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Abstract
A new computational method based on Wilson wavelets is pro-
posed for solving a class of nonlinear stochastic Itô-Volterra in-
tegral equations. To do this a new stochastic operational matrix
of Itô integration for Wilson wavelets is obtained. Block pulse
functions (BPFs) and collocation method are used to generate
a process to forming this matrix. Using these basis functions
and their operational matrices of integration and stochastic inte-
gration, the problem under study is transformed to a system of
nonlinear algebraic equations which can be simply solved to ob-
tain an approximate solution for the main problem. Moreover, a
new technique for computing nonlinear terms in such problems
is presented. Furthermore, convergence of Wilson wavelets ex-
pansion is investigated. Several examples are presented to show
the efficiency and accuracy of the proposed method.
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1. Introduction

Stochastic integral equations are used in modeling several phenomena in physics, science and
engineering e.g. [30, 27, 23, 33]. In recent years, demanding on investigation of the behavior
of complicated dynamical systems in physical, medical, engineering and finance is increased,
for some cases see [24, 14, 16, 32, 28, 29, 8, 35, 15]. In these systems usually there is a noise
source that is managed by probability laws. Modeling such phenomena include the use of various
stochastic differential equations and stochastic integral equations or stochastic integro-differential
equations [25, 26, 10, 34, 21, 1, 4]. Solving such problems is often difficult. So, it is necessary
to obtain their approximate solutions by using numerical methods e.g. [27, 30, 24, 14, 28, 33,
25, 29]. Recently, orthogonal functions and wavelets basis functions have been used to obtain
approximate solutions for some types of functional equations e.g. [3, 36, 9, 2, 17]. Approximation
by orthogonal basis functions has been widely used in science and engineering. The main idea of
using an orthogonal set of basis functions is that the solution of the problem under consideration
is transferred to solution of a system of linear or nonlinear algebraic equations [18]. This can be
done by truncated series of orthogonal basis functions for the solution of the problem and using
the operational matrices.

Wavelets theory is a relatively new subject in mathematical research and has been applied in
a wide range of engineering disciplines. Wavelets are localized functions, which are the basis
for energy-bounded functions and in particular for L2(R), so that localized pulse problems can
be simply approached and analyzed. However, wavelets are useful basis functions which offer
considerable advantages over alternative basis ones and allow us to attack problems which are not
accessible with conventional numerical methods. Wilson suggested a system of basis functions
which these functions are localized around the positive and negative frequency [5]. We introduce a
kind of wavelet called Wilson wavelets and using them as a specific type of orthonormal wavelets
we will obtain the numerical solution of the following nonlinear stochastic Itô-Volterra integral
equation

X(t) = f (t) +
∫ t

0
k1(s, t)µ(X(s))ds +

∫ t

0
k2(s, t)σ(X(s))dB(s), t ∈ [0, 1), (1.1)

where f (t), k1(s, t) and k2(s, t) for s, t ∈ [0, 1) are known stochastic processes defined on the same
probability space (Ω,F ,P) and X(t) is an unknown stochastic process which should be computed.
The functions µ and σ are analytic functions on R. The second integral in Eq. (1.1) is the Itô
integral. In order to obtain an approximate solution for Eq. (1.1), based on Wilson wavelets we
derive a new operational matrix of Itô stochastic integration and reduce our problem to solving
a system of nonlinear algebraic equations. Moreover, a new technique for computation of the
nonlinear terms in such equations is presented. Furthermore, convergence analysis of Wilson
wavelets is investigated. Few examples are presented to show the efficiency of the method.

The reminder of this paper is organized as follows. In section 3, the BPFs are given. In
section 4, Wilson wavelets and their properties are described. In section 5, the proposed method

∗Corresponding author
Email addresses: khmosavi@gmail.com (Bibi Khadijeh Mousavi), askari@uk.ac.ir ( Ataollah Askari

Hemmat), heydari@fasau.ac.ir (Mohammad Hossein Heydari)



Mousavi, Askari Hemmat, Heydari/Wavelets and Linear Algebra 4(2) (2017) 33 - 48 35

is described for solving nonlinear stochastic Itô -Volterra integral equations (1.1). In section 7,
the proposed method is applied for some numerical examples. Finally a conclusion is drawn in
section 8.

2. Stochastic calculus

In this section we state some definitions in stochastic calculus. For more details see [34]. Let
I be an index set, a collection of random variables {X(t), t ∈ I} defined on a probability space
(Ω,F ,P) is called a stochastic process. A stochastic process B(p), p ∈ [0,T ] satisfying the fol-
lowing conditions

(i) B(0) = 0 (with the probability 1),

(ii) For 0 ≤ p < q ≤ T the random variable given by the increment B(p) − B(q) is normally
distributed with mean zero and variance p − q,

(iii) For 0 ≤ p < q < u < v ≤ T the increments B(p) − B(q) and B(v) − B(u) are independent,

(iv) For p ≥ 0, B(p) is a continous function of p,

is called Brownian motion process.
A process g(t, ω) : [0,∞)×Ω→ Rn is calledMt-adapted if for each t ≥ 0, the functionω→ g(t, ω)
isMt-measurable which {Mt}t≥0 is an increasing family of σ-algebras of subsets of Ω.
Now letW =W(S ,T ) be a class of functions g(t, ω) : [0,∞) ×Ω→ R such that

(a) The function (t, ω) → g(t, ω) is B × F -measurable, where B denotes Borel σ- algebra on
[0,∞) and F is a σ-algebra on Ω.

(b) The random variable g(t, .) is Ft- measurable for t ∈ [S ,T ] i.e the process g is adapted to Ft,
where Ft is a σ-algebra generated by the random variable B(s), s ≤ t.

(c) E
[∫ T

S
g2(t, ω)dt

]
< ∞ where E[X] denotes expected value of X.

Definition 2.1. ([34])( The Itô integral) Let g ∈ W(S ,T ), then the Itô integral of g is defined by∫ T

S
g(t, ω)dBt(ω) = lim

n→∞

∫ T

S
λn(t, ω)dBt(ω),

where λn is a sequence of elementary functions such that

E
[∫ T

S
(g(t, ω) − λn(t, ω))2 dt

]
→ 0, as n→ ∞.

Definition 2.2. ([34])(The Itô isometry) Let f ∈ W(S ,T ), then

E

(∫ T

S
g(t, ω)dBt(ω)

)2 = E
[∫ T

S
g2(t, ω)dt

]
. (2.1)
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3. Block pulse functions (BPFs)

Here, we briefly introduce the BPFs and present some of their properties.
An m̂-set of these basis functions is usually defined on the interval [0, 1] by [19]

bi(t) =

 1, i−1
m̂ ≤ t ≤ i

m̂ ,

0, o.w,
(3.1)

where i = 1, 2, . . . , m̂, with a positive integer value for m̂.
The set of the BPFs is disjoint and orthogonal. Using the orthogonality property of the BPFs, we
can approximate any function f (t) ∈ L2[0, 1] in terms of the BPFs as

f (t) ≃
m̂∑

i=1

fibi(t) ≜ FTΦ(t), (3.2)

where
F = [ f1, f2, . . . , fm̂]T , Φ(t) = [b1(t), b2(t), . . . , bm̂(t)]T , (3.3)

and in which

fi = m̂
∫ i

m̂

i−1
m̂

f (t)dt, i = 1, 2, . . . , m̂. (3.4)

Lemma 3.1. ([19]). Let Φ(t) be the BPFs vector defined in Eq. (3.3), then we have

Φ(t)Φ(t)T = diag (b1(t), b2(t), . . . , bm̂(t)) = diag (Φ(t)) , (3.5)

where diag(Φ(t)) is an m̂ × m̂ diagonal matrix.

Remark 3.2. [20] Let µ be an analytic function on R and FTΦ(t) be the expansion of f (t) in terms
of the BPFs. Then we have

µ( f (t)) ≃ µ
(
FT

)
Φ(t), (3.6)

where µ
(
FT

)
=

[
µ( f1), µ( f2), . . . , µ( fm̂)

]T .

Theorem 3.3. ([24]) The integral of the vector Φ(t) defined in Eq. (3.3), can be expressed as∫ t

0
Φ(s)ds ≃ P̂Φ(t), (3.7)

where P̂ is called the operational matrix of integration for the BPFs and its elements are given by

P̂ =
1

2m̂


1 2 2 . . . 2
0 1 2 . . . 2
0 0 1 . . . 2
...

...
...

. . .
...

0 0 0 . . . 1


m̂×m̂

. (3.8)
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Theorem 3.4. ([24]). The Itô stochastic integral of the vector Φ(t) defined in Eq. (3.3), can be
expressed as ∫ t

0
Φ(s)dB(s) ≃ P̂sΦ(t), (3.9)

where P̂s is called the stochastic operational matrix for the BPFs and is given by

P̂s =



B( 1
2m̂ ) B( 1

m̂ ) . . . B( 1
m̂ )

0 B( 3
2m̂ ) − B( 1

m̂ ) . . . B( 2
m̂ ) − B( 1

m̂ )

0 0 . . . B( 3
m̂ ) − B( 2

m̂ )
...

...
. . .

...

0 0 0 B( 2m̂−1
2m̂ ) − B( m̂−1

m̂ )


ˆ̂m× ˆ̂m

. (3.10)

4. Wilson wavelets and their properties

A family of functions

ψab(t) = |a|− 1
2ψ

(
t − b

a

)
, a, b ∈ R, a , 0, (4.1)

constructed from the dilation and the translation of a single function ψ is called wavelets. The
function ψ is called the mother wavelet. A continuous wavelet is the familly of Eq. (4.1) where the
dilation parameter a and the translation parameter b vary continuously. If we choose the discrete
values a = a−k

0 , b = nb0a−k
0 , where a0 > 1, b0 > 0 are fixed, then we have the following discrete

wavelets
ψkn(t) = |a0|k/2ψ(ak

0t − nb0), k, n ∈ Z. (4.2)

Wilson expressed a system of basis functions which these functions are localized and given by

ψnm(t) =


ϵn cos(2nπt)ω(t − m

2
), m is even,

√
2 sin(2(n + 1)πt)ω(t − m + 1

2
), m is odd,

(4.3)

where

ϵn =

 1, n = 0,
√

2, n ∈ N,

with a smooth well-localized window function ω [11, 22, 6, 7, 13].
Using this system, Daubechies constructed an orthonormal system and called it as ”Wilson bases”[12].
We will consider ω = χ[0,1) in Eq. (4.3), i.e.

ψnm(t) =


ϵn cos(2nπt)χ[0,1)(t −

m
2

), m is even,

√
2 sin(2(n + 1)πt)χ[0,1)(t −

m + 1
2

), m is odd.
(4.4)
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The set {ψnm(t)|m ∈ Z, n ∈ N∪ {0}} is a tight frame for L2(R) with bound 1 [22]. We recall that
a sequence { fn} in a Hilbert spaceH (with inner product ⟨., .⟩) is said to be a frame forH , if there
exist positive constants A, B such that

A∥ f ∥2 ≤
∑

n

|⟨ f , fn⟩|2 ≤ B∥ f ∥2, for all f ∈ H . (4.5)

A frame { fn} is said to be tight if A = B.
Now, we can show that the set {ψnm(t)|m ∈ {−1, 0}, n ∈ N ∪ {0}} in Eq. (4.4) is an orthonormal

basis for L2[0, 1), which we called Wilson wavelets.
Any square integrable function f (t) defined over [0, 1) can be expanded in terms of Wilson

wavelets as

f (t) =
∞∑

n=0

cn,0ψn,0(t) +
∞∑

n=0

cn,−1ψn,−1(t), (4.6)

where cnm = ⟨ f (t), ψnm(t)⟩, m ∈ {−1, 0} and ⟨., .⟩ denotes the inner product on L2[0, 1). If the
infinite series in Eq. (4.6) is truncated, then it can be written as

f (t) ≃
2k−1∑
n=0

0∑
m=−1

cnmψnm(t) ≜ CTΨ(t), (4.7)

where C and Ψ(t) are m̂ = 2k+1 column vectors. For simplicity, Eq. (4.7) can be written as

f (t) ≃
m̂∑

i=1

ciψi(t) ≜ CTΨ(t), (4.8)

where ci = cnm and ψi(t) = ψnm(x), and the index i is determined by the relation i = 2n + m + 2.
Thus we have

C ≜ [c1, c2, . . . , cm̂]T , Ψ(t) ≜ [
ψ1(t), ψ2(t), . . . , ψm̂(t)

]T . (4.9)

Similarly, an arbitrary function of two variables k(s, t) defined over L2 ([0, 1) × [0, 1)), may be
expanded by Wilson wavelets as

k(s, t) ≃
m̂∑

i=1

m̂∑
j=1

Ki jψi(x)ψ j(t) ≜ ΨT (s)KΨ(t),

where K = [ki j] and ki j =
⟨
ψi(s),

⟨
k(s, t), ψ j(t)

⟩⟩
.

4.1. Convergence of Wilson wavelets
Here, we investigate the convergence of the Wilson wavelets.

Theorem 4.1. If Wilson wavelets expansion of a continuous function f (t) is uniformly conver-
gence, then it converges to the function f (t).

Proof. For a complete proof see [Theorem 2.1, [33]]
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Theorem 4.2. Let f (t) be a function defined over [0, 1) with bounded second derivative, i.e.
| f ′′(t)| ≤ M, then it can be expanded in an infinite series of Wilson wavelets and the series con-
verges uniformly to f (t), i.e.

f (t) =
∞∑

n=0

0∑
m=−1

cnmψnm(t),

moreover, if CTΨ(t) is Wilson wavelets expansion of f (t), we have

∥CTΨ(t) − f (t)∥∞ ≤
M

2π2

∞∑
n=2k+1

(
1
n2 +

1
(n + 1)2

)
.

Proof. For a complete proof see [Theorem 2.2, [33]]

4.2. Connection between the BPFs and Wilson wavelets
Here, we investigate the relation between the BPFs and Wilson wavelets. With a mild pertur-

bation in proof of Theorem 3.1 in [31] one can easily prove the following theorem.

Theorem 4.3. Let Φ(t) and Ψ(t) be the BPFs and Wilson wavelets vectors defined in Eqs. (3.3)
and (4.9), respectively. Then the vector Ψ(t) can be expanded by the BPFs vector Φ(t) as

Ψ(t) ≃ QΦ(t), (4.10)

where the m̂ × m̂ matrix Q is called Wilson wavelets matrix and is given by

qi j = ψi

(
2 j − 1

2m̂

)
, i, j = 1, 2, . . . , m̂. (4.11)

Lemma 4.4. Let Ψ(t) be Wilson wavelets vector defined in Eq. (4.9), and C be an arbitrary
m̂-column vector. Then we have

Ψ(t)Ψ(t)TC ≃ C̃Ψ(t), (4.12)
where C̃ is an m̂ × m̂ as C̃ = QC̄Q−1, and C̄ = diag

(
QTC

)
. Moreover, for any arbitrary m̂ × m̂

matrix B, we have
Ψ(t)T BΨ(t) ≃ B̂TΨ(t), (4.13)

where B̂T = VT Q−1 and V = diag(QT BQ) is an m̂-column vector.

Proof. By Lemma 3.1 and Theorem 4.3, the proof will be straightforward.

Theorem 4.5. Let µ be an analytic function over R and CTΨ(t) be the expansion of f (t) by Wilson
wavelets. Then we have

µ( f (t)) ≃ µ
(
C̃T

)
Q−1Ψ(t), (4.14)

where C̃T = CT Q, Q is Wilson wavelets matrix defined in Theorem 4.3 and the vector µ
(
C̃T

)
is

defined in Remark 3.2.

Proof. Using Theorem 4.3 and Remark 3.2, we have

µ( f (t)) ≃ µ
(
CTΨ(t)

)
≃ µ

(
CT QΦ(t)

)
= µ

(
C̃TΦ(t)

)
≃ µ

(
C̃T

)
Φ(t) ≃ µ

(
C̃T

)
Q−1Ψ(t),

which completes the proof.
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4.3. Operational matrices
In this part, we derive a new operational matrix of Itô stochastic integration for Wilson wavelets.

Moreover, the same process is used to obtain a new operational matrix of integration for these basis
functions.

Theorem 4.6. (Stochastic operational matrix). Suppose Ψ(t) is Wilson wavelets vector defined in
Eq. (4.9), the Itô stochastic integration of this vector can be expressed as∫ t

0
Ψ(s)dB(s) ≃

(
QP̂sQ−1

)
Ψ(t) ≜ PsΨ(t), (4.15)

where the m̂ × m̂ matrix Ps is called stochastic operational matrix for Wilson wavelets, Q is Wil-
son wavelets matrix introduced in Theorem 4.3 and P̂s is the stochastic operational matrix of Itô
stochastic integration for the BPFs, which is defined in Theorem 3.4.

Proof. Let Ψ(t) be Wilson wavelets vector, by considering Theorems 3.4 and 4.3, we have∫ t

0
Ψ(s)dB(s) ≃

∫ t

0
QΦ(s)dB(s) = Q

∫ t

0
Φ(s)dB(s) ≃ QP̂sΦ(t)

≃
(
QP̂sQ−1

)
Ψ(t) ≜ PsΨ(t),

which completes the proof.

Theorem 4.7. (Operational matrix of integration). SupposeΨ(t) is Wilson wavelets vector defined
in Eq. (4.9), the integration of this vector can be expressed as∫ t

0
Ψ(s)ds ≃

(
QP̂Q−1

)
Ψ(t) ≜ PΨ(t), (4.16)

where the m̂ × m̂ matrix P is called the operational matrix of integration for Wilson wavelets, Q is
Wilson wavelets matrix introduced in Theorem 4.3 and P̂ is the operational matrix of integration
for the BPFs defined in Theorem 3.3.

Proof. Let Ψ(t) be Wilson wavelets vector, by considering Theorems 3.3 and 4.3, we have∫ t

0
Ψ(s)ds ≃

∫ t

0
QΦ(s)ds = Q

∫ t

0
Φ(s)ds ≃ QP̂Φ(t) ≃

(
QP̂Q−1

)
Ψ(t) ≜ PΨ(t),

which completes the proof.

5. Description of the proposed method

To solve the nonlinear stochastic Itô-Volterra integral equation introduced in Eq. (1.1), we
expand X(t), g(t), k1(s, t) and k2(s, t) in terms of Wilson wavelets as follows

X(t) ≃ GTΨ(t) = ΨT (t)G, f (t) ≃ FTΨ(t) = ΨT (t)F,

k1(s, t) ≃ Ψ(s)T K1Ψ(t) = Ψ(t)T KT
1Ψ(s), (5.1)

k2(s, t) ≃ Ψ(s)T K2Ψ(t) = Ψ(t)T KT
2Ψ(s),
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where G is an unknown vector, which should be computed, F is known Wilson wavelets coeffi-
cients vector for f (t), and K1 and K2 are the known Wilson wavelets coefficient matrices for k1(s, t)
and k2(s, t), respectively. By substituting Eqs.(5.1) into Eq. (1.1), we have

GTΨ(t) ≃ FTΨ(t) + Ψ(t)T K1

(∫ t

0
Ψ(s)µ

(
GTΨ(s)

)
ds

)
(5.2)

+ Ψ(t)T K2

(∫ t

0
Ψ(s)σ

(
GTΨ(s)

)
dB(s)

)
.

Now, by considering Theorem 4.5, we can rewrite Eq. (5.2) in the following form

GTΨ(t) ≃ FTΨ(t) + Ψ(t)T K1

(∫ t

0
Ψ(s)Ψ(s)T Y1ds

)
(5.3)

+ Ψ(t)T K2

(∫ t

0
Ψ(s)Ψ(s)T Y2dB(s)

)
,

where YT
1 = µ

(
G̃T

)
Q−1, YT

2 = σ
(
G̃T

)
Q−1 and G̃T = GT Q.

Also by Lemma 4.4 and Eq. (5.3), we get

GTΨ(t) ≃ FTΨ(t) + Ψ(t)T K1

(∫ t

0
Ỹ1Ψ(s)ds

)
+ Ψ(t)T K2

(∫ t

0
Ỹ2Ψ(s)dB(s)

)
, (5.4)

where Ỹ1 and Ỹ2 are m̂ × m̂ matrices described in Lemma 4.4.
Moreover, using Eq. (5.4) and employing the operational matrices of integration and Itô stochastic
integration of Wilson wavelets which are mentioned in Theorems 4.7 and 4.6, respectively, we
obtain

GTΨ(t) ≃ FTΨ(t) + Ψ(t)T K1Ỹ1PΨ(t) + Ψ(t)T K2Ỹ2PsΨ(t). (5.5)

By putting Λ1 = K1Ỹ1P, Λ2 = K2Ỹ2Ps and using Lemma 4.4, we have

GTΨ(t) − Λ̂1Ψ(t) − Λ̂2Ψ(t) ≃ FTΨ(t), (5.6)

where Λ̂1 and Λ̂2 are m̂-row vectors, which their entries are nonlinear combinations of elements
of G. This equation is hold for t ∈ [0, 1), so by replacing ≃ by =, we obtain the following system
of nonlinear algebraic equations GT − Λ̂1 − Λ̂2 = FT . Finally by solving the above system and
determining G, we obtain an approximate solution for the stochastic problem (1.1) by substituting
G into X(t) ≃ GTΨ(t).

6. Convergence analysis

Here, the convergence of the proposed method in section 5 for solving Eq. (1.1) is investigated.
The functions µ and σ in Eq. (1.1) are analytic functions and so they are Lipschitz functions. Thus
for every X and Y in their domain the following inequalities hold

|µ(X) − µ(Y)| ≤ r1|X − Y | and |σ(X) − σ(Y)| ≤ r2|X − Y |, (6.1)

which r1, r2 are positive constants.
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Theorem 6.1. Let X(t) and XN(t) be the exact and approximate solutions of Eq. (1.1), respectively.
Also assume that

(i) ∥X∥ < ∞,

(ii) ∥ki∥ ≤ Ki for someKi ∈ R and r2
1∥k1∥2 + r2

2∥k2∥2 , 1
3 ,

then, ∥X − XN∥ → 0, where ∥X∥2 = E(|X|2).

Proof. Let eN(t) = X(t)− XN(t) be the error function and ResN(t) be the residual error. Then using
Eq. (1.1) we have

eN(t) =
∫ t

0
k1(s, t) (µ(X(s)) − µ(XN(s))) ds (6.2)

+

∫ t

0
k2(s, t)(σ(X(s)) − σ(XN(s)))dB(s) + ResN(t).

Now using Eq. (6.1) and Eq. (6.2) we have

|eN(t)| ≤
∫ t

0
r1|k1(s, t)||eN(s)|ds +

∫ t

0
r2|k2(s, t)||eN(s)|dB(s) (6.3)

+ |ResN(t)|, t ∈ [0, 1),

A simple calculation shows that for all a, b, c ∈ R+, (a + b + c)2 ≤ 3(a2 + b2 + c2), so we have

|eN(t)|2 ≤ 3
( ∣∣∣∣∫ t

0
r1|k1(s, t)||eN(s)|ds

∣∣∣∣2 + ∣∣∣∣∫ t

0
r2|k2(s, t)||eN(s)|dB(s)

∣∣∣∣2 )
+ |ResN(t)|2 .

(6.4)

Now Holder’s inequality implies that for 0 ≤ s ≤ t < 1,∣∣∣∣∣∣
∫ t

0
r1|k1(s, t)||eN(s)|ds

∣∣∣∣∣∣2 ≤
∣∣∣∣∣∣
∫ 1

0
r1|k1(s, t)||eN(s)|ds

∣∣∣∣∣∣2 (6.5)

≤ r2
1

(∫ 1

0
|k1(s, t)|2ds

) (∫ 1

0
|eN(s)|2ds

)
.

Let J1(t) = r1

∫ t

0
|k1(s, t)||eN(s)|ds, then taking expectations from Eq. (6.5) implies

E

∣∣∣∣∣∣
∫ t

0
r1|k1(s, t)||eN(s)|ds

∣∣∣∣∣∣2
 ≤ r2

1E
(∫ 1

0
|k1(s, t)|2ds

)
E

(∫ 1

0
|eN(s)|2ds

)
, (6.6)

So we have
∥J1∥2 ≤ r2

1∥k1∥2∥eN∥2. (6.7)



Mousavi, Askari Hemmat, Heydari/Wavelets and Linear Algebra 4(2) (2017) 33 - 48 43

From 0 ≤ s ≤ t < 1, we have∣∣∣∣∣∣
∫ t

0
r2|k2(s, t)||eN(s)|dB(s)

∣∣∣∣∣∣2 ≤
∣∣∣∣∣∣r2

∫ 1

0
|k2(s, t)||eN(s)|dB(s)

∣∣∣∣∣∣2 . (6.8)

Let J2(t) = r2

∫ t

0
|k2(s, t)||eN(s)|dB(s), then taking expectations from Eq. (6.8) and using Definition

2.2 we have

E
(
|J2(t)|2

)
≤ E

(
|r2

∫ 1

0
|k2(s, t)||eN(s)|dB(s)|2

)
(6.9)

= E
(
r2

2

∫ 1

0
|k2(s, t)eN(s)|2ds

)
.

So we have
∥J2∥2 ≤ r2

2∥k2∥2∥eN∥2. (6.10)

Let J3(t) = ResN(t), so E
(
|J3(t)|2

)
= E

(
|ResN(t)|2

)
so we have

∥J3∥2 = ∥ResN∥2. (6.11)

Using Eq. (6.4) and taking expectations we have

∥eN∥2 ≤ 3
(
∥J1∥2 + ∥J2∥2 + ∥J3∥2

)
. (6.12)

Then using Eqs. (6.7), (6.10), (6.11) and (6.12) we have

∥eN∥2 ≤ 3
((

r2
1∥k1∥2 + r2

2∥k2∥2
)
∥eN∥2 + ∥ResN∥2

)
(6.13)

Therefore we obtain

∥eN∥2 ≤
3∥ResN∥2

1 − 3
(
r2

1∥k1∥2 + r2
2∥k2∥2

) . (6.14)

So if ResN tends to zero then ∥eN∥ = ∥X − XN∥ → 0.

7. Numerical examples

In this section, we consider some numerical examples to illustrate the efficiency and reliability
of the proposed method. For computational purposes, we consider discretized Brownian motion,
where B(t) is specified at t discrete values and employed an spline interpolation to construct B(t).
We thus set ∆t = 1

N for some positive integer N and let Bi denote B(ti) with ti = i∆t. Condition
(i) in Section 2 says that B0 = 0 with the probability 1, and conditions (ii) and (iii) tell us that
Bi = Bi−1 + dBi, i = 1, 2, . . . ,N, where each dBi is an independent random variable of the form√
∆tN(0, 1). In the following examples X(t) is an unknown stochastic process defined on the

probability space (Ω,F ,P), and B(t) is a Brownian motion process.
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Example 7.1. ([26]) Consider the following problem

X(t) = X0 +

∫ t

0
(aX(s) + bX(s)2)ds +

∫ t

0
cX(s)dB(s).

The exact solution of this problem is X(t) = U(t)
1

X0
−b

∫ t
0 U(s)ds

, where U(t) = exp((a − c2

2 )t + cB(t)),

and a, b and c are constants. We solved it by the proposed method for a = 1/100, b = 1/32 and
c = 1/8 and X0 = 1/20. The graphs of the exact and approximate solutions (left side) and the
absolute error (right side) for m̂ = 64 with N = 60 are shown in Fig. 1. The absolute errors of the
approximate solutions at some different points t ∈ [0, 1] for m̂ = 8, 16, 32 and 64 are shown in
Table 1.
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Figure 1: The graphs of the exact and approximate solutions (left side) and absolute error (right side) for
Example 7.1.

t m̂ = 8 m̂ = 16 m̂ = 32 m̂ = 64
0.1 2.4793E-3 1.8087E-4 7.9405E-4 3.6535E-4
0.3 1.9006E-4 8.5607E-4 1.3475E-4 8.4373E-5
0.5 8.7831E-4 1.0392E-3 6.8633E-4 5.7495E-5
0.7 2.5024E-4 3.5516E-5 7.3585E-6 4.6601E-6
0.9 6.5414E-4 7.2921E-5 2.5172E-4 1.1086E-4

Table 1: The absolute errors of the approximate solutions for Example 7.1.

From Figure 1 and Table 1, one can see that the proposed method provides a good approximate
solution for this problem. Figure 1 shows that the error grows exponentially at boundary points.

Example 7.2. ([26]) Consider the following problem

X(t) = X0 − a2
∫ t

0
sin(X(s)) cos3(X(s))ds + a

∫ t

0
cos2(X(s))dB(s).

The exact solution of this problem is X(t) = arctan(aB(t) + tan(X0)). We have solved this problem
for a = 1/4 and X0 = 1/20 by the proposed method. The graphs of the exact and approximate
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solutions (left side) and absolute error (right side) for m̂ = 64 with N = 90 are shown in Fig. 2. The
absolute errors of the approximate solutions at some different points t ∈ [0, 1] for m̂ = 8, 16, 32
and 64 are shown in Table 2.
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Figure 2: The graphs of the exact and approximate solutions (left side) and absolute error (right side) for
Example 7.2.

t m̂ = 8 m̂ = 16 m̂ = 32 m̂ = 64
0.1 1.2066E-2 9.5413E-3 4.4314E-3 3.2810E-4
0.3 3.2856E-2 7.5314E-2 1.5415E-2 7.7551E-3
0.5 1.7849E-2 3.0177E-2 3.5659E-3 4.7182E-3
0.7 1.8083E-2 3.5750E-2 4.5422E-3 9.3706E-3
0.9 6.6334E-3 1.1927E-2 3.7532E-3 2.2990E-3

Table 2: The absolute errors of the approximate solutions for Example 7.2.

Figure 2 and Table 2 show the accuracy of Wilson wavelets method for this problem.

Example 7.3. ([26]) Consider the following problem

X(t) = X0 + a2
∫ t

0
cos(X(s)) sin3(X(s))ds − a

∫ t

0
sin2(X(s))dB(s).

The exact solution of this problem is X(t) = arccot(aB(t) + cot(X0)). This problem is now solved
by the proposed method for a = 1/8 and X0 = π/32. The graphs of the exact and approximate
solutions (left side) and absolute error for m̂ = 64 with N = 35 are shown in Fig. 3. The absolute
errors of the approximate solutions at some different points t ∈ [0, 1] for m̂ = 8, 16, 32 and 64 are
shown in Table 3.

As the numerical results show, the proposed method is very efficient and accurate for solving
this problem.

Example 7.4. ([26]) Consider the following problem

X(t) = X0 −
a2

2

∫ t

0
tanh(X(s))sech2(X(s))ds + a

∫ t

0
sech(X(s))dB(s).
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Figure 3: The graphs of the exact and approximate solutions (left side) and absolute error (right side) for
Example 7.3.

t m̂ = 8 m̂ = 16 m̂ = 32 m̂ = 64
0.1 3.8391E-5 1.1728E-4 7.6331E-5 3.0436E-5
0.3 8.0451E-5 1.0939E-4 9.9513E-6 4.8714E-6
0.5 1.3571E-3 8.9574E-5 1.0568E-5 6.3387E-6
0.7 1.0995E-3 2.6945E-5 2.0265E-6 1.3070E-5
0.9 6.9730E-4 4.1400E-5 1.1808E-4 1.4346E-5

Table 3: The absolute errors of the approximate solutions for Example 7.3.

The exact solution of this problem is X(t) = arcsinh(aB(t) + sinh(X0)). We have also solved this
problem by the proposed method for a = 1/20 and X0 = 1/10. The graphs of the exact and
approximate solutions (left side) and absolute error (right side) for m̂ = 64 with N = 35 are shown
in Fig. 4. The absolute errors of the approximate solutions at some different points t ∈ [0, 1] for
m̂ = 8, 16, 32 and 64 are shown in Table 4.
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Figure 4: The graphs of the exact and approximate solutions (left side) and absolute error (right side) for
Example 7.4.

Figure 4 and Table 4 show the accuracy of the proposed method for solving this problem.
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t m̂ = 8 m̂ = 16 m̂ = 32 m̂ = 64
0.1 2.1689E-3 4.4806E-3 3.6889E-3 8.1200E-4
0.3 3.7821E-3 4.9834E-3 4.0323E-5 2.1100E-4
0.5 4.9097E-3 3.3663E-3 7.6087E-4 5.2312E-5
0.7 4.0631E-3 1.0549E-3 3.4431E-4 1.5423E-4
0.9 2.8669E-3 1.7899E-3 1.7280E-3 7.2341E-4

Table 4: The absolute errors of the approximate solutions for Example 7.4.

8. Conclusion

In this paper, a new operational matrix of Itô stochastic integration for Wilson wavelets was
derived and applied for solving a class of nonlinear stochastic Itô-Volterra integral equations. A
new computational method based on these basis functions and their operational matrices of inte-
gration and Itô stochastic integration was proposed to solve the problem under study. In the pro-
posed method, a new technique for computing nonlinear terms in such problems was presented.
Also some useful theorems for Wilson wavelets were derived and used to solve problems under
consideration. The convergence analysis of the Wilson expansion was proved. Applicability and
accuracy of the proposed method was checked by some numerical examples. Moreover, the results
of the proposed method were in a good agreement with the exact solutions.
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