$ ,  $C \in \mathbb{C}_n$  such that  $[T_1] = \alpha_1 PC$  and  $[T_2] = \alpha_2 PC$ .

*Proof.* As  $T_1, T_2$ , and  $T_1 + T_2$  preserve  $\prec_{mt}$ , Theorem 3.1 ensures that there exist some  $\alpha_1, \alpha_2, \alpha_3 \in \mathbb{R}$ ,  $P_1, P_2, P_3 \in \mathbb{P}_n$ ,  $C_1, C_2, C_3 \in \mathbb{C}_n$  such that  $[T_1] = \alpha_1 P_1 C_1$ ,  $[T_2] = \alpha_2 P_2 C_2$ , and  $[T_1 + T_2] = \alpha_3 P_3 C_3$ . We want to show that  $P_1 = P_2$  and we can choose  $C_1 = C_2$ . If  $\alpha_1 = 0$  or  $\alpha_2 = 0$ , there is nothing to prove. Assume that  $\alpha_1$  and  $\alpha_2$  are nonzero. For all i = 1, 2, 3, let  $C_i = diag(c_{i1}, \ldots, c_{in})$ , where  $c_{ij} \in \{-1, 1\}$ , for each j  $(1 \le j \le n)$ . We have

$$\alpha_1 P_1 C_1 x + \alpha_2 P_2 C_2 x = \alpha_3 P_3 C_3 x, \tag{3.3}$$

for all  $x \in \mathbb{R}^n$ .

If  $P_1 \neq P_2$ ; Then there exist some r, s, k, l  $(1 \le r, s, k, l \le n), k \ne l$  such that  $P_1e_r = e_k \ne e_l = P_2e_r$ and  $P_3e_r = e_s$ . By putting  $x = e_r$  in the relation 3.3 we have  $c_{1r}\alpha_1e_k + c_{2r}\alpha_2e_l = c_{3r}\alpha_3e_s$ . Since  $k \ne l$ , the vector  $c_{1r}\alpha_1e_k + c_{2r}\alpha_2e_l$  has two non-zero components. On the other hand, the vector  $c_{3r}\alpha_3e_s$  has at most a non-zero component, which is a contradiction. It means that  $P_1 = P_2$ , and we have

$$\alpha_1 C_1 + \alpha_2 C_2 = \alpha_3 C_3, \tag{3.4}$$

and so  $\alpha_1 c_{1j} + \alpha_2 c_{2j} = \alpha_3 c_{3j}$ , for each  $j (1 \le j \le n)$ . It follows that  $\alpha_1 + (c_{1j}c_{2j})\alpha_2 = \alpha_3(c_{1j}c_{3j})$ , and hence  $|\alpha_1 + (c_{1j}c_{2j})\alpha_2| = |\alpha_3|$ , for each  $j (1 \le j \le n)$ . We observe that

$$|\alpha_1 + (c_{1j}c_{2j})\alpha_2| = |\alpha_1 + (c_{11}c_{21})\alpha_2|, \tag{3.5}$$

for each j  $(1 \le j \le n)$ . Now, if  $c_{11}c_{21} = 1$ , as  $\alpha_1, \alpha_2 \ne 0$ , then  $|\alpha_1 + \alpha_2| \ne |\alpha_1 - \alpha_2|$ , and hence 3.5 ensures that  $c_{1j}c_{2j} = c_{11}c_{21}$ , for each j  $(1 \le j \le n)$ . Thus,  $c_{1j}c_{2j} = 1$  or  $c_{1j}c_{2j} = -1$ , for each j  $(1 \le j \le n)$ . In the first case we have  $C_1 = C_2$ , as desired, and in the second case we see that  $C_1 = -C_2$ , and so  $T_2x = \alpha_2P_2C_2x = (-\alpha_2)P_1C_1x$ . By changing  $\alpha_2$  to  $-\alpha_2$  we can assume that  $C_1 = C_2$ , and the proof is complete.

### 4. Miranda-Thompson majorization on $M_{m,n}$ and its linear preservers

In this section, we characterize the linear preservers of Miranda-Thompson majorization on  $\mathbf{M}_{m,n}$ .

The following sense is useful for finding the structure of linear preservers of Miranda-Thompson majorization.

For each  $i, j \ (1 \le i, j \le n)$ , consider the embedding  $E_j : \mathbb{R}^m \to \mathbf{M}_{m,n}$  and the projection  $E^i : \mathbf{M}_{m,n} \to \mathbb{R}^m$ , where  $E_j(x) = xe_j^t$  and  $E^i(X) = Xe_i$ . It is easy to show that for every linear function  $T : \mathbf{M}_{m,n} \to \mathbf{M}_{m,n}$ ,  $TX = T[X_1 | X_2 | ... | X_n] = [\sum_{j=1}^n T_{1j}X_j | \sum_{j=1}^n T_{2j}X_j | ... | \sum_{j=1}^n T_{nj}X_j]$ , where  $T_{ij} = E^iTE_j : \mathbb{R}^m \to \mathbb{R}^m$ .

We claim that for each  $i, j (1 \le i, j \le n) E^i$  and  $E_j$  preserve  $\prec_{mt}$ . Let  $x \in \mathbb{R}^m$ ,  $X \in \mathbf{M}_{m,n}$ , and  $D \in \text{Conv}(\mathbf{G})$ . We see

$$E_j Dx = Dx e_j^t = DE_j x$$

and

$$E^i DX = DXe_i = DE^i X.$$

Then  $E^i$  and  $E_j$  preserve  $\prec_{mt}$ .

Now, suppose that T preserves  $\prec_{mt}$ . So  $TDE_j x = D'TE_j x$ , for some  $D' \in Conv(G)$ . Then

$$T_{ij}Dx = E^{i}TE_{j}Dx = E^{i}TDE_{j}x = E^{i}D'TE_{j}x = D'E^{i}TE_{j}x = D'T_{ij}x,$$

and hence  $T_{ij}$  preserves  $\prec_{mt}$ .

The following lemma characterizes linear preservers of  $\prec_{mt}$  on  $\mathbf{M}_{2,n}$ .

**Theorem 4.1.** Let  $T : \mathbf{M}_{2,n} \to \mathbf{M}_{2,n}$  be a linear function. Then T preserves  $\prec_{mt}$  if and only if there exist  $A_1, \ldots, A_n \in \mathbf{M}_{2,n}$ ,  $s \in \{-1, 1\}$ , and  $P \in \mathbb{P}_2$  such that  $TX = \sum_{j=1}^n [x_{1j}A_j + sx_{2j}PA_j]$  for all  $X = [x_{ij}] \in \mathbf{M}_{2,n}$ .

Proof. If: It is easy to see.

Only if: Let T preserve  $\prec_{mt}$ . We consider two steps.

Step 1. At least one of  $T_{ij}$  is of the first type. Suppose that  $T_{pq}$  is of the first type and  $[T_{pq}] = [\mathbf{a} | sP\mathbf{a}]$ , where  $s \in \{1, -1\}, P \in \mathbb{P}_2, \mathbf{a} \in \mathbb{R}^2$ . We claim that for each  $i, j \ (1 \le i, j \le n)$  there exist some  $a_{ij} \in \mathbb{R}^2$  such that

$$[T_{ij}] = [a_{ij} \mid sPa_{ij}]. \tag{4.1}$$

For each i  $(1 \le i \le n)$ , since  $(T_{pq} + T_{pi})x = (Tx(e_q^t + e_i^t))e_p$ , we deduce that  $T_{pq} + T_{pi}$  preserves  $<_{mt}$ . Similarly,  $T_{pq} + T_{iq}$  preserves  $<_{mt}$ . So Lemma 3.2 ensures that  $T_{pi}$  and  $T_{iq}$  satisfy in 4.1. Moreover, we prove that if  $k \ne p$  and  $l \ne q$ , then  $T_{kl}$  satisfies in 4.1, too. If one of  $T_{pl}$  or  $T_{kq}$  is of the first type, then  $T_{kl}$  satisfies in 4.1, because of the uniqueness of s and P.

If both  $T_{pl}$  and  $T_{kq}$  are not of the first type; As  $T_{pq}$  is of the first type, then at least one of the mappings  $T_{pq} + T_{kq} + T_{pl}$  or  $-T_{pq} - T_{kq} + T_{pl}$  is of the first type. We have  $[T_{pq} + T_{kq} + T_{pl}] = [a_{pq} + a_{kq} + a_{pl}] + SP(a_{pq} + a_{kq} + a_{pl})]$  and  $[-(T_{pq} + T_{kq}) + T_{pl}] = [-(a_{pq} + a_{kq}) + a_{pl}] - SP(a_{pq} + a_{kq} + a_{pl})]$ . As  $(T_{pq} + T_{kq} + T_{pl} + T_{kl})x = (T(xe_q^t + xe_l^t))(e_p + e_k)$  and  $(-(T_{pq} + T_{kq}) + T_{pl} + T_{kl})x = (T(-xe_q^t + xe_l^t))(e_p + e_k)$  for all  $x \in \mathbb{R}^m$ . So both mappings  $(T_{pq} + T_{kq} + T_{pl}) + T_{kl}$  and  $(-T_{pq} - T_{kq} + T_{pl}) + T_{kl}$  preserve  $<_{mt}$ . It implies that  $T_{kl}$  satisfies in 4.1.

Step 2. None of  $T_{ij}$  are not of the first type. So if  $T_{ij} \neq 0$ , then  $T_{ij}$  is of the second type or the third type. Hence  $T_{ij}(e_2) = T_{ij}(e_1)$  or  $T_{ij}(e_2) = -T_{ij}(e_1)$ . If both mapping  $T_{pq}$  and  $T_{kl}$  are of a type, then it is easy to show that  $T_{pq}(e_1) = T_{pq}(e_2)$  if and only if  $T_{kl}(e_1) = T_{kl}(e_2)$ . Now, we choose  $s \in \{-1, 1\}$  such that if  $T_{ij}$  is of the third type, then  $T_{ij}(e_2) = sT_{ij}(e_1)$ . After selecting *s*, we choose the permutation  $P \in \mathbb{P}^2$  such that if  $T_{ij}$  is of the second type, then  $T_{ij}(e_2) = sPT_{ij}(e_1)$ . Put  $a_{ij} = T_{ij}(e_1)$ , for each *i*, *j* ( $1 \le i, j \le n$ ). So  $[T_{ij}] = [a_{ij} | sPa_{ij}]$ , for each *i*, *j* ( $1 \le i, j \le n$ ).

Now, we have  $TX = T[X_1 | \dots | X_n] = [\sum_{j=1}^n T_{1j}X_j | \dots | \sum_{j=1}^n T_{nj}X_j] = [\sum_{j=1}^n [a_{1j} | sPa_{1j}]X_j | \dots | \sum_{j=1}^n [a_{nj} | sPa_{nj}]X_j] = [\sum_{j=1}^n (x_{1j}a_{1j} + sx_{2j}Pa_{1j}) | \dots | \sum_{j=1}^n (x_{1j}a_{nj} + sx_{2j}Pa_{nj})] = \sum_{j=1}^n (x_{1j}A_j + sx_{2j}PA_j)$ , where  $A_j = [a_{1j} | \dots | a_{nj}] \in \mathbf{M}_{2,n}$ , for each  $j (1 \le j \le n)$ .

In the following theorem, we characterize linear preservers of Miranda-Thompson majorization  $T : \mathbf{M}_{m,n} \to \mathbf{M}_{m,n}$  whenever  $m \ge 3$ . Note that the case m = 1 for every linear function holds.

**Theorem 4.2.** Let  $T : M_{m,n} \to M_{m,n}$  be a linear function whenever  $m \ge 3$ . Then T preserves  $\prec_{mt}$  if and only if there exist  $A \in M_n$ ,  $P \in \mathbb{P}_m$ , and  $C \in \mathbb{C}_m$  such that TX = PCXA for all  $X \in M_{m,n}$ .

*Proof.* Suppose that TX = PCXA, for some  $A \in \mathbf{M}_n$ ,  $P \in \mathbb{P}_m$ , and  $C \in \mathbb{C}_m$ . It is a simple matter to prove that T preserves  $\prec_{mt}$ .

Assume that *T* preserves  $\prec_{mt}$  and  $m \ge 3$ . For T = 0, it is clear. Let  $T \ne 0$ . Since *T* preserves  $\prec_{mt}$ , we see that  $T_{ij}$  preserves  $\prec_{mt}$  for all  $i, j (1 \le i, j \le n)$ . As  $T \ne 0$ , there exist some r, s  $(1 \le r, s \le n)$  such that  $T_{rs} \ne 0$ . Lemma 3.1 ensures that there exist some  $a_{rs} \in \mathbb{R}$ ,  $P \in \mathbb{P}_m$ , and  $C \in \mathbb{C}_m$  such that  $T_{rs}x = a_{rs}PCx$ , for all  $x \in \mathbb{R}^m$ . We claim that for each  $k, l (1 \le k, l \le n)$  there is some  $a_{kl} \in \mathbb{R}$  such that  $T_{kl}x = a_{kl}PCx$ , for all  $x \in \mathbb{R}^m$ .

We divide the proof into three stages.

Step 1. k = r and  $l \neq s$ . For each  $x \in \mathbb{R}^m$ , let  $X = [X_1 | \dots | X_n]$ , as follows. For each  $j (1 \le j \le n)$   $X_j = \begin{cases} x & \text{if } j = s, 1 \\ 0 & \text{if } o.w. \end{cases}$ . We have  $T_{rs}x + T_{rl}x = (T[X_1 | \dots | X_n])e_r$  for all  $x \in \mathbb{R}^m$ . So  $T_{rs} + T_{rl}$ preserves  $\prec_{mt}$ , and hence Lemma 3.2 ensures that there is some  $a_{rl} \in \mathbb{R}$  such that  $T_{rl}x = a_{rl}PCx$ , for all  $x \in \mathbb{R}^m$ .

Step 2.  $k \neq r$  and l = s. Let  $x \in \mathbb{R}^m$ , and  $X_j = \begin{cases} x \text{ if } j = s \\ 0 \text{ if o.w.} \end{cases}$ , for each  $j (1 \leq j \leq n)$ . Consider  $X = [X_1 \mid \ldots \mid X_n]$ . We observe that  $T_{rs}x + T_{ks}x = (T[X_1 \mid \ldots \mid X_n])(e_r + e_k)$  for all  $x \in \mathbb{R}^m$ . For each  $x, y \in \mathbb{R}^m$ , if  $x \prec_{mt} y$ , then  $[X_1 \mid \ldots \mid X_n] \prec_{mt} [Y_1 \mid \ldots \mid Y_n]$ . As T preserves  $\prec_{mt}$ ,  $T[X_1 \mid \ldots \mid X_n] \prec_{mt} T[Y_1 \mid \ldots \mid Y_n]$ , and hence  $T_{rs} + T_{ks}$  preserves  $\prec_{mt}$ . It implies that there is some  $a_{ks} \in \mathbb{R}$  such that  $T_{ks}x = a_{ks}PCx$ , for all  $x \in \mathbb{R}^m$ , because of Lemma 3.2.

Step 3.  $k \neq r$  and  $l \neq s$ . From the previous steps, there are some  $a_{rl}, a_{ks} \in \mathbb{R}$  such that  $T_{rl}x = a_{rl}PCx$ and  $T_{ks}x = a_{ks}PCx$  for all  $x \in \mathbb{R}^m$ . If  $T_{rl} \neq 0$  (or  $T_{ks} \neq 0$ ), then step 2 (step 1) ensures that there is some  $a_{kl} \in \mathbb{R}$  such that  $T_{kl}x = a_{kl}PCx$  for all  $x \in \mathbb{R}^m$ , by choosing *l* instead of *s* (*k* instead of *r*). If  $T_{rl} = T_{ks} = 0$ ; For each  $x \in \mathbb{R}^m$  define  $X = [X_1 \mid ... \mid X_n] \in \mathbf{M}_{m,n}, X_j = \begin{cases} x & \text{if } j = s, 1 \\ 0 & \text{if o.w.} \end{cases}$ , for each *j* ( $1 \leq j \leq n$ ). We see that  $T_{rs}x + T_{kl}x = (T[X_1 \mid ... \mid X_n])(e_r + e_k)$  for all  $x \in \mathbb{R}^m$ , and then  $T_{rs} + T_{kl}$  preserves  $\prec_{mt}$ . Since  $T_{rs} \neq 0$ , Lemma 3.2 ensures that there is some  $a_{kl} \in \mathbb{R}$  such that  $T_{kl}x = a_{kl}PCx$  for all  $x \in \mathbb{R}^m$ .

So  $TX = T[X_1 | \dots | X_n] = [\sum_{j=1}^n T_{1j}X_j | \dots | \sum_{j=1}^n T_{nj}X_j] = [\sum_{j=1}^n a_{1j}PCX_j | \dots | \sum_{j=1}^n a_{nj}PCX_j] = PC[\sum_{j=1}^n a_{1j}X_j | \dots | \sum_{j=1}^n a_{nj}X_j] = PCXA$ , where  $A = [a_{ij}] \in \mathbf{M}_n$ .

#### References

- [1] L.B. Beasley, S-G. Lee and Y-H Lee, A characterization of strong preservers of matrix majorization, *Linear Algebra Appl.*, 367 (2003), 341–346,
- [2] H. Chiang and C.K. Li, Generalized doubly stochastic matrices and linear preservers, *Linear Multilinear Algebra*, **53**(1) (2005), 1–11.
- [3] A. Giovagnoli and H.P. Wynn, G-majorization with applications to matrix orderings, *Linear Algebra Appl.*, **67** (1985), 111–135, .
- [4] A.M. Hasani and M. Radjabalipour, On linear preservers of (right) matrix majorization, *Linear Algebra Appl.*, 423 (2007), 255–261.
- [5] A. Ilkhanizadeh Manesh, Right gut-Majorization on  $\mathbf{M}_{n,m}$ , Electron. J. Linear Algebra, **31**(1) (2016), 13–26.
- [6] F. Khalooei, Linear preservers of two-sided matrix majorization, Wavel. Linear Algebra, 1 (2014), 43–50.
- [7] M. Niezgoda, Cone orderings, group majorizations and similarly separable vectors, *Linear Algebra Appl.*, 436 (2012), 579–594.
- [8] A.W. Marshall, I. Olkin, and B.C. Arnold, *Inequalities: Theory of Majorization and Its Applications*, Springer, New York, 2011.
- [9] M. Soleymani and A. Armandnejad, Linear preservers of even majorization on  $\mathbf{M}_{n,m}$ , Linear Multilinear Algebra, **62**(11) (2014), 1437–1449.