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Abstract
This paper introduces an inequality on vectors in Rn which com-
pares vectors in Rn based on the p-norm of their projections on
Rk (k ≤ n). For p > 0, we say x is d-projectionally less than
or equal to y with respect to p-norm if

∑k
i=1 |xi|p is less than or

equal to
∑k

i=1 |yi|p for every d ≤ k ≤ n. For a relation ∼ on a
set X, we say a map f : X → X is a preserver of that rela-
tion, if x ∼ y implies f (x) ∼ f (y) for every x, y ∈ X. All the
linear maps that preserve d-projectional equality and inequality
are characterized in this paper.

c⃝ (2017) Wavelets and Linear Algebra

1. Introduction

Ordering sets has always been of interest to mathematician. As George Polya says inequalities
play an important role in most branches of mathematics and have widely different applications.
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The theory of vector and matrix inequalities and their linear preservers is an interesting subject in
matrix theory. There are several ways to define orders on vectors and matrices. For example, you
may compare vectors according to their norms or their components. Another way is majorization.
Let Rn be the vector space of all n × 1 real vectors.

Definition 1.1. For x, y ∈ Rn we say x is majorized by y, denoted by x ≺ y, if

k∑
i=1

x↓i ≤
k∑

i=1

y↓i , 1 ≤ k ≤ n,

and for k = n, these two sums are equal, where x↓i is the ith largest entry of the vector x. [7]

Majorization inequality has been extended to some other relations such as multivariate ma-
jorization [7], row stochastic majorization [6]. Power majorization is a type of majorization which
defined as follows. Let x and y be two vectors with non-negative components. We say x is power
majorized by y, x ≺p y, if xp

1 + xp
2 + ...+ xp

n ≤ yp
1 + yp

2 + ...+ yp
n for all p ≥ 1, p ≤ 0 and the inequality

will be reversed when 0 ≤ p ≤ 1.[4]
In this paper we define a new kind of relation on Rn called d-projectional (in)equality which is
somehow similar to majorization and power majorization. Here, we don’t care about the entries
of the vector and their order or arrangement anymore. Instead, we consider the p-norm of the
projection of vectors. Let ei, i = 1, ..., n be the standard basis of Rn. For the vectors x, y ∈ Rn, we
compare the p-norm of their projections on the subspace V = Rk of Rn generated by e1, · · · , ek for
each k ≤ n.
Characterizing linear maps with special conditions is one of the challenging problems in mathe-
matics. For example in [3] authors have characterized all multiplicative isomorphisms for invert-
ible matrices. One of the most interesting problems is to find the linear maps which preserve that
relation on a linear space. More precisely, let ∼ be a relation on a linear space V. A linear operator
T : V→ V is called a linear preserver of ∼ if for every v,w ∈ V

v ∼ w⇒ Tv ∼ Tw.

All linear preserving majorization linear maps on Rn have been characterized in the following
theorem[1].

Proposition 1.2. Let T : Rn → Rn be a linear preserver of ≺. Then T has one of the following
forms:
i) T x = tr (x) a for some a ∈ Rn.
ii) T x = αΠx + βJx for some α, β ∈ R and some permutation Π, where J is the matrix with all
entries equal to one.

Some special kinds of majorization preserving linear maps are characterized in [2] and [5]. In
this paper we characterize linear maps that preserve the d-projectional (in)equality. In this paper
T : Rn → Rn is a linear map with the matrix representation A = (ai j)n

i, j=1 with respect to the
standard basis of Rn, and Ar and Ar are the rth row and column of A, respectively. Also by e we
denote a vector in Rn with all entries equal to one.
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2. d-Projectional equality and its linear preservers

Let’s start with the definition of d-projectional equality.

Definition 2.1. Let p ∈ R , p > 0 and x, y ∈ Rn. We say x is d-projectionally equal to y with
respect to p-norm, and denoted by symbol x =d

p, if
∑k

i=1 |xi|p =
∑k

i=1 |yi|p for every d ≤ k ≤ n.

If d = 1, we use the notation x =p y. It is easy to see that ei =
d
p e j for each 1 ≤ i, j ≤ d.

For x = (x1, · · · , xn)T ∈ Rn we use the notation |x| for the vector (|x1|, · · · , |xn|)T , where |xi| is the
absolute value of xi.
We have the following lemmas.

Lemma 2.2. Let x, y ∈ Rn and p > 0. x =p y if and only if |x| = |y|.
Proof. It is direct result of definition.

Considering A = (ai j) to be the matrix presentation of T , Ak to be the kth row and Ar be the rth

of A, we have the following lemmas and theorems.

Lemma 2.3. Let p be a positive real number and T : Rn → Rn be a linear preserver of d-
projectional equality. Then for each i ≥ d, the ith row of the matrix representation of T has at most
one nonzero entry.

Proof. Consider A = (ai j) as the matrix presentation of T . Let Ak be the first row with k ≥ d and
at least two nonzero entries like akt and aks. We can choose nonzero numbers α and β such that
aktα + aksβ = 0. Consider the vectors x = (x1, · · · , xn)T and y = (y1, · · · , yn)T , where

xi =


−α if i = t
β if i = s
0 otherwise

and yi =


α if i = t
β if i = s
0 otherwise

.

We have T x = (x′1, · · · , x′n)T and Ty = (y′1, · · · , y′n)T , where x′i = aisβ − aitα and y′i = aisβ + aitα for
i = 1, · · · , n. Since for each d < i < k the ith row has at most one nonzero entry, |x′i | = |y′i | for all
d < i < k.
It is easy to see that x =d

p y, but

k∑
1

|y′i |p =
k−1∑

1

|y′i |p + |aksβ + aktα|p

=

k−1∑
1

|y′i |p

<

k−1∑
1

|y′i |p + |aksβ − aktα|p

=

k∑
1

|x′i |p

which is a contradiction.
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Lemma 2.4. Let T : Rn −→ Rn be a linear map such that ∥x∥p = ∥y∥p implies ∥T x∥p = ∥Ty∥p.
Then A = rV for some isometry matrix V and real number r.

Proof. If T = 0, then r = 0. Suppose T , 0 and consider a unit vector x0 such that T x0 , 0. Since
∥x∥p =∥y∥p implies ∥T x∥p =∥Ty∥p, then ∥Ay∥p = ∥Ax0∥p = r for every unit vector y . We show
that for each x, ∥ 1

r Ax∥p = ∥x∥p. Let x , 0. Then ∥ 1
r Ax∥p = ∥x∥p∥1

r A x
∥x∥p ∥p = ∥x∥p. Hence 1

r A is an
isometry.

The following theorem is our main theorem in this section.

Theorem 2.5. Let T : Rn −→ Rn be a linear preserver of =d
p

i) If d > 1, then A = A11 ⊕ A22 where A11 = rV for some d × d p-norm isometry matrix V or the
first d columns of A are zero.
ii) Ar − As =

d
p Ar + As for all r, s.

iii)Ar =
d
p As for all r, s ≤ d.

Proof. i) For matrix

A =
[

A11 A12

A21 A22

]
, (2.1)

we know e1 =
d
p e2 =

d
p · · · =d

p ed, hence Te1 =
d
p Te2 =

d
p · · · =d

p Ted, which is equivalent to

d∑
i=1

|ai1|p =
d∑

i=1

|ai j|p ∀ j ≤ d,

and
|ak1| = |ak2| = · · · = |akd | ∀k > d.

Since each row has at most one nonzero element, |ak1| = |ak2| = · · · = |akd| = 0 for every k > d,
i.e. A21 = 0. If A11 , 0 , then for all vectors x, y ∈ Rn with x =d

p y, we have A11(x1, · · · , xd)T =d
p

A11(y1, · · · , yd)T . Hence by Lemma 2.4, A11 = rV for some p-norm isometry matrix V .
ii) We know er + es =

d
p er − es, so T (er + es) =d

p T (er − es), i.e.

d∑
i=1

|air + ais|p =
d∑

i=1

|ait − ais|p

and
|air + ais|p = |air − ais|p, ∀i > d

which implies Ar − As =
d
p Ar + As

iii) Follows from part (i).

Corollary 2.6. Let T : Rn −→ Rn be a linear map and A = (ai j) be the matrix presentation of T .
Then the following statements are equivalent:
i) T is a preserver of =p.
ii) Each row of A has at most one nonzero entry.
iii) Ar − As =p Ar + As for all r, s ≥ 1.
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Proof. (i) ⇔ (ii): If T is a preserver of =p, then the result follows from Lemma 2.3. Conversely,
assume that each row of A has at most one nonzero entry and let x = (x1, · · · , xn)T and y =
(y1, · · · , yn)T be such that x =p y. Then |xi| = |yi| for each i. Let T x = (x′1, · · · , x′n)T and Ty =
(y′1, · · · , y′n)T . Then

k∑
i=1

|x′i |p =
k∑

j=1

|(
n∑

i=1

a jixi)|p

=

k∑
j=1

n∑
i=1

|a ji|p|x j|p

=

k∑
j=1

n∑
i=1

|a ji|p|y j|p

=

k∑
i=1

|y′i |p.

(ii) ⇔ (iii): If (ii) holds, then |air + ais| = |air − ais| for every i. Hence Ar − As =p Ar + As. Now,
suppose that (ii) does not hold and Ak be the first row with at least two nonzero entries akr and aks.
Hence

∑k
i=1 |air + ais|p ,

∑k
i=1 |air − ais|p, which is a contradiction.

3. Linear preservers of d-projectional inequality

In this section we define d-projectional ineqaulity as follows.

Definition 3.1. The vector x is d-projectionally less than y with respect to p-norm if
∑k

i=1 |xi|p ≤∑k
i=1 |yi|p for every d ≤ k ≤ n.

If x is d-projectionally less than y with respect to the p-norm, then we denote it by x ≪d
p y, and

if d = 1, we just use the notation x ≪p y.

Example 3.2. Consider x = (1, 2)t and y = (
√

3,
√

2)t. Then x ≪2 y, but x 33 y. Also if we
consider x = ( 3

√
16, 5)t and y = (4, 3)t, then x ≪3 y, but x 32 y.

We can easily prove the two following lemmas.

Lemma 3.3. Let p be a positive real number, d be a natural number and x, y ∈ Rn

i)ei+1 ≪p ei,∀i ≥ 1.
ii) ei ≪d

p e − ei,∀i ≥ 2.
iii)If y ≪d

p x, then y − yiei ≪d
p x,∀i ≥ 1.

Lemma 3.4. Let x, y, z ∈ Rn and p be a positive real number
i) x ≪d

p x.
ii) If x ≪d

p y and y ≪d
p x, then x =d

p y.
iii) If x ≪d

p y and y ≪d
p z, then x ≪d

p z.
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The second lemma says that ≪d
p is a partial order on Rn with respect to the d− projectional

equality.

Theorem 3.5. Let T : Rn → Rn be a linear map with the matrix presentation A. T preserves≪p

if and only if the following conditions hold:
i) Each row of A has at most one nonzero entry.
ii)Ai+1 ≪p Ai for each i.

Proof. By Lemma3.3 if x ≪d
p y and y ≪d

p x, then x =d
p y. Hence if T preserves ≪p, it preserves

=p. Consequently by Theorem 2.3 each row of A has at most one nonzero entry. Also we know
ei+1 ≪p ei which implies Aei+1 ≪p Aei. Hence Ai+1 ≪p Ai.
To prove the converse, assume that the conditions hold and let x = (x1, · · · , xn)T and y = (y1, · · · , yn)T

be in Rn with x ≪p y. Moreover, let T x = (x′1, · · · , x′n)T , Ty = (y′1, · · · , y′n)T and k(A j) =
∑k

i=1 |ai j|p.
Since each row of A has at most one nonzero entry, the following equation holds:

k∑
j=1

|x′j|p =
k∑

j=1

|(
n∑

i=1

a jixi)|p =
n∑

j=1

k∑
i=1

|ai j|p|x j|p =
n∑

j=1

k(A j)|x j|p. (3.1)

Because of the condition(ii) and x ≪p y, we have:

k(An)
n∑

i=1

|xi|p ≤ k(An)
n∑

i=1

|yi|p (3.2)

and

(k(An−1) − k(An))
n−1∑
i=1

|xi|p ≤ (k(An−1) − k(An))
n−1∑
i=1

|yi|p. (3.3)

By adding (3.2) and (3.3),

(k(An−1))
n−2∑
i=1

|xi|p + k(An−1)|xn−1|p + k(An)|xn|p

≤ (k(An−1))
n−2∑
i=1

|yi|p + k(An−1)|yn−1|p + k(An)|yn|p.

Repeating the above process, we have

n∑
j=1

k(A j)|x j|p ≤
n∑

j=1

k(A j)|y j|p

which completes the proof.

Corollary 3.6. Let T : Rn → Rn be a linear preserver of≪p with the matrix representation A. If
Ari is the rth

i nonzero row of A with ari si , 0, then si ≤ i.
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Proof. Since T preserves ≪p, it preserves =p. So by Lemma 2.3 each row of A has at most one
nonzero entry. Now we complete the proof by induction. Let Ar1 , ..., Arm be nonzero rows of A
with 1 ≤ r1... ≤ rm ≤ n. For the first nonzero row of A, there exists an s1 such that ar1 s1 , 0.
First we show that s1 = 1. If s1 > 1, we may consider the vectors es1 and e − es1 . We have
Tes1 = (x1, · · · , xn)T , where x1 = · · · = xs1−1 = 0 and xs1 = ar1 s1 , and T (e − es1) = (y1, · · · , yn)T ,
where y1 = · · · = ys1 = 0. Since s1 > 1, by Lemma 3.2 es1 ≪p e − es1 , hence Tes1 ≪p T (e − es1),
which implies ar1 s1 = 0 which is a contradiction. Therefore s1 = 1.

Now suppose that for every i with i < k < n, ari si , 0 implies si ≤ i. We must show that if
ark sk , 0, then sk ≤ k. Suppose that sk > k and ark sk , 0. By Lemma 2.3, there is no other nonzero
entry in this row. Consider esk and x = (x1, · · · , xn)T , where xi = 0 for 1 ≤ i ≤ k− 1 and i = sk, and
xi = 1 otherwise. It is clear that esk ≪p x. Based on Lemma 2.3, each nonzero row has at most
one nonzero entry, so by the hypothesis of the induction Tesk = (y1, ..., yn)T where yrk = ark sk and
yi = 0 for any i ≤ rk−1 and T x = (x′1, · · · , x′n)T where x′i = 0 for any i ≤ rk. Therefore, Tesk is not
d-projectionally less than T x, that is contradiction. Hence if ark sk , 0, then sk ≤ k.

Corollary 3.7. T : Rn → Rn is a one to one linear preserver of ≪p if and only if T is diagonal
and ann ≤ · · · ≤ a11.

Proof. Follows from Theorem 3.5 and Corollary 3.6.

Acknowledgments

The authors would like to thank an anonymous referee for their helpful comments and remarks.

References

[1] T. Ando, Majorization, doubly stochastic matrices and comparison of eigenvalues, Linear Algebra Appl., 118
(1989), 163–248.

[2] A. Armandnejad, S. Mohtashami and M. Jamshidi. On linear preservers of g-tridiagonal majorization on Rn,
Linear Algebra Appl., 459 (2014), 145–153.

[3] A. Armandnejad and M. Jamshidi, Multiplicative isomorphisma at invertible matrices, Miskolc Math. Notes,
15(2) (2014), 287–292.

[4] G. Bennet, Majorization versus power majorization, Anal. Math., 12(4) (1986), 283–286.
[5] A. Armandnejad and A. Salemi, The structure of linear preservers of gs-majorization, Bull. Iran. Math. Soc.,

32(2) (2006), 31-42.
[6] G. Dahl, Matrix majorization, Linear Algebra Appl., 288 (1999), 53–73.
[7] A.W. Marshall and Ingram Olkin, Inequalities: Theory of Majorization and Its Applications, Academic Press,

1979.


	Introduction
	 d-Projectional equality and its linear preservers
	Linear preservers of d-projectional inequality

