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1. Introduction

In matrix theory, majorization plays a significant role. The best general reference on this
subject is Inequalities: Theory of majorization and its applications by A. W. Marshall, I. Olkin,
and B. C. Arnold [8]. Some kinds of majorization with their linear preservers can be found in
[1]-[2] and [4]-[6].

Let V be a finite-dimensional real vector space, O(V) the orthogonal group acting on V and G
a closed subgroup of O(V). The group G induces an equivalence relation on V , defined by x ≈ y
if and only if y = gx for some g ∈ G. The equivalence classes of this relation are called the orbits
of G. For each y ∈ V the orbit of y is OG(y) = {gy | g ∈ G}. A vector x is G-majorized by y,
denoted by x ≺G y, if x ∈ Conv(OG(y)), where the notation Conv(A) is the convex hull of a set A.
The group majorization ≺G generates an equivalence relation ∼G on V defined as follows. x ∼G y
if and only if x ≺G y ≺G x. In [3], A. Giovagnoli and H. P. Wynn observed that x ∼G y if and
only if y = gx for some g ∈ G. The classical majorization is a vector pre-ordering on Rn induced
by the permutation group. In [9], M. Soleymani and A. Armandnejad introduced the concept of
even majorization, and they characterized the linear preservers and strong linear preservers of this
concept on Mm,n.

In the peresent paper, let V = Rn with the standard inner product and G = {PC | P ∈ Pn,C ∈
Cn, det(C) = 1}, where Pn is the group of n-by-n permutation matrices and Cn is the group of
n-by-n diagonal orthogonal matrices. Notice that Cn = {diag(λ1, . . . , λn) | λi ∈ {1,−1}, 1 ≤ i ≤ n}.
≺G will display with ≺mt. In [7, Section 6], M. Niezgoda proved for any x, y ∈ Rn we have x ≺mt y
if and only if

i∑
k=1

|x|[k] ≤
i∑

k=1

|y|[k], for all i (1 ≤ i ≤ n − 2),

n−1∑
k=1

|x|[k] + sing(x)|x|[n] ≤
n−1∑
k=1

|y|[k] + sing(y)|y|[n],

n−1∑
k=1

|x|[k] − sing(x)|x|[n] ≤
n−1∑
k=1

|y|[k] − sing(y)|y|[n],

where |x| = (|x1|, |x2|, . . . , |xn|), sign(x) = sgn(
∏n

i=1 xi) and by (|x|[1], |x|[2], . . . ,
|x|[n])t we denote the entries of a vector x = (x1, x2, . . . , xn)t ∈ Rn arranged in decreasing order.

Now, we generalize this concept on matrices.

Definition 1.1. For X, Y ∈ Mm,n, X is said to be Miranda-Thompson majorized by Y (denoted by
X ≺mt Y) if there exists some D ∈ Conv(G) such that X = DY . That is, X =

∑k
i=1 λiPiCiY , where

Pi ∈ Pm, Ci ∈ Cm, det(Ci) = 1, λi ≥ 0, for each i (1 ≤ i ≤ k), and
∑k

i=1 λi = 1.

The present paper continues in three further sections. Section 2 presents the structure of all
linear preservers of ≺mt on R2. The third section contains the structure of all linear functions
T : Rn → Rn preserving Miranda-Thompson majorization. Section 4 states all linear preservers
of ≺mt from Mm,n to Mm,n.
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2. Miranda-Thompson majorization on R2 and its linear preservers

This section studies facts of Miranda-Thompson majorization that are necessary for studying
the linear preservers of this concept. Also, we characterize the structure of all linear preservers of
≺mt on R2.

Lemma 2.1. Let P ∈ Pn and C ∈ Cn. Then there exists some C∗ ∈ Cn such that PC = C∗P.

Proof. Let C = [Ci j] and δ be the corresponding permutation with P. Put J = {1 ≤ j ≤ n |
C j j = −1} and J∗ = {δ j | j ∈ J}. Now, we define C∗ := diag(d11, . . . , dnn) ∈ Cn, where dii ={
+1 if i < J∗
−1 if i ∈ J∗.

We observe that PC = C∗P, as desired.

In the following lemma, we express linear preservers of Miranda-Thompson majorization T :
R2 → R2. Suppose that ei is the ith unit vector.

Lemma 2.2. Let T : R2 → R2 be a linear function. Then T preserves ≺mt if and only if there exist
P ∈ P2, a ∈ R2, and s ∈ {1,−1} such that T

(
x
y

)
= xa + syPa for all

(
x
y

)
∈ R2.

Proof. It is obvious the proof of sufficient condition.
For the converse, we prove the necessity of the condition. Assume that T preserves ≺mt. Let

[T ] =
(
a1 a3

a2 a4

)
, where [T ] is the matrix representation of T on the standard basis {e1, e2} on R2.

For each
(

z
t

)
,
(

x
y

)
∈ R2, we have

(
z
t

)
∼mt

(
x
y

)
if and only if

(
z
t

)
∈ {

(
x
y

)
,−

(
x
y

)
,
(

y
x

)
,−

(
y
x

)
}. We conclude

from e2 ∼mt e1 that Te2 ∼mt Te1, hence
(

a3
a4

)
∼mt

(
a1
a2

)
, and finally that

(
a3
a4

)
∈ {

(
a1
a2

)
,−

(
a1
a2

)
,
(

a2
a1

)
,−

(
a2
a1

)
}.

If a =
(

a1
a2

)
, then for some 2 × 2 permutation matrix P T

(
x
y

)
= x

(
a1
a2

)
+ yPC

(
a1
a2

)
= xa + yPCa ={

xa + yPa if C = +I
xa − yPa if C = −I , and the proof is complete.

Lemma 2.3. Let T1 and T2 be two linear preservers of ≺mt on R2. If T1 + T2 preserves ≺mt,
then there exist some a, b ∈ R2, P ∈ P2, and s ∈ {1,−1} such that T1

(
x
y

)
= xa + syPa and

T2

(
x
y

)
= xb + syPb for all

(
x
y

)
∈ R2.

Proof. As T1, T2, and T1 + T2 preserve ≺mt on R2, Lemma 2.2 ensures that for each
(

x
y

)
∈ R2 we

have T1

(
x
y

)
= xa+ s1yP1a, T2

(
x
y

)
= xb+ s2yP2b, and (T1+T2)

(
x
y

)
= xc+ syPc, for some a,b, c ∈ R2,

P1, P2, P ∈ P2, and s1, s2, s ∈ {−1, 1}. It suffices to show that we can choose equal s1 and s2 also
equal the permutations P1 and P2. We observe that x(a + b) + y(s1P1a + s2P2b) = xc + y(sPc),
for all x, y ∈ R. If x = 1 and y = 0, then a + b = c. Choose x = 0 and y = 1. It follows that
ss1(PP1)a + ss2(PP2)b = a + b. Put a =

(
a1
a2

)
, b =

(
b1
b2

)
, ti = ssi, and Qi = PPi, for i = 1, 2. So we

prove that if t1Q1a + t2Q2b = a + b, where t1, t2 ∈ {−1, 1} and Q1,Q2 ∈ P2, then we can choose
equal t1 and t2 also equal Q1 and Q2. Given that t1 , t2 or Q1 , Q2, we consider three cases.
Case(1). Q1 = Q2 = I and t1 , t2. If t1 = −t2 = 1, then b = 0, and so we can select t1 = t2 = 1. In
the same way, if t1 = −t2 = −1, then a = 0, and choose t1 = t2 = 1.
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Case(2). Q1 = Q2 =

(
0 1
1 0

)
and t1 , t2. If t1 = −t2 = 1, then a =

(
a1
a1

)
and b =

(
b1
−b1

)
. If

t1 = −t2 = −1, then a =
(

a1
−a1

)
and b =

(
b1
b1

)
. We can choose Q1 = Q2 = I and t1 = t2 = 1.

Case(3). Q1 , Q2. Without loss of generality, assume that Q1 = I and Q2 =

(
0 1
1 0

)
. If t1 = −t2 = 1,

then b =
(

b1
−b1

)
, and hence t2Q2b = t1Q1b. It implies that we can choose Q1 = Q2 = I and

t1 = t2 = 1. If t1 = −t2 = −1, then a =
(

a1
−a1

)
. So we have t1Q1a = t2Q2a. Thus, we can select

Q1 = Q2 =

(
0 1
1 0

)
and t1 = t2 = 1. If t1 = t2 = 1, then b =

(
b1
b2

)
, and it shows that we can choose

Q1 = Q2 = I. If t1 = t2 = −1, then a =
(

a1
a1

)
, and so we can choose Q1 = Q2 =

(
0 1
1 0

)
.

Let T preserve ≺mt on R2. That is, [T ] = [a | sPa], where a =
(

a1
a2

)
∈ R2, s ∈ {−1, 1}, and

P ∈ P2.
(1) If |a1| , |a2|; We say T is of the first type. In this case, s and P are unique. So in the previous
lemma if s and P are related to T1, then s and P are related to T2, too.
Notice that if |a1| = |a2|, then T (e1) = T (e2) or T (e1) = −T (e2).

(2) If a1 = −a2 , 0; We say T is of the second type. Then [T ] = a1

(
1 1
−1 −1

)
or [T ] = a1

(
1 −1
−1 1

)
.

s and P are not unique. Because we can replace −s and
(
0 1
1 0

)
P with s and P.

(3) If a1 = a2 , 0; We say T is of the third type, and [T ] = a1

(
1 1
1 1

)
or [T ] = a1

(
1 −1
1 −1

)
. Only s

is unique.

3. Miranda-Thompson majorization on Rn (n ≥ 3) and its linear preservers

This section contains all linear preservers of ≺mt from Rn to Rn.
Let ∥ . ∥ be the Euclidean norm. In the following theorem the structure of linear functions

T : Rn → Rn preserving Miranda-Thompson majorization will be characterized.

Theorem 3.1. Let T : Rn → Rn be a linear function whenever n ≥ 3. Then T preserves ≺mt if and
only if there exist a ∈ R, P ∈ Pn, and C ∈ Cn such that [T ] = aPC.

Proof. First, assume that [T ] = aPC, for some a ∈ R, P ∈ Pn, and C ∈ Cn. Let x, y ∈ Rn such that
y ∼mt x. It implies that there exist some Q ∈ Pn and D ∈ Cn, where det(D) = 1 such that y = QDx.
We observe that Ty = (aPC)y = (PCQDCPt)(aPCx). Lemma 2.1 ensures that CQ = QC1 for
some C1 ∈ Cn. So Ty = (PQC1DCPt)T x. As C1DC ∈ Cn, there is some C2 ∈ Cn such that
(C1DC)Pt = PtC2. Then Ty = (PQPtC2)T x. Since PQPt ∈ Pn and C2 ∈ Cn, we deduce that
Ty ∼mt T x. Therefore, T preserves ∼mt. Now, let x, y ∈ Rn such that y ≺mt x. So there exist
some Pi ∈ Pn, Ci ∈ Cn, det(Ci) = 1, λi ≥ 0, for each i (1 ≤ i ≤ k), and

∑k
i=1 λi = 1 such that

y =
∑k

i=1 λiPiCix. We have Ty = T (
∑k

i=1 λiPiCix) =
∑k

i=1 λiT (PiCix). We proved that for each i
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(1 ≤ i ≤ k) there exist some Qi ∈ Pn, and Di ∈ Cn, det(Di) = 1 such that T (PiCix) = QiDiT x. It
follows that Ty =

∑k
i=1 λiQiDiT x, and hence Ty ≺mt T x.

Next, assume that T preserves ≺mt. If T = 0, then there is no thing to prove. Let T , 0,
and A = [T ] = [A1/A2/ . . . /An]. So T x = Ax for all x ∈ Rn. Suppose that Ai0 is a row of
A which has the maximum Euclidean norm. That is, ∥ Ai ∥≤∥ Ai0 ∥ for each i (1 ≤ i ≤ n).
Let P ∈ Pn, C ∈ Cn, and det(C) = 1. Consider x = At

i0
and y = PCAt

i0
. As x ∼mt y, we see

that T x ∼mt Ty. It shows that Ty = QDT x for some Q ∈ Pn, D ∈ Cn, where det(D) = 1. So
Ty = QD[A1/A2/ . . . /An]At

i0
= QD(λ1 < A1, Ai0 >, . . . , λn < An, Ai0 >)t, where λ j ∈ {−1, 1} for all

j = 1, . . . , n. Selecting positive or negative depends on D. On the other hand, we have

Ty = [A1/A2/ . . . /An]PCAt
i0 = (< A1, Ai0C

tPt >, . . . , < An, Ai0C
tPt >)t. (3.1)

Let δ be the corresponding permutation with Q. If δr = i0; By calculating rth component, we
observe that < Ar, Ai0C

tPt >= + < Aδr , Ai0 >= + < Ai0 , Ai0 >= + ∥ Ai0 ∥2 or < Ar, Ai0C
tPt >= − <

Aδr , Ai0 >= − < Ai0 , Ai0 >= − ∥ Ai0 ∥2 . The Cauchy-Schwarz inequality states that ∥ Ai0 ∥2= | <
Ar, Ai0C

tPt > | ≤∥ Ar ∥ ∥ Ai0C
tPt ∥=∥ Ar ∥ ∥ Ai0 ∥≤∥ Ai0 ∥ ∥ Ai0 ∥=∥ Ai0 ∥2. So

| < Ar, Ai0C
tPt > | =∥ Ar ∥ ∥ Ai0C

tPt ∥ . (3.2)

Then there exists some λ ∈ R \ {0} such that PCAt
i0
= λAt

r. By putting this relation in 3.2 we
conclude that λ = 1 or λ = −1. Thus GAt

i0
= {QDAt

i0
| Q ∈ Pn,D ∈ Cn, det(D) = 1} ⊆

{λ1At
1, . . . , λnAt

n | |λi| = 1, 1 ≤ i ≤ n}. Right-hand set has at most 2n elements, and so GAt
i0

has at most 2n elements, too. So Ai0 has exactly a non-zero component, namely a. It follows that
GAt

i0
= {λ1At

1, . . . , λnAt
n | |λi| = 1, 1 ≤ i ≤ n}, and hence A = aPC, for some P ∈ Pn, C ∈ Cn.

Lemma 3.2. Let T1 and T2 be two linear preservers of ≺mt on Rn where n ≥ 3. If T1 + T2 preserve
≺mt, then there exist some α1, α2 ∈ R, P ∈ Pn, C ∈ Cn such that [T1] = α1PC and [T2] = α2PC.

Proof. As T1, T2, and T1 +T2 preserve ≺mt, Theorem 3.1 ensures that there exist some α1, α2, α3 ∈
R, P1, P2, P3 ∈ Pn, C1,C2,C3 ∈ Cn such that [T1] = α1P1C1, [T2] = α2P2C2, and [T1 + T2] =
α3P3C3. We want to show that P1 = P2 and we can choose C1 = C2. If α1 = 0 or α2 = 0, there is
nothing to prove. Assume that α1 and α2 are nonzero. For all i = 1, 2, 3, let Ci = diag(ci1, . . . , cin),
where ci j ∈ {−1, 1}, for each j (1 ≤ j ≤ n). We have

α1P1C1x + α2P2C2x = α3P3C3x, (3.3)

for all x ∈ Rn.
If P1 , P2; Then there exist some r, s, k, l (1 ≤ r, s, k, l ≤ n), k , l such that P1er = ek , el = P2er

and P3er = es. By putting x = er in the relation 3.3 we have c1rα1ek + c2rα2el = c3rα3es. Since
k , l, the vector c1rα1ek + c2rα2el has two non-zero components. On the other hand, the vector
c3rα3es has at most a non-zero component, which is a contradiction. It means that P1 = P2, and
we have

α1C1 + α2C2 = α3C3, (3.4)

and so α1c1 j + α2c2 j = α3c3 j, for each j (1 ≤ j ≤ n). It follows that α1 + (c1 jc2 j)α2 = α3(c1 jc3 j),
and hence |α1 + (c1 jc2 j)α2| = |α3|, for each j (1 ≤ j ≤ n). We observe that

|α1 + (c1 jc2 j)α2| = |α1 + (c11c21)α2|, (3.5)
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for each j (1 ≤ j ≤ n). Now, if c11c21 = 1, as α1, α2 , 0, then |α1 + α2| , |α1 − α2|, and hence
3.5 ensures that c1 jc2 j = c11c21, for each j (1 ≤ j ≤ n). Thus, c1 jc2 j = 1 or c1 jc2 j = −1, for each
j (1 ≤ j ≤ n). In the first case we have C1 = C2, as desired, and in the second case we see that
C1 = −C2, and so T2x = α2P2C2x = (−α2)P1C1x. By changing α2 to −α2 we can assume that
C1 = C2, and the proof is complete.

4. Miranda-Thompson majorization on Mm,n and its linear preservers

In this section, we characterize the linear preservers of Miranda-Thompson majorization on
Mm,n.

The following sense is useful for finding the structure of linear preservers of Miranda-Thompson
majorization.
For each i, j (1 ≤ i, j ≤ n), consider the embedding E j : Rm → Mm,n and the projection
Ei : Mm,n → Rm, where E j(x) = xet

j and Ei(X) = Xei. It is easy to show that for every linear func-
tion T : Mm,n → Mm,n, T X = T [X1 | X2 | . . . | Xn] = [

∑n
j=1 T1 jX j |

∑n
j=1 T2 jX j | . . . |

∑n
j=1 Tn jX j],

where Ti j = EiT E j : Rm → Rm.
We claim that for each i, j (1 ≤ i, j ≤ n) Ei and E j preserve ≺mt. Let x ∈ Rm, X ∈ Mm,n, and

D ∈ Conv(G). We see
E jDx = Dxet

j = DE jx

and
EiDX = DXei = DEiX.

Then Ei and E j preserve ≺mt.
Now, suppose that T preserves ≺mt. So T DE jx = D′T E jx, for some D′ ∈ Conv(G). Then

Ti jDx = EiT E jDx = EiT DE jx = EiD′T E jx = D′EiT E jx = D′Ti jx,

and hence Ti j preserves ≺mt.
The following lemma characterizes linear preservers of ≺mt on M2,n.

Theorem 4.1. Let T : M2,n → M2,n be a linear function. Then T preserves ≺mt if and only if there
exist A1, . . . , An ∈ M2,n, s ∈ {−1, 1}, and P ∈ P2 such that T X =

∑n
j=1[x1 jA j + sx2 jPA j] for all

X = [xi j] ∈ M2,n.

Proof. If: It is easy to see.
Only if: Let T preserve ≺mt. We consider two steps.

Step 1. At least one of Ti j is of the first type. Suppose that Tpq is of the first type and [Tpq] = [a |
sPa], where s ∈ {1,−1}, P ∈ P2, a ∈ R2. We claim that for each i, j (1 ≤ i, j ≤ n) there exist some
ai j ∈ R2 such that

[Ti j] = [ai j | sPai j]. (4.1)

For each i (1 ≤ i ≤ n), since (Tpq +Tpi)x = (T x(et
q + et

i))ep, we deduce that Tpq +Tpi preserves ≺mt.
Similarly, Tpq+Tiq preserves ≺mt. So Lemma 3.2 ensures that Tpi and Tiq satisfy in 4.1. Moreover,
we prove that if k , p and l , q, then Tkl satisfies in 4.1, too.
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If one of Tpl or Tkq is of the first type, then Tkl satisfies in 4.1, because of the uniqueness of s and
P.
If both Tpl and Tkq are not of the first type; As Tpq is of the first type, then at least one of the
mappings Tpq +Tkq +Tpl or −Tpq −Tkq +Tpl is of the first type. We have [Tpq +Tkq +Tpl] = [apq +

akq+apl | sP(apq+akq+apl)] and [−(Tpq+Tkq)+Tpl] = [−(apq+akq)+apl | −sP(apq+akq+apl)]. As
(Tpq+Tkq+Tpl+Tkl)x = (T (xet

q+xet
l))(ep+ek) and (−(Tpq+Tkq)+Tpl+Tkl)x = (T (−xet

q+xet
l))(ep+ek)

for all x ∈ Rm. So both mappings (Tpq + Tkq + Tpl) + Tkl and (−Tpq − Tkq + Tpl) + Tkl preserve ≺mt.
It implies that Tkl satisfies in 4.1.
Step 2. None of Ti j are not of the first type. So if Ti j , 0, then Ti j is of the second type or
the third type. Hence Ti j(e2) = Ti j(e1) or Ti j(e2) = −Ti j(e1). If both mapping Tpq and Tkl are of
a type, then it is easy to show that Tpq(e1) = Tpq(e2) if and only if Tkl(e1) = Tkl(e2). Now, we
choose s ∈ {−1, 1} such that if Ti j is of the third type, then Ti j(e2) = sTi j(e1). After selecting s, we
choose the permutation P ∈ P2 such that if Ti j is of the second type, then Ti j(e2) = sPTi j(e1). Put
ai j = Ti j(e1), for each i, j (1 ≤ i, j ≤ n). So [Ti j] = [ai j | sPai j], for each i, j (1 ≤ i, j ≤ n).
Now, we have T X = T [X1 | . . . | Xn] = [

∑n
j=1 T1 jX j | . . . |

∑n
j=1 Tn jX j] = [

∑n
j=1[a1 j | sPa1 j]X j |

. . . | ∑n
j=1[an j | sPan j]X j] = [

∑n
j=1(x1 ja1 j+ sx2 jPa1 j) | . . . |

∑n
j=1(x1 jan j+ sx2 jPan j)] =

∑n
j=1(x1 jA j+

sx2 jPA j), where A j = [a1 j | . . . | an j] ∈M2,n, for each j (1 ≤ j ≤ n).

In the following theorem, we characterize linear preservers of Miranda-Thompson majoriza-
tion T : Mm,n → Mm,n whenever m ≥ 3. Note that the case m = 1 for every linear function
holds.

Theorem 4.2. Let T : Mm,n → Mm,n be a linear function whenever m ≥ 3. Then T preserves ≺mt

if and only if there exist A ∈ Mn, P ∈ Pm, and C ∈ Cm such that T X = PCXA for all X ∈ Mm,n.

Proof. Suppose that T X = PCXA, for some A ∈Mn, P ∈ Pm, and C ∈ Cm. It is a simple matter to
prove that T preserves ≺mt.

Assume that T preserves ≺mt and m ≥ 3. For T = 0, it is clear. Let T , 0. Since T pre-
serves ≺mt, we see that Ti j preserves ≺mt for all i, j (1 ≤ i, j ≤ n). As T , 0, there exist some r, s
(1 ≤ r, s ≤ n) such that Trs , 0. Lemma 3.1 ensures that there exist some ars ∈ R, P ∈ Pm, and
C ∈ Cm such that Trsx = arsPCx, for all x ∈ Rm. We claim that for each k, l (1 ≤ k, l ≤ n) there is
some akl ∈ R such that Tklx = aklPCx, for all x ∈ Rm.
We divide the proof into three stages.
Step 1. k = r and l , s. For each x ∈ Rm, let X = [X1 | . . . | Xn], as follows. For each j (1 ≤ j ≤ n)

X j =

{
x if j = s, l
0 if o.w. . We have Trsx + Trlx = (T [X1 | . . . | Xn])er for all x ∈ Rm. So Trs + Trl

preserves ≺mt, and hence Lemma 3.2 ensures that there is some arl ∈ R such that Trlx = arlPCx,
for all x ∈ Rm.

Step 2. k , r and l = s. Let x ∈ Rm, and X j =

{
x if j = s
0 if o.w. , for each j (1 ≤ j ≤ n). Consider

X = [X1 | . . . | Xn]. We observe that Trsx + Tksx = (T [X1 | . . . | Xn])(er + ek) for all x ∈ Rm.
For each x, y ∈ Rm, if x ≺mt y, then [X1 | . . . | Xn] ≺mt [Y1 | . . . | Yn]. As T preserves ≺mt,
T [X1 | . . . | Xn] ≺mt T [Y1 | . . . | Yn], and hence Trs + Tks preserves ≺mt. It implies that there is some
aks ∈ R such that Tksx = aksPCx, for all x ∈ Rm, because of Lemma 3.2.
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Step 3. k , r and l , s. From the previous steps, there are some arl, aks ∈ R such that Trlx = arlPCx
and Tksx = aksPCx for all x ∈ Rm. If Trl , 0 (or Tks , 0), then step 2 (step 1) ensures that there
is some akl ∈ R such that Tklx = aklPCx for all x ∈ Rm, by choosing l instead of s (k instead of

r). If Trl = Tks = 0; For each x ∈ Rm define X = [X1 | . . . | Xn] ∈ Mm,n, X j =

{
x if j = s, l
0 if o.w. , for

each j (1 ≤ j ≤ n). We see that Trsx + Tklx = (T [X1 | . . . | Xn])(er + ek) for all x ∈ Rm, and then
Trs + Tkl preserves ≺mt. Since Trs , 0, Lemma 3.2 ensures that there is some akl ∈ R such that
Tklx = aklPCx for all x ∈ Rm.
So T X = T [X1 | . . . | Xn] = [

∑n
j=1 T1 jX j | . . . |

∑n
j=1 Tn jX j] = [

∑n
j=1 a1 jPCX j | . . . |

∑n
j=1 an jPCX j] =

PC[
∑n

j=1 a1 jX j | . . . |
∑n

j=1 an jX j] = PCXA, where A = [ai j] ∈Mn.
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