Linear preservers of Miranda-Thompson majorization on $\mathbf{M}_{m, n}$

Ahmad Mohammadhasani ${ }^{\text {a,* }}$, Asma Ilkhanizadeh Manesh ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematics, Sirjan University of technology, Sirjan, Islamic Republic of Iran.
${ }^{b}$ Department of Mathematics, Vali-e-Asr University of Rafsanjan, P.O. Box: 7713936417, Rafsanjan, Islamic Republic of Iran.

Article Info

Article history:
Received 9 April 2017
Accepted 6 November 2017
Available online 03 January 2018
Communicated by Abbas Salemi

Keywords:

Majorization, Linear preserver, Group -induced Cone ordering,

Abstract

Miranda-Thompson majorization is a group-induced cone ordering on \mathbb{R}^{n} induced by the group of generalized permutation with determinants equal to 1 . In this paper, we generalize Miranda-Thompson majorization on the matrices. For X, $Y \in \mathbf{M}_{m, n}, X$ is said to be Miranda-Thompson majorized by Y (denoted by $X<_{m t} Y$) if there exists some $D \in \operatorname{Conv}(\mathrm{G})$ such that $X=D Y$. Also, we characterize linear preservers of this concept on $\mathbf{M}_{m, n}$.

(C) (2017) Wavelets and Linear Algebra

2000 MSC:
15A04, 15A21.

[^0]Mohammadhasani, Ilkhanizadeh Manesh/ Wavelets and Linear Algebra 4(2) (2017) 25-32 26

1. Introduction

In matrix theory, majorization plays a significant role. The best general reference on this subject is Inequalities: Theory of majorization and its applications by A. W. Marshall, I. Olkin, and B. C. Arnold [8]. Some kinds of majorization with their linear preservers can be found in [1]-[2] and [4]-[6].

Let V be a finite-dimensional real vector space, $\mathrm{O}(\mathrm{V})$ the orthogonal group acting on V and G a closed subgroup of $\mathrm{O}(\mathrm{V})$. The group G induces an equivalence relation on V, defined by $x \approx y$ if and only if $y=g x$ for some $g \in G$. The equivalence classes of this relation are called the orbits of G. For each $y \in V$ the orbit of y is $\mathrm{O}_{\mathrm{G}}(\mathrm{y})=\{\mathrm{gy} \mid \mathrm{g} \in \mathrm{G}\}$. A vector x is G-majorized by y, denoted by $x{<_{G}}^{y}$, if $x \in \operatorname{Conv}\left(\mathrm{O}_{\mathrm{G}}(\mathrm{y})\right.$), where the notation $\operatorname{Conv}(\mathrm{A})$ is the convex hull of a set A. The group majorization $<_{G}$ generates an equivalence relation \sim_{G} on V defined as follows. $x \sim_{G} y$ if and only if $x<_{G} y<_{G} x$. In [3], A. Giovagnoli and H. P. Wynn observed that $x \sim_{G} y$ if and only if $y=g x$ for some $g \in G$. The classical majorization is a vector pre-ordering on \mathbb{R}^{n} induced by the permutation group. In [9], M. Soleymani and A. Armandnejad introduced the concept of even majorization, and they characterized the linear preservers and strong linear preservers of this concept on $\mathbf{M}_{m, n}$.

In the peresent paper, let $V=\mathbb{R}^{n}$ with the standard inner product and $G=\left\{P C \mid P \in \mathbb{P}_{n}, C \in\right.$ $\left.\mathbb{C}_{n}, \operatorname{det}(\mathrm{C})=1\right\}$, where \mathbb{P}_{n} is the group of n-by- n permutation matrices and \mathbb{C}_{n} is the group of n-by- n diagonal orthogonal matrices. Notice that $\mathbb{C}_{n}=\left\{\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right) \mid \lambda_{i} \in\{1,-1\}, 1 \leq i \leq n\right\}$. $<_{G}$ will display with $<_{m t}$. In [7, Section 6], M. Niezgoda proved for any $x, y \in \mathbb{R}^{n}$ we have $x<_{m t} y$ if and only if
$\sum_{k=1}^{i}|x|_{[k]} \leq \sum_{k=1}^{i}|y|_{[k]}$, for all $i(1 \leq i \leq n-2)$,
$\sum_{k=1}^{n-1}|x|_{[k]}+\sin g(x)|x|_{[n]} \leq \sum_{k=1}^{n-1}|y|_{[k]}+\left.\sin g(y)|y|\right|_{[n]}$,
$\sum_{k=1}^{n-1}|x|_{[k]}-\sin g(x)|x|_{[n]} \leq \sum_{k=1}^{n-1}|y|_{[k]}-\sin g(y)|y|_{[n]}$,
where $|x|=\left(\left|x_{1}\right|,\left|x_{2}\right|, \ldots,\left|x_{n}\right|\right), \operatorname{sign}(x)=\operatorname{sgn}\left(\prod_{i=1}^{n} x_{i}\right)$ and by $\left(|x|_{[1]},|x|_{[2]}, \ldots\right.$,
$\left.|x|_{[n]}\right)^{t}$ we denote the entries of a vector $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{t} \in \mathbb{R}^{n}$ arranged in decreasing order.
Now, we generalize this concept on matrices.
Definition 1.1. For $X, Y \in \mathbf{M}_{m, n}, X$ is said to be Miranda-Thompson majorized by Y (denoted by $X<_{m t} Y$) if there exists some $D \in \operatorname{Conv}(\mathrm{G})$ such that $X=D Y$. That is, $X=\sum_{i=1}^{k} \lambda_{i} P_{i} C_{i} Y$, where $P_{i} \in \mathbb{P}_{m}, C_{i} \in \mathbb{C}_{m}, \operatorname{det}\left(\mathrm{C}_{\mathrm{i}}\right)=1, \lambda_{i} \geq 0$, for each $i(1 \leq i \leq k)$, and $\sum_{i=1}^{k} \lambda_{i}=1$.

The present paper continues in three further sections. Section 2 presents the structure of all linear preservers of $<_{m t}$ on \mathbb{R}^{2}. The third section contains the structure of all linear functions $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ preserving Miranda-Thompson majorization. Section 4 states all linear preservers of $<_{m t}$ from $\mathbf{M}_{m, n}$ to $\mathbf{M}_{m, n}$.

Mohammadhasani, Ilkhanizadeh Manesh/ Wavelets and Linear Algebra 4(2) (2017) 25-32 27

2. Miranda-Thompson majorization on \mathbb{R}^{2} and its linear preservers

This section studies facts of Miranda-Thompson majorization that are necessary for studying the linear preservers of this concept. Also, we characterize the structure of all linear preservers of $<_{m t}$ on \mathbb{R}^{2}.

Lemma 2.1. Let $P \in \mathbb{P}_{n}$ and $C \in \mathbb{C}_{n}$. Then there exists some $C_{*} \in \mathbb{C}_{n}$ such that $P C=C_{*} P$.
Proof. Let $C=\left[C_{i j}\right]$ and δ be the corresponding permutation with P. Put $J=\{1 \leq j \leq n \mid$ $\left.C_{j j}=-1\right\}$ and $J_{*}=\left\{\delta_{j} \mid j \in J\right\}$. Now, we define $C_{*}:=\operatorname{diag}\left(d_{11}, \ldots, d_{n n}\right) \in \mathbb{C}_{n}$, where $d_{i i}=$ $\left\{\begin{array}{c}+1 \text { if i } \notin \mathrm{J}_{*} \\ -1 \text { if i } \in \mathrm{J}_{*} .\end{array}\right.$ We observe that $P C=C_{*} P$, as desired.

In the following lemma, we express linear preservers of Miranda-Thompson majorization T : $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$. Suppose that e_{i} is the $i^{\text {th }}$ unit vector.

Lemma 2.2. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear function. Then T preserves $<_{m t}$ if and only if there exist $P \in \mathbb{P}_{2}, \boldsymbol{a} \in \mathbb{R}^{2}$, and $s \in\{1,-1\}$ such that $T\binom{x}{y}=x \boldsymbol{a}+\operatorname{syPa}$ for all $\binom{x}{y} \in \mathbb{R}^{2}$.

Proof. It is obvious the proof of sufficient condition.
For the converse, we prove the necessity of the condition. Assume that T preserves $<_{m t}$. Let $[T]=\left(\begin{array}{ll}a_{1} & a_{3} \\ a_{2} & a_{4}\end{array}\right)$, where $[T]$ is the matrix representation of T on the standard basis $\left\{e_{1}, e_{2}\right\}$ on \mathbb{R}^{2}. For each $\left.\binom{z}{t}, \begin{array}{l}x \\ y\end{array}\right) \in \mathbb{R}^{2}$, we have $\binom{z}{t} \sim_{m t}\binom{x}{y}$ if and only if $\binom{z}{t} \in\left\{\binom{x}{y},-\binom{x}{y},\binom{y}{x},-\binom{y}{x}\right\}$. We conclude
 If $\mathbf{a}=\binom{a_{1}}{a_{2}}$, then for some 2×2 permutation matrix $P T\binom{x}{y}=x\binom{a_{1}}{a_{2}}+y P C\binom{a_{1}}{a_{2}}=x \mathbf{a}+y P C \mathbf{a}=$ $\left\{\begin{array}{l}x \mathbf{a}+y P \mathbf{a} \text { if } \mathrm{C}=+\mathrm{I} \\ x \mathbf{a}-y P \mathbf{a} \text { if } \mathrm{C}=-\mathrm{I}\end{array}\right.$, and the proof is complete.

Lemma 2.3. Let T_{1} and T_{2} be two linear preservers of $<_{m t}$ on \mathbb{R}^{2}. If $T_{1}+T_{2}$ preserves $<_{m t}$, then there exist some $\boldsymbol{a}, \boldsymbol{b} \in \mathbb{R}^{2}, P \in \mathbb{P}_{2}$, and $s \in\{1,-1\}$ such that $T_{1}\binom{x}{y}=x \boldsymbol{a}+$ syPa and $T_{2}\binom{x}{y}=x \boldsymbol{b}+\operatorname{sy} P \boldsymbol{b}$ for all $\binom{x}{y} \in \mathbb{R}^{2}$.

Proof. As T_{1}, T_{2}, and $T_{1}+T_{2}$ preserve $<_{m t}$ on \mathbb{R}^{2}, Lemma 2.2 ensures that for each $\binom{x}{y} \in \mathbb{R}^{2}$ we have $T_{1}\binom{x}{y}=x \mathbf{a}+s_{1} y P_{1} \mathbf{a}, T_{2}\binom{x}{y}=x \mathbf{b}+s_{2} y P_{2} \mathbf{b}$, and $\left(T_{1}+T_{2}\right)\binom{x}{y}=x \mathbf{c}+s y P \mathbf{c}$, for some $\mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathbb{R}^{2}$, $P_{1}, P_{2}, P \in \mathbb{P}_{2}$, and $s_{1}, s_{2}, s \in\{-1,1\}$. It suffices to show that we can choose equal s_{1} and s_{2} also equal the permutations P_{1} and P_{2}. We observe that $x(\mathbf{a}+\mathbf{b})+y\left(s_{1} P_{1} \mathbf{a}+s_{2} P_{2} \mathbf{b}\right)=x \mathbf{c}+y(s P \mathbf{c})$, for all $x, y \in \mathbb{R}$. If $x=1$ and $y=0$, then $\mathbf{a}+\mathbf{b}=\mathbf{c}$. Choose $x=0$ and $y=1$. It follows that $s s_{1}\left(P P_{1}\right) \mathbf{a}+s s_{2}\left(P P_{2}\right) \mathbf{b}=\mathbf{a}+\mathbf{b}$. Put $\mathbf{a}=\binom{a_{1}}{a_{2}}, \mathbf{b}=\binom{b_{1}}{b_{2}}, t_{i}=s s_{i}$, and $Q_{i}=P P_{i}$, for $i=1,2$. So we prove that if $t_{1} Q_{1} \mathbf{a}+t_{2} Q_{2} \mathbf{b}=\mathbf{a}+\mathbf{b}$, where $t_{1}, t_{2} \in\{-1,1\}$ and $Q_{1}, Q_{2} \in \mathbb{P}_{2}$, then we can choose equal t_{1} and t_{2} also equal Q_{1} and Q_{2}. Given that $t_{1} \neq t_{2}$ or $Q_{1} \neq Q_{2}$, we consider three cases.
$\operatorname{Case}(1) . Q_{1}=Q_{2}=I$ and $t_{1} \neq t_{2}$. If $t_{1}=-t_{2}=1$, then $\mathbf{b}=\mathbf{0}$, and so we can select $t_{1}=t_{2}=1$. In the same way, if $t_{1}=-t_{2}=-1$, then $\mathbf{a}=\mathbf{0}$, and choose $t_{1}=t_{2}=1$.
$\operatorname{Case}(2) . Q_{1}=Q_{2}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ and $t_{1} \neq t_{2}$. If $t_{1}=-t_{2}=1$, then $\mathbf{a}=\binom{a_{1}}{a_{1}}$ and $\mathbf{b}=\binom{b_{1}}{-b_{1}}$. If $t_{1}=-t_{2}=-1$, then $\mathbf{a}=\binom{a_{1}}{-a_{1}}$ and $\mathbf{b}=\binom{b_{1}}{b_{1}}$. We can choose $Q_{1}=Q_{2}=I$ and $t_{1}=t_{2}=1$.
Case(3). $Q_{1} \neq Q_{2}$. Without loss of generality, assume that $Q_{1}=I$ and $Q_{2}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$. If $t_{1}=-t_{2}=1$, then $\mathbf{b}=\binom{b_{1}}{-b_{1}}$, and hence $t_{2} Q_{2} b=t_{1} Q_{1} b$. It implies that we can choose $Q_{1}=Q_{2}=I$ and $t_{1}=t_{2}=1$. If $t_{1}=-t_{2}=-1$, then $\mathbf{a}=\binom{a_{1}}{-a_{1}}$. So we have $t_{1} Q_{1} \mathbf{a}=t_{2} Q_{2} \mathbf{a}$. Thus, we can select $Q_{1}=Q_{2}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ and $t_{1}=t_{2}=1$. If $t_{1}=t_{2}=1$, then $\mathbf{b}=\binom{b_{1}}{b_{2}}$, and it shows that we can choose $Q_{1}=Q_{2}=I$. If $t_{1}=t_{2}=-1$, then $\mathbf{a}=\binom{a_{1}}{a_{1}}$, and so we can choose $Q_{1}=Q_{2}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$.

Let T preserve $<_{m t}$ on \mathbb{R}^{2}. That is, $[T]=[\mathbf{a} \mid s P \mathbf{a}]$, where $\mathbf{a}=\binom{a_{1}}{a_{2}} \in \mathbb{R}^{2}, s \in\{-1,1\}$, and $P \in \mathbb{P}_{2}$.
(1) If $\left|a_{1}\right| \neq\left|a_{2}\right|$; We say T is of the first type. In this case, s and P are unique. So in the previous lemma if s and P are related to T_{1}, then s and P are related to T_{2}, too.
Notice that if $\left|a_{1}\right|=\left|a_{2}\right|$, then $T\left(e_{1}\right)=T\left(e_{2}\right)$ or $T\left(e_{1}\right)=-T\left(e_{2}\right)$.
(2) If $a_{1}=-a_{2} \neq 0$; We say T is of the second type. Then $[T]=a_{1}\left(\begin{array}{cc}1 & 1 \\ -1 & -1\end{array}\right)$ or $[T]=a_{1}\left(\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right)$. s and P are not unique. Because we can replace $-s$ and $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) P$ with s and P.
(3) If $a_{1}=a_{2} \neq 0$; We say T is of the third type, and $[T]=a_{1}\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$ or $[T]=a_{1}\left(\begin{array}{ll}1 & -1 \\ 1 & -1\end{array}\right)$. Only s is unique.

3. Miranda-Thompson majorization on $\mathbb{R}^{\boldsymbol{n}}(\boldsymbol{n} \geq 3)$ and its linear preservers

This section contains all linear preservers of $<_{m t}$ from \mathbb{R}^{n} to \mathbb{R}^{n}.
Let \|. \| be the Euclidean norm. In the following theorem the structure of linear functions $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ preserving Miranda-Thompson majorization will be characterized.

Theorem 3.1. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear function whenever $n \geq 3$. Then T preserves $<_{m t}$ if and only if there exist $a \in \mathbb{R}, P \in \mathbb{P}_{n}$, and $C \in \mathbb{C}_{n}$ such that $[T]=a P C$.

Proof. First, assume that $[T]=a P C$, for some $a \in \mathbb{R}, P \in \mathbb{P}_{n}$, and $C \in \mathbb{C}_{n}$. Let $x, y \in \mathbb{R}^{n}$ such that $y \sim_{m t} x$. It implies that there exist some $Q \in \mathbb{P}_{n}$ and $D \in \mathbb{C}_{n}$, where $\operatorname{det}(\mathrm{D})=1$ such that $y=Q D x$. We observe that $T y=(a P C) y=\left(P C Q D C P^{t}\right)(a P C x)$. Lemma 2.1 ensures that $C Q=Q C_{1}$ for some $C_{1} \in \mathbb{C}_{n}$. So $T y=\left(P Q C_{1} D C P^{t}\right) T x$. As $C_{1} D C \in \mathbb{C}_{n}$, there is some $C_{2} \in \mathbb{C}_{n}$ such that $\left(C_{1} D C\right) P^{t}=P^{t} C_{2}$. Then $T y=\left(P Q P^{t} C_{2}\right) T x$. Since $P Q P^{t} \in \mathbb{P}_{n}$ and $C_{2} \in \mathbb{C}_{n}$, we deduce that $T y \sim_{m t} T x$. Therefore, T preserves $\sim_{m t}$. Now, let $x, y \in \mathbb{R}^{n}$ such that $y<_{m t} x$. So there exist some $P_{i} \in \mathbb{P}_{n}, C_{i} \in \mathbb{C}_{n}, \operatorname{det}\left(\mathrm{C}_{\mathrm{i}}\right)=1, \lambda_{i} \geq 0$, for each $i(1 \leq i \leq k)$, and $\sum_{i=1}^{k} \lambda_{i}=1$ such that $y=\sum_{i=1}^{k} \lambda_{i} P_{i} C_{i} x$. We have $T y=T\left(\sum_{i=1}^{k} \lambda_{i} P_{i} C_{i} x\right)=\sum_{i=1}^{k} \lambda_{i} T\left(P_{i} C_{i} x\right)$. We proved that for each i

Mohammadhasani, Ilkhanizadeh Manesh/ Wavelets and Linear Algebra 4(2) (2017) 25-32 29
$(1 \leq i \leq k)$ there exist some $Q_{i} \in \mathbb{P}_{n}$, and $D_{i} \in \mathbb{C}_{n}, \operatorname{det}\left(\mathrm{D}_{\mathrm{i}}\right)=1$ such that $T\left(P_{i} C_{i} x\right)=Q_{i} D_{i} T x$. It follows that $T y=\sum_{i=1}^{k} \lambda_{i} Q_{i} D_{i} T x$, and hence $T y<_{m t} T x$.

Next, assume that T preserves $<_{m t}$. If $T=0$, then there is no thing to prove. Let $T \neq 0$, and $A=[T]=\left[A_{1} / A_{2} / \ldots / A_{n}\right]$. So $T x=A x$ for all $x \in \mathbb{R}^{n}$. Suppose that $A_{i_{0}}$ is a row of A which has the maximum Euclidean norm. That is, $\left\|A_{i}\right\| \leq\left\|A_{i_{0}}\right\|$ for each $i(1 \leq i \leq n)$. Let $P \in \mathbb{P}_{n}, C \in \mathbb{C}_{n}$, and $\operatorname{det}(\mathrm{C})=1$. Consider $x=A_{i_{0}}^{t}$ and $y=P C A_{i_{0}}^{t}$. As $x \sim_{m t} y$, we see that $T x \sim_{m t} T y$. It shows that $T y=Q D T x$ for some $Q \in \mathbb{P}_{n}, D \in \mathbb{C}_{n}$, where $\operatorname{det}(\mathrm{D})=1$. So $T y=Q D\left[A_{1} / A_{2} / \ldots / A_{n}\right] A_{i_{0}}^{t}=Q D\left(\lambda_{1}<A_{1}, A_{i_{0}}>, \ldots, \lambda_{n}<A_{n}, A_{i_{0}}>\right)^{t}$, where $\lambda_{j} \in\{-1,1\}$ for all $j=1, \ldots, n$. Selecting positive or negative depends on D. On the other hand, we have

$$
\begin{equation*}
\left.\left.T y=\left[A_{1} / A_{2} / \ldots / A_{n}\right] P C A_{i_{0}}^{t}=\left(<A_{1}, A_{i_{0}} C^{t} P^{t}\right\rangle, \ldots,<A_{n}, A_{i_{0}} C^{t} P^{t}\right\rangle\right)^{t} . \tag{3.1}
\end{equation*}
$$

Let δ be the corresponding permutation with Q. If $\delta_{r}=i_{0}$; By calculating $r^{\text {th }}$ component, we observe that $<A_{r}, A_{i_{0}} C^{t} P^{t}>=+<A_{\delta_{r}}, A_{i_{0}}>=+<A_{i_{0}}, A_{i_{0}}>=+\left\|A_{i_{0}}\right\|^{2}$ or $<A_{r}, A_{i_{0}} C^{t} P^{t}>=-<$ $A_{\delta_{r}}, A_{i_{0}}>=-<A_{i_{0}}, A_{i_{0}}>=-\left\|A_{i_{0}}\right\|^{2}$. The Cauchy-Schwarz inequality states that $\left\|A_{i_{0}}\right\|^{2}=\mid<$ $A_{r}, A_{i_{0}} C^{t} P^{t}>\mid \leq\left\|A_{r}\right\| \quad\left\|A_{i_{0}} C^{t} P^{t}\right\|=\left\|A_{r}\right\| \quad\left\|A_{i_{0}}\right\| \leq\left\|A_{i_{0}}\right\| \quad\left\|A_{i_{0}}\right\|=\left\|A_{i_{0}}\right\|^{2}$. So

$$
\begin{equation*}
\left|<A_{r}, A_{i_{0}} C^{t} P^{t}>\right|=\left\|A_{r}\right\|\left\|A_{i_{0}} C^{t} P^{t}\right\| . \tag{3.2}
\end{equation*}
$$

Then there exists some $\lambda \in \mathbb{R} \backslash\{0\}$ such that $P C A_{i_{0}}^{t}=\lambda A_{r}^{t}$. By putting this relation in 3.2 we conclude that $\lambda=1$ or $\lambda=-1$. Thus $G A_{i_{0}}^{t}=\left\{Q D A_{i_{0}}^{t} \mid Q \in \mathbb{P}_{n}, D \in \mathbb{C}_{n}\right.$, $\left.\operatorname{det}(\mathrm{D})=1\right\} \subseteq$ $\left\{\lambda_{1} \mathrm{~A}_{1}^{\mathrm{t}}, \ldots, \lambda_{\mathrm{n}} \mathrm{A}_{\mathrm{n}}^{\mathrm{t}}| | \lambda_{\mathrm{i}} \mid=1,1 \leq \mathrm{i} \leq \mathrm{n}\right\}$. Right-hand set has at most 2 n elements, and so $G A_{i_{0}}^{t}$ has at most 2 n elements, too. So $A_{i_{0}}$ has exactly a non-zero component, namely a. It follows that $G A_{i_{0}}^{t}=\left\{\lambda_{1} A_{1}^{t}, \ldots, \lambda_{n} A_{n}^{t}| | \lambda_{i} \mid=1,1 \leq i \leq n\right\}$, and hence $A=a P C$, for some $P \in \mathbb{P}_{n}, C \in \mathbb{C}_{n}$.

Lemma 3.2. Let T_{1} and T_{2} be two linear preservers of $<_{m t}$ on \mathbb{R}^{n} where $n \geq 3$. If $T_{1}+T_{2}$ preserve $<_{m t}$, then there exist some $\alpha_{1}, \alpha_{2} \in \mathbb{R}, P \in \mathbb{P}_{n}, C \in \mathbb{C}_{n}$ such that $\left[T_{1}\right]=\alpha_{1} P C$ and $\left[T_{2}\right]=\alpha_{2} P C$.
Proof. As T_{1}, T_{2}, and $T_{1}+T_{2}$ preserve $<_{m t}$, Theorem 3.1 ensures that there exist some $\alpha_{1}, \alpha_{2}, \alpha_{3} \in$ $\mathbb{R}, P_{1}, P_{2}, P_{3} \in \mathbb{P}_{n}, C_{1}, C_{2}, C_{3} \in \mathbb{C}_{n}$ such that $\left[T_{1}\right]=\alpha_{1} P_{1} C_{1},\left[T_{2}\right]=\alpha_{2} P_{2} C_{2}$, and $\left[T_{1}+T_{2}\right]=$ $\alpha_{3} P_{3} C_{3}$. We want to show that $P_{1}=P_{2}$ and we can choose $C_{1}=C_{2}$. If $\alpha_{1}=0$ or $\alpha_{2}=0$, there is nothing to prove. Assume that α_{1} and α_{2} are nonzero. For all $i=1,2,3$, let $C_{i}=\operatorname{diag}\left(c_{i 1}, \ldots, c_{i n}\right)$, where $c_{i j} \in\{-1,1\}$, for each $j(1 \leq j \leq n)$. We have

$$
\begin{equation*}
\alpha_{1} P_{1} C_{1} x+\alpha_{2} P_{2} C_{2} x=\alpha_{3} P_{3} C_{3} x, \tag{3.3}
\end{equation*}
$$

for all $x \in \mathbb{R}^{n}$.
If $P_{1} \neq P_{2}$; Then there exist some $r, s, k, l(1 \leq r, s, k, l \leq n), k \neq l$ such that $P_{1} e_{r}=e_{k} \neq e_{l}=P_{2} e_{r}$ and $P_{3} e_{r}=e_{s}$. By putting $x=e_{r}$ in the relation 3.3 we have $c_{1 r} \alpha_{1} e_{k}+c_{2 r} \alpha_{2} e_{l}=c_{3 r} \alpha_{3} e_{s}$. Since $k \neq l$, the vector $c_{1 r} \alpha_{1} e_{k}+c_{2 r} \alpha_{2} e_{l}$ has two non-zero components. On the other hand, the vector $c_{3 r} \alpha_{3} e_{s}$ has at most a non-zero component, which is a contradiction. It means that $P_{1}=P_{2}$, and we have

$$
\begin{equation*}
\alpha_{1} C_{1}+\alpha_{2} C_{2}=\alpha_{3} C_{3}, \tag{3.4}
\end{equation*}
$$

and so $\alpha_{1} c_{1 j}+\alpha_{2} c_{2 j}=\alpha_{3} c_{3 j}$, for each $j(1 \leq j \leq n)$. It follows that $\alpha_{1}+\left(c_{1 j} c_{2 j}\right) \alpha_{2}=\alpha_{3}\left(c_{1 j} c_{3 j}\right)$, and hence $\left|\alpha_{1}+\left(c_{1 j} c_{2 j}\right) \alpha_{2}\right|=\left|\alpha_{3}\right|$, for each $j(1 \leq j \leq n)$. We observe that

$$
\begin{equation*}
\left|\alpha_{1}+\left(c_{1 j} c_{2 j}\right) \alpha_{2}\right|=\left|\alpha_{1}+\left(c_{11} c_{21}\right) \alpha_{2}\right|, \tag{3.5}
\end{equation*}
$$

Mohammadhasani, Ilkhanizadeh Manesh/ Wavelets and Linear Algebra 4(2) (2017) 25-32 30
for each $j(1 \leq j \leq n)$. Now, if $c_{11} c_{21}=1$, as $\alpha_{1}, \alpha_{2} \neq 0$, then $\left|\alpha_{1}+\alpha_{2}\right| \neq\left|\alpha_{1}-\alpha_{2}\right|$, and hence 3.5 ensures that $c_{1 j} c_{2 j}=c_{11} c_{21}$, for each $j(1 \leq j \leq n)$. Thus, $c_{1 j} c_{2 j}=1$ or $c_{1 j} c_{2 j}=-1$, for each $j(1 \leq j \leq n)$. In the first case we have $C_{1}=C_{2}$, as desired, and in the second case we see that $C_{1}=-C_{2}$, and so $T_{2} x=\alpha_{2} P_{2} C_{2} x=\left(-\alpha_{2}\right) P_{1} C_{1} x$. By changing α_{2} to $-\alpha_{2}$ we can assume that $C_{1}=C_{2}$, and the proof is complete.

4. Miranda-Thompson majorization on $M_{m, n}$ and its linear preservers

In this section, we characterize the linear preservers of Miranda-Thompson majorization on $\mathbf{M}_{m, n}$.

The following sense is useful for finding the structure of linear preservers of Miranda-Thompson majorization.
For each $i, j(1 \leq i, j \leq n)$, consider the embedding $E_{j}: \mathbb{R}^{m} \rightarrow \mathbf{M}_{m, n}$ and the projection $E^{i}: \mathbf{M}_{m, n} \rightarrow \mathbb{R}^{m}$, where $E_{j}(x)=x e_{j}^{t}$ and $E^{i}(X)=X e_{i}$. It is easy to show that for every linear function $T: \mathbf{M}_{m, n} \rightarrow \mathbf{M}_{m, n}, T X=T\left[X_{1}\left|X_{2}\right| \ldots \mid X_{n}\right]=\left[\sum_{j=1}^{n} T_{1 j} X_{j}\left|\sum_{j=1}^{n} T_{2 j} X_{j}\right| \ldots \mid \sum_{j=1}^{n} T_{n j} X_{j}\right]$, where $T_{i j}=E^{i} T E_{j}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$.

We claim that for each $i, j(1 \leq i, j \leq n) E^{i}$ and E_{j} preserve $<_{m t}$. Let $x \in \mathbb{R}^{m}, X \in \mathbf{M}_{m, n}$, and $D \in \operatorname{Conv}(\mathrm{G})$. We see

$$
E_{j} D x=D x e_{j}^{t}=D E_{j} x
$$

and

$$
E^{i} D X=D X e_{i}=D E^{i} X
$$

Then E^{i} and E_{j} preserve $<_{m t}$.
Now, suppose that T preserves $<_{m t}$. So $T D E_{j} x=D^{\prime} T E_{j} x$, for some $D^{\prime} \in \operatorname{Conv(G).~Then~}$

$$
T_{i j} D x=E^{i} T E_{j} D x=E^{i} T D E_{j} x=E^{i} D^{\prime} T E_{j} x=D^{\prime} E^{i} T E_{j} x=D^{\prime} T_{i j} x,
$$

and hence $T_{i j}$ preserves $<_{m t}$.
The following lemma characterizes linear preservers of $<_{m t}$ on $\mathbf{M}_{2, n}$.
Theorem 4.1. Let $T: \boldsymbol{M}_{2, n} \rightarrow \boldsymbol{M}_{2, n}$ be a linear function. Then T preserves $<_{m t}$ if and only if there exist $A_{1}, \ldots, A_{n} \in M_{2, n}, s \in\{-1,1\}$, and $P \in \mathbb{P}_{2}$ such that $T X=\sum_{j=1}^{n}\left[x_{1 j} A_{j}+s x_{2 j} P A_{j}\right]$ for all $X=\left[x_{i j}\right] \in \boldsymbol{M}_{2, n}$.

Proof. If: It is easy to see.
Only if: Let T preserve $<_{m t}$. We consider two steps.
Step 1. At least one of $T_{i j}$ is of the first type. Suppose that $T_{p q}$ is of the first type and $\left[T_{p q}\right]=[\mathbf{a} \mid$ $s P \mathbf{a}]$, where $s \in\{1,-1\}, P \in \mathbb{P}_{2}, \mathbf{a} \in \mathbb{R}^{2}$. We claim that for each $i, j(1 \leq i, j \leq n)$ there exist some $a_{i j} \in \mathbb{R}^{2}$ such that

$$
\begin{equation*}
\left[T_{i j}\right]=\left[a_{i j} \mid s P a_{i j}\right] . \tag{4.1}
\end{equation*}
$$

For each $i(1 \leq i \leq n)$, since $\left(T_{p q}+T_{p i}\right) x=\left(T x\left(e_{q}^{t}+e_{i}^{t}\right)\right) e_{p}$, we deduce that $T_{p q}+T_{p i}$ preserves $<_{m t}$. Similarly, $T_{p q}+T_{i q}$ preserves $<_{m t}$. So Lemma 3.2 ensures that $T_{p i}$ and $T_{i q}$ satisfy in 4.1. Moreover, we prove that if $k \neq p$ and $l \neq q$, then $T_{k l}$ satisfies in 4.1, too.

If one of $T_{p l}$ or $T_{k q}$ is of the first type, then $T_{k l}$ satisfies in 4.1, because of the uniqueness of s and P.
If both $T_{p l}$ and $T_{k q}$ are not of the first type; As $T_{p q}$ is of the first type, then at least one of the mappings $T_{p q}+T_{k q}+T_{p l}$ or $-T_{p q}-T_{k q}+T_{p l}$ is of the first type. We have $\left[T_{p q}+T_{k q}+T_{p l}\right]=\left[a_{p q}+\right.$ $\left.a_{k q}+a_{p l} \mid s P\left(a_{p q}+a_{k q}+a_{p l}\right)\right]$ and $\left[-\left(T_{p q}+T_{k q}\right)+T_{p l}\right]=\left[-\left(a_{p q}+a_{k q}\right)+a_{p l} \mid-s P\left(a_{p q}+a_{k q}+a_{p l}\right)\right]$. As $\left(T_{p q}+T_{k q}+T_{p l}+T_{k l}\right) x=\left(T\left(x e_{q}^{t}+x e_{l}^{t}\right)\right)\left(e_{p}+e_{k}\right)$ and $\left(-\left(T_{p q}+T_{k q}\right)+T_{p l}+T_{k l}\right) x=\left(T\left(-x e_{q}^{t}+x e_{l}^{t}\right)\right)\left(e_{p}+e_{k}\right)$ for all $x \in \mathbb{R}^{m}$. So both mappings $\left(T_{p q}+T_{k q}+T_{p l}\right)+T_{k l}$ and $\left(-T_{p q}-T_{k q}+T_{p l}\right)+T_{k l}$ preserve $<_{m t}$. It implies that $T_{k l}$ satisfies in 4.1.
Step 2. None of $T_{i j}$ are not of the first type. So if $T_{i j} \neq 0$, then $T_{i j}$ is of the second type or the third type. Hence $T_{i j}\left(e_{2}\right)=T_{i j}\left(e_{1}\right)$ or $T_{i j}\left(e_{2}\right)=-T_{i j}\left(e_{1}\right)$. If both mapping $T_{p q}$ and $T_{k l}$ are of a type, then it is easy to show that $T_{p q}\left(e_{1}\right)=T_{p q}\left(e_{2}\right)$ if and only if $T_{k l}\left(e_{1}\right)=T_{k l}\left(e_{2}\right)$. Now, we choose $s \in\{-1,1\}$ such that if $T_{i j}$ is of the third type, then $T_{i j}\left(e_{2}\right)=s T_{i j}\left(e_{1}\right)$. After selecting s, we choose the permutation $P \in \mathbb{P}^{2}$ such that if $T_{i j}$ is of the second type, then $T_{i j}\left(e_{2}\right)=s P T_{i j}\left(e_{1}\right)$. Put $a_{i j}=T_{i j}\left(e_{1}\right)$, for each $i, j(1 \leq i, j \leq n)$. So $\left[T_{i j}\right]=\left[a_{i j} \mid s P a_{i j}\right]$, for each $i, j(1 \leq i, j \leq n)$.
Now, we have $T X=T\left[X_{1}|\ldots| X_{n}\right]=\left[\sum_{j=1}^{n} T_{1 j} X_{j}|\ldots| \sum_{j=1}^{n} T_{n j} X_{j}\right]=\left[\sum_{j=1}^{n}\left[a_{1 j} \mid s P a_{1 j}\right] X_{j} \mid\right.$ $\left.\ldots \mid \sum_{j=1}^{n}\left[a_{n j} \mid s P a_{n j}\right] X_{j}\right]=\left[\sum_{j=1}^{n}\left(x_{1 j} a_{1 j}+s x_{2 j} P a_{1 j}\right)|\ldots| \sum_{j=1}^{n}\left(x_{1 j} a_{n j}+s x_{2 j} P a_{n j}\right)\right]=\sum_{j=1}^{n}\left(x_{1 j} A_{j}+\right.$ $s x_{2 j} P A_{j}$), where $A_{j}=\left[a_{1 j}|\ldots| a_{n j}\right] \in \mathbf{M}_{2, n}$, for each $j(1 \leq j \leq n)$.

In the following theorem, we characterize linear preservers of Miranda-Thompson majorization $T: \mathbf{M}_{m, n} \rightarrow \mathbf{M}_{m, n}$ whenever $m \geq 3$. Note that the case $m=1$ for every linear function holds.

Theorem 4.2. Let $T: \boldsymbol{M}_{m, n} \rightarrow \boldsymbol{M}_{m, n}$ be a linear function whenever $m \geq 3$. Then T preserves $<_{m t}$ if and only if there exist $A \in \boldsymbol{M}_{n}, P \in \mathbb{P}_{m}$, and $C \in \mathbb{C}_{m}$ such that $T X=P C X A$ for all $X \in \boldsymbol{M}_{m, n}$.

Proof. Suppose that $T X=P C X A$, for some $A \in \mathbf{M}_{n}, P \in \mathbb{P}_{m}$, and $C \in \mathbb{C}_{m}$. It is a simple matter to prove that T preserves $<_{m t}$.

Assume that T preserves $<_{m t}$ and $m \geq 3$. For $T=0$, it is clear. Let $T \neq 0$. Since T preserves $<_{m t}$, we see that $T_{i j}$ preserves $<_{m t}$ for all $i, j(1 \leq i, j \leq n)$. As $T \neq 0$, there exist some r, s ($1 \leq r, s \leq n$) such that $T_{r s} \neq 0$. Lemma 3.1 ensures that there exist some $a_{r s} \in \mathbb{R}, P \in \mathbb{P}_{m}$, and $C \in \mathbb{C}_{m}$ such that $T_{r s} x=a_{r s} P C x$, for all $x \in \mathbb{R}^{m}$. We claim that for each $k, l(1 \leq k, l \leq n)$ there is some $a_{k l} \in \mathbb{R}$ such that $T_{k l} x=a_{k l} P C x$, for all $x \in \mathbb{R}^{m}$.
We divide the proof into three stages.
Step 1. $k=r$ and $l \neq s$. For each $x \in \mathbb{R}^{m}$, let $X=\left[X_{1}|\ldots| X_{n}\right]$, as follows. For each $j(1 \leq j \leq n)$ $X_{j}=\left\{\begin{array}{c}x \text { if } \mathrm{j}=\mathrm{s}, 1 \\ 0\end{array}\right.$ if o.w. We have $T_{r s} x+T_{r l} x=\left(T\left[X_{1}|\ldots| X_{n}\right]\right) e_{r}$ for all $x \in \mathbb{R}^{m}$. So $T_{r s}+T_{r l}$ preserves $<_{m t}$, and hence Lemma 3.2 ensures that there is some $a_{r l} \in \mathbb{R}$ such that $T_{r l} x=a_{r l} P C x$, for all $x \in \mathbb{R}^{m}$.
Step 2. $k \neq r$ and $l=s$. Let $x \in \mathbb{R}^{m}$, and $X_{j}=\left\{\begin{array}{c}x \text { if } \mathrm{j}=\mathrm{s} \\ 0 \text { if o.w. }\end{array}\right.$, for each $j(1 \leq j \leq n)$. Consider $X=\left[X_{1}|\ldots| X_{n}\right]$. We observe that $T_{r s} x+T_{k s} x=\left(T\left[X_{1}|\ldots| X_{n}\right]\right)\left(e_{r}+e_{k}\right)$ for all $x \in \mathbb{R}^{m}$. For each $x, y \in \mathbb{R}^{m}$, if $x<_{m t} y$, then $\left[X_{1}|\ldots| X_{n}\right]<_{m t}\left[Y_{1}|\ldots| Y_{n}\right]$. As T preserves $<_{m t}$, $T\left[X_{1}|\ldots| X_{n}\right]<_{m t} T\left[Y_{1}|\ldots| Y_{n}\right]$, and hence $T_{r s}+T_{k s}$ preserves $<_{m t}$. It implies that there is some $a_{k s} \in \mathbb{R}$ such that $T_{k s} x=a_{k s} P C x$, for all $x \in \mathbb{R}^{m}$, because of Lemma 3.2.

Mohammadhasani, Ilkhanizadeh Manesh/ Wavelets and Linear Algebra 4(2) (2017) 25-32 32
Step 3. $k \neq r$ and $l \neq s$. From the previous steps, there are some $a_{r l} a_{k s} \in \mathbb{R}$ such that $T_{r l} x=a_{r l} P C x$ and $T_{k s} x=a_{k s} P C x$ for all $x \in \mathbb{R}^{m}$. If $T_{r l} \neq 0$ (or $T_{k s} \neq 0$), then step 2 (step 1) ensures that there is some $a_{k l} \in \mathbb{R}$ such that $T_{k l} x=a_{k l} P C x$ for all $x \in \mathbb{R}^{m}$, by choosing l instead of $s(k$ instead of r). If $T_{r l}=T_{k s}=0$; For each $x \in \mathbb{R}^{m}$ define $X=\left[X_{1}|\ldots| X_{n}\right] \in \mathbf{M}_{m, n}, X_{j}=\left\{\begin{array}{cc}x & \text { if } \mathrm{j}=\mathrm{s}, 1 \\ 0 & \text { if o.w. }\end{array}\right.$, for each $j(1 \leq j \leq n)$. We see that $T_{r s} x+T_{k l} x=\left(T\left[X_{1}|\ldots| X_{n}\right]\right)\left(e_{r}+e_{k}\right)$ for all $x \in \mathbb{R}^{m}$, and then $T_{r s}+T_{k l}$ preserves $<_{m t}$. Since $T_{r s} \neq 0$, Lemma 3.2 ensures that there is some $a_{k l} \in \mathbb{R}$ such that $T_{k l} x=a_{k l} P C x$ for all $x \in \mathbb{R}^{m}$.
So $T X=T\left[X_{1}|\ldots| X_{n}\right]=\left[\sum_{j=1}^{n} T_{1 j} X_{j}|\ldots| \sum_{j=1}^{n} T_{n j} X_{j}\right]=\left[\sum_{j=1}^{n} a_{1 j} P C X_{j}|\ldots| \sum_{j=1}^{n} a_{n j} P C X_{j}\right]=$ $P C\left[\sum_{j=1}^{n} a_{1 j} X_{j}|\ldots| \sum_{j=1}^{n} a_{n j} X_{j}\right]=P C X A$, where $A=\left[a_{i j}\right] \in \mathbf{M}_{n}$.

References

[1] L.B. Beasley, S-G. Lee and Y-H Lee, A characterization of strong preservers of matrix majorization, Linear Algebra Appl., 367 (2003), 341-346,
[2] H. Chiang and C.K. Li, Generalized doubly stochastic matrices and linear preservers, Linear Multilinear Algebra, 53(1) (2005), 1-11.
[3] A. Giovagnoli and H.P. Wynn, G-majorization with applications to matrix orderings, Linear Algebra Appl., 67 (1985), 111-135, .
[4] A.M. Hasani and M. Radjabalipour, On linear preservers of (right) matrix majorization, Linear Algebra Appl., 423 (2007), 255-261.
[5] A. Ilkhanizadeh Manesh, Right gut-Majorization on $\mathbf{M}_{n, m}$, Electron. J. Linear Algebra, 31(1) (2016), 13-26.
[6] F. Khalooei, Linear preservers of two-sided matrix majorization, Wavel. Linear Algebra, 1 (2014), 43-50.
[7] M. Niezgoda, Cone orderings, group majorizations and similarly separable vectors, Linear Algebra Appl., 436 (2012), 579-594.
[8] A.W. Marshall, I. Olkin, and B.C. Arnold, Inequalities: Theory of Majorization and Its Applications, Springer, New York, 2011.
[9] M. Soleymani and A. Armandnejad, Linear preservers of even majorization on $\mathbf{M}_{n, m}$, Linear Multilinear Algebra, 62(11) (2014), 1437-1449.

[^0]: *Corresponding author
 Email addresses: a.mohammadhasani53@gmail.com (Ahmad Mohammadhasani), a.ilkhani@vru.ac.ir (Asma Ilkhanizadeh Manesh)

