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1. Introduction and Preliminaries

Shearlets were introduced by Guo, Kutyniok, Labate, Lim and Weiss in [8, 14] and developed
by some others in e.g. [10, 13] as the first directional representation system which allows a unified
treatment of the continuum and digital world similar to wavelets. Shealets were derived within a
larger class of affine-like systems, composite wavelets, using shearing to control directional selec-
tivity. In contrast to other x-lets which mostly utilize the geometry of the data, shearlet systems
form an affine system, generated by dilations and translations of a generator, where the dilation
matrix is the product of a parabolic scaling matrix and a shear matrix. This makes the shearlet
approach more remunerative for obtaining the anisotropic and directional features of multidimen-
sional data [13]. This property provides additional simplicity of construction and a connection
with the theory of square integrable group representations of the affine group [1, 2, 4, 5, 12]. Of
particular importance for the shearlet transform is the situations under which any vector in L2(R2)
can be reconstructed from shearlet atoms. Admissibility condition is a sufficient condition for this
facility.

Discrete and cone-adapted discrete shearlet systems are studied by Kutyniok and Labate in
[11, 13]. They have derived sufficient conditions in [11] for a discrete shearlet system to form a
frame for L2(R2), whereas in this paper, we establish a necessary condition for both discrete and
cone-adapted discrete shearlet systems to be frames via admissibility. In fact, we provide a relation
between shearlet frames and admissibility condition of the generators.

We propose here some preliminaries and notation about shearlets. We define the shearlet group
S, as the semi-direct product

(R+ × R) × R2

equipped with group multiplication given by

(a, s, t).(a′, s′, t′) = (aa′, s + s′
√

a, t + S sAat′),

where the parabolic scaling matrices Aa and the shearing matrix S s are given by

Aa =

[
a 0
0 a

1
2

]
, S s =

[
1 s
0 1

]
.

The left-invariant Haar measure of this group is da
a3 dsdt. Let ψ ∈ L2(R2). The continuous shearlet

system associated with ψ is defined by{
ψa,s,t = TtDAa DS sψ : a > 0, s ∈ R, t ∈ R2

}
, (1.1)

where T and D are translation and dilation operators, respectively defined as Tt f (x) = f (x − t),
DB f (x) = |detB|−

1
2 f (B−1x), where t ∈ R and B is an invertible 2 × 2 matrix. The continuous

shearlet transform of f ∈ L2(R2) is the mapping

f 7→ SHψ f (a, s, t) = 〈 f , ψa,s,t〉, (a, s, t) ∈ S.

One of our concerns in shearlet theory is the reconstruction formula which is associated with the
admissibility condition on ψ.
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A discrete shearlet system associated with ψ is defined by{
ψ j,k,m = a−

3
4 j

0 ψ(S kAa− j
0
· −m) : j, k ∈ Z,m ∈ Z2

}
, a0 > 0. (1.2)

The discrete shearlet transform of f ∈ L2(R2) is the mapping defined by

f 7→ SHψ f ( j, k,m) = 〈 f , ψ j,k,m〉, ( j, k,m) ∈ Z × Z × Z2.

Definition 1.1. If ψ ∈ L2(R2) satisfies

cψ :=
∫
R2

|ψ̂(ξ1, ξ2)|2

ξ2
1

dξ1dξ2 < ∞, (1.3)

it is called an admissible shearlet. We denote by c+
ψ, c

−
ψ the following formulas

c+
ψ =

∫ ∞

0

∫
R

|ψ̂(ξ1, ξ2)|2

ξ2
1

dξ2dξ1, c−ψ =

∫ 0

−∞

∫
R

|ψ̂(ξ1, ξ2)|2

ξ2
1

dξ2dξ1. (1.4)

Here, we recall the definitions of a cone-adapted discrete shearlet system and transform from
[13]. For φ, ψ, ψ̃ ∈ L2(R2) and c = (c1, c2) ∈ (R+)2, the cone-adapted discrete shearlet system is
defined by

Φ(φ; c1) ∪ Ψ(ψ; c) ∪ Ψ̃(ψ̃; c), (1.5)

where
Φ(φ; c1) =

{
φm = φ(· − c1m) : m ∈ Z2

}
,

Ψ(ψ; c) =
{
ψ j,k,m = a

3
4 j
0 ψ(S kAa j

0
· −Mcm) : j ≥ 0, |k| ≤ [a

j
2
0 ],m ∈ Z2

}
,

Ψ̃(ψ̃; c) =
{
ψ̃ j,k,m = a

3
4 j
0 ψ̃(S T

k Ãa j
0
· −M̃cm) : j ≥ 0, |k| ≤ [a

j
2
0 ],m ∈ Z2

}
,

with

Mc =

[
c1 0
0 c2

]
, M̃c =

[
c2 0
0 c1

]
.

The system Φ(φ; c1) is associated with R and the systems Ψ(ψ; c) and Ψ̃(ψ̃; c) are associated with
E1 ∪ E3 and E2 ∪ E4, respectively, where

R =
{
(ξ1, ξ2) : |ξ1|, |ξ2| ≤ 1

}
,

E1 ∪ E3 =
{
(ξ1, ξ2) : |

ξ2

ξ1
| ≤ 1, |ξ1| > 1

}
, E2 ∪ E4 =

{
(ξ1, ξ2) : |

ξ2

ξ1
| > 1, |ξ2| > 1

}
,

ψ̃(ξ1, ξ2) = ψ(ξ2, ξ1).

The cone-adapted discrete shearlet transform of f ∈ L2(R2) is the mapping defined by

f 7→ SHφ,ψ,ψ̃ f
(
m′′, ( j, k,m), ( j′, k′,m′)

)
=

(
〈 f , φm′′〉, 〈 f , ψ j,k,m〉, 〈 f , ψ̃ j′,k′,m′〉

)
,
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with (
m′′, ( j, k,m), ( j′, k′,m′)

)
∈ Z2 × Λ × Λ,

where
Λ = N0 × {−[a

j
2
0 ], . . . , [a

j
2
0 ]} × Z2.

We define for C ⊆ R2, L2(C)∨ = { f : f ∈ L2(R2) : supp̂f ⊆ C}.
In a discrete shearlet system {ψ j,k,m} j,k,m, in order to have a numerically stable reconstruction

algorithm for f from the coefficients 〈 f , ψ j,k,m〉, we require that {ψ j,k,m} j,k,m constitutes a frame. In
this paper, using several ideas in [7] we establish a relation between shearlet frames and admis-
sibility condition. The manuscript is organized as follows. In Section 2, we give a necessary
condition via admissibility, for a discrete shearlet system to be a frame. In fact, we show that if
a discrete shearlet system {ψ j,k,m} j,k,m is a frame, then ψ is admissible. In Section 3, we establish
such a condition for cone-adapted discrete shearlet systems. Finally, we give a similar result for
higher dimensions.

2. The necessary condition for discrete shearlet systems

In this section, we will consider a discrete shearlet system {ψ j,k,m} j,k,m as defined in (1.2) and
we establish a necessary condition for this system to be a frame. The system {ψ j,k,m} j,k,m is called a
shearlet frame for L2(R2), if there exist constants 0 < A ≤ B < ∞ such that for all f ∈ L2(R2),

A‖ f ‖2 ≤
∑
j,k,m

|〈 f , ψ j,k,m〉|
2 ≤ B‖ f ‖2. (2.1)

Recall that an operator E is called of trace-class if
∑

n |〈Een, en〉| is finite for all orthonormal bases
{en}. The trace of E is defined to be

TrE =
∑

n

〈Een, en〉.

Theorem 2.1. If the discrete shearlet system {ψ j,k,m} j,k,m constitutes a frame for L2(R2) with frame
bounds A, B, then

αA ≤
∫ ∞

0

∫
R

|ψ̂(ξ1, ξ2)|2

ξ2
1

dξ2dξ1 ≤ αB, (2.2)

for some constant α > 0, i.e. ψ is an admissible shearlet.

Proof. Let {ψ j,k,m} j,k,m constitute a frame with bounds A, B and {el}l be an orthonormal basis for
L2(R2). Put f = el in (2.1). Then for coefficients cl ≥ 0 with

∑
l cl‖el‖

2 < ∞, we obtain

A
∑

l

cl‖el‖
2 ≤

∑
l

cl

∑
j,k,m

|〈el, ψ j,k,m〉|
2 ≤ B

∑
l

cl‖el‖
2. (2.3)

If C is any positive trace-class operator, then C =
∑

l cl〈., el〉el and
∑

l cl = TrC > 0. We have
therefore, by (2.3)

A TrC ≤
∑
j,k,m

〈Cψ j,k,m, ψ j,k,m〉 ≤ B TrC. (2.4)
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Suppose supp(̂h) ⊆ [0,∞) × R and
∫ ∞

0

∫
R
|̂h(ξ)|2

ξ2
1

dξ2dξ1 < ∞ (e.g. h may be a classical shearlet, see
[13]). We consider

C =

∫ ∞

0

∫
R

∫
R2
〈., ha,s,t〉ha,s,tc(a, s, t)

dtdsda
a3 , (2.5)

where ha,s,t is defined as in (1.1) and

c(a, s, t) =


w( |s|a ,

|t|
a ), 1 ≤ a ≤ a0

0, otherwise
(2.6)

with t = (t1, t2) ∈ R2 and w positive and integrable i.e.
∫
R

∫
R2 w(|s|, |t|)dtds < ∞. We then have

C =

∫ a0

1

∫
R

∫
R2
〈., ha,s,t〉ha,s,tw(

|s|
a
,
|t|
a

)dtds
da
a3 .

So ∑
j,k,m

〈Cψ j,k,m, ψ j,k,m〉 =
∑
j,k,m

∫ a0

1

∫
R

∫
R2

w(
|s|
a
,
|t|
a

)|〈ψ j,k,m, ha,s,t〉|
2dtds

da
a3 . (2.7)

We calculate

〈ψ j,k,m, ha,s,t〉 = a−
3
4 j

0 .a−
3
4

∫
ψ
(
S kAa− j

0
(x − m)

)
.h
(
A−1

a S −1
s (x − t)

)
dx

= a
3
4 j
0 .a

− 3
4

∫
ψ(y).h

(
A−1

aa− j
0

S −1

s
√

a− j
0 +k

(y − S kAa− j
0

(t − m))
)
dy

=
〈
ψ, h

aa− j
0 ,s

√
a− j

0 +k,S kA
a− j

0
(t−m)

〉
,

(2.8)

where in the second equality above, we have chosen the change of variable y = S kAa− j
0

(x − m).
After the change of variables,

a′ = aa− j
0 , s′ = s

√
a− j

0 + k, t′ = S kAa− j
0

(t − m),

the sum in (2.7) becomes

∑
j,k,m

∫ a− j+1
0

a− j
0

∫
R

∫
R2

w
( |a j

2
0 s′ − a

j
2
0 k|

a j
0a′

,

|A−1
a− j

0

S −1
k t + m|

a j
0a′

)∣∣∣∣〈ψ, ha′,s′,t′〉

∣∣∣∣2a
3
2 j
0 dt′a

j
2
0 ds′

a j
0da′

a′3a3 j
0

=

∫ ∞

0

∫
R

∫
R2

∣∣∣∣〈ψ, ha,s,t〉

∣∣∣∣2 ∑
k,m

w
( |a− j

2
0 (s − k)|

a
,

|A−1
a− j

0

S −1
k t + m|

a j
0a

)
dtds

da
a3 .

(2.9)

Now consider w as

w(s, t) = λ3e−λ
2πs2

e−λ
2πt21 e−λ

2πt22 , s ∈ R, t = (t1, t2) ∈ R2.
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By a similar argument as in the proof of [6, Lemma 2.2], we get∫
R

∫
R2

w(αs + β, γt + η)dtds − wmax

≤
∑
m∈Z

∑
n∈Z2

w(αm + β, γn + η)

≤

∫
R

∫
R2

w(αs + β, γt + η)dtds + wmax.

Hence ∫
R

∫
R2

w(s, t)dtds − (α|detγ|)wmax

≤ (α|detγ|)
∑

m

∑
n

w(αm + β, γn + η)

≤

∫
R

∫
R2

w(s, t)dtds + (α|detγ|)wmax,

where α =
a
−

j
2

0
a , |detγ| = 1

a j
0a
|detA−1

a j
0

S −1
k | =

a
j
2
0
a .

Then, we have ∑
m

∑
n

w(αm + β, γn + η) = a2 + ρ(a, s, t),

such that |ρ(a, s, t)| ≤ w(0, 0) = λ3. Therefore continuing from (2.9), (2.7) will be∑
j,k,m

〈Cψ j,k,m, ψ j,k,m〉 =

∫ ∞

0

∫
R

∫
R2

∣∣∣∣〈ψ, ha,s,t〉

∣∣∣∣2(a2 + ρ(a, s, t)
)
dtds

da
a3

=

∫ ∞

0

∫
R

∫
R2

∣∣∣∣〈ψ, ha,s,t〉

∣∣∣∣2dtds
da
a

+ R,

(2.10)

where R =
∫ ∞

0

∫
R

∫
R2 |〈ψ, ha,s,t〉|

2ρ(a, s, t)dtdsda
a3 . Note that R is bounded. Indeed,

|R| ≤
∫ ∞

0

∫
R

∫
R2

∣∣∣∣〈ψ, ha,s,t〉

∣∣∣∣2 ∣∣∣∣ρ(a, s, t)
∣∣∣∣dtds

da
a3

≤ λ3
∫ ∞

0

∫
R

∫
R2

∣∣∣∣〈ψ, ha,s,t〉

∣∣∣∣2dtds
da
a3

= λ3
∫ ∞

0

∫
R

∫
R2

∣∣∣∣ψ ∗ h∗a,s,0(t)
∣∣∣∣2dtds

da
a3

= λ3
∫ ∞

0

∫
R

∫
R2

∣∣∣∣ψ̂(ξ)
∣∣∣∣2.∣∣∣∣ĥ∗a,s,0(ξ)

∣∣∣∣2dξds
da
a3

= λ3
∫ ∞

0

∫
R

∫
R2

∣∣∣∣ψ̂(ξ)
∣∣∣∣2.a− 3

2 .
∣∣∣∣̂h(aξ1,

√
a(ξ2 + sξ1)

)∣∣∣∣2dξdsda,

(2.11)
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in which h∗(x) = h(−x). Moreover, the first term in (2.10), using the Plancherel theorem,is com-
puted as follows∫ ∞

0

∫
R

∫
R2

∣∣∣∣〈ψ, ha,s,t〉

∣∣∣∣2dtds
da
a

=

∫ ∞

0

∫
R

∫
R2

∣∣∣∣ψ̂(ξ)
∣∣∣∣2.a 1

2 .
∣∣∣∣̂h(aξ1,

√
a(ξ2 + sξ1)

)∣∣∣∣2dξdsda

=

∫ ∞

0

∫
R

∫
R2

∣∣∣∣ψ̂(ξ)
∣∣∣∣2. 1
ξ1

2

∣∣∣∣̂h(w1,w2)
∣∣∣∣2dξdw2dw1

=

∫
R

∫ ∞

0

|ψ̂(ξ1, ξ2)|2

ξ2
1

dξ1dξ2

∫ ∞

0

∫
R

∣∣∣∣̂h(w1,w2)
∣∣∣∣2dw2dw1

+

∫
R

∫ 0

−∞

|ψ̂(ξ1, ξ2)|2

ξ2
1

dξ1dξ2

∫ 0

−∞

∫
R

∣∣∣∣̂h(w1,w2)
∣∣∣∣2dw2dw1

= c+
ψ

∥∥∥∥̂h
∥∥∥∥2
,

where ξ = (ξ1, ξ2) , w1 = aξ1 , w2 =
√

a(ξ2 + sξ1). Furthermore,

TrC =

∫ a0

1

∫
R

∫
R2
‖h‖2w

( |s|
a
,
|t|
a

)
dtds

da
a3

= ‖h‖2 ln a0

∫
R

∫
R2

w(|s|, |t|)dtds.

(2.12)

Since
∫
R

∫
R2 w(|s|, |t|)dsdt = 1, then by (2.12), TrC = ‖h‖2 ln a0. Hence by (2.4)

A
(
‖h‖2 ln a0

)
≤ c+

ψ‖h‖
2 + R ≤ B

(
‖h‖2 ln a0

)
, (2.13)

where |R| ≤ λ3‖ψ̂‖2(c+
h + c−h ). If we divide (2.13) by ‖h‖2 and let λ tend to zero, then the result

follows by considering α := ln a0.

In the following example, we give a Parseval shearlet frame which is admissible by Theorem
2.1.

Example 2.2. Let ψ1 ∈ L2(R) be a Lemarie’-Meyer wavelet that satisfies the discrete Caldero’n
condition ∑

j∈Z

|ψ̂1(2− jw)|2 = 1,

with ψ̂1 ∈ C∞(R) and supp ψ̂1 ⊆ [−1
2 ,−

1
16 ] ∪ [ 1

16 ,
1
2 ], Consider ψ2 ∈ L2(R) is a bump function such

that ‖ψ̂2‖2 = 1 and for all w ∈ [−1, 1],

1∑
k=−1

|ψ̂2(w + k)|2 = 1,
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where ψ̂2 ∈ C∞(R) and supp ψ̂2 ⊆ [−1, 1]. Suppose ψ ∈ L2(R2) is given by

ψ̂(ξ1, ξ2) = ψ̂1(ξ1)ψ̂2(
ξ2

ξ1
).

By [13, Proposition 2], the shearlet system {ψ j,k,m} j,k,m as defined in (1.2) with a0 = 2 is a Parseval
frame for L2(R2). So by Theorem 2.1, we have C+

ψ = C−ψ = ln 2.

In [3] the continuous shearlet transform is generalized to higher dimensions. Here we give the
discrete version and state our main result in this setting. In fact, for ψ ∈ L2(Rd), we define the
discrete shearlet system as{

ψ j,k,m = (a−
j
2

0 )2− 1
dψ

(
S kAa− j

0
(x − m)

)
: j ∈ Z, k ∈ Zd−1,m ∈ Zd

}
, a0 > 0,

where

Aa− j
0

=

[
a− j

0 0T
d−1

0d−1 sgn(a− j
0 )|a− j

0 |
1
d .Id−1

]
, S k =

[
1 kT

0d−1 Id−1

]
.

Proposition 2.3. If the system {ψ j,k,m} j,k,m constitutes a frame for L2(Rd) with frame bounds A, B,
then ψ is admissible, in the sense that

αA ≤
∫ ∞

0

∫
Rd−1

|ψ̂(ξ1, ξ2)|2

ξd
1

dξ2dξ1 ≤ αB, (2.14)

for some constant α > 0, ((2.14) is the admissibility condition appeared in [3, Theorem 2.4]).

The proof of Proposition 2.3 is straightforward and therefore is omitted.
The sufficient condition for the shearlet system {ψ j,k,m} j,k,m to be a frame for L2(R2) is proposed

in [11, Theorem 3.1].

3. The necessary condition for cone-adapted discrete shearlet systems

Similar to Theorem 2.1 a necessary condition can be given for a cone-adapted discrete shearlet
system to be a frame. For convenience we denote the cone-adapted discrete shearlet system (1.5)
by {gα}α. We define a cone-adapted discrete shearlet system {gα}α to be a frame for L2(R2) if there
exists 0 < A, B < ∞ such that

A‖ f ‖2 ≤
∑
m′′
|〈 f , φm′′〉|

2 +
∑
j,k,m

|〈 f , ψ j,k,m〉|
2 +

∑
j′,k′,m′

|〈 f , ψ j′,k′,m′〉|
2 ≤ B‖ f ‖2, (3.1)

for all f ∈ L2(R2).
The following theorem is our main result of this section which is a necessary condition via

admissibility for a cone-adapted discrete shearlet system to be a frame.

Theorem 3.1. If the cone-adapted discrete shearlet system {gα}α is a frame for L2(R2), then there
exists ∆ ⊆ R2 such that the following admissibility condition holds

Aζ ≤ |̂φ(ξ)|2 + c+
ψ + c+

ψ̃
≤ Bζ, ξ ∈ ∆. (3.2)
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Proof. Let the system {gα}α constitute a frame with bounds A, B. Consider {el}l an orthonormal
basis for L2(R2). Put f = el in (3.1). Then for coefficients cl ≥ 0 with

∑
l cl‖el‖

2 < ∞, we obtain

A
∑

l

cl‖el‖
2 ≤

∑
l

cl

∑
α

|〈el, gα〉|2 ≤ B
∑

l

cl‖el‖
2. (3.3)

If C is any positive trace-class operator, then as in the proof of Theorem 2.1

A TrC ≤
∑
α

〈Cgα, gα〉 ≤ B TrC. (3.4)

Suppose that h ∈ L2(R2), with supp(ĥ) ⊆ [0,∞)×R and
∫ ∞

0

∫
R
|̂h(ξ)|2

ξ2
1

dξ2dξ1 < ∞. Also assume that

for a ∈ R+ − {1}, s ∈ R − {0} and t ∈ R2, we have ha,s,t ∈ L2((E1 ∪ E3) ∪ (E2 ∪ E4))∨, and for
a = 1, s = 0, t ∈ R, we have ha,s,t ∈ L2(R)∨.

Consider

C =

∫ ∞

0

∫
R

∫
R2
〈., ha,s,t〉ha,s,tc(a, s, t)dtds

da
a3 +

∫
R2
〈., h1,0,t〉h1,0,tc(1, 0, t)dt, (3.5)

in which c(a, s, t) is defined as (2.6) for 1 < a ≤ a0 , s ∈ R − {0} , t = (t1, t2) ∈ R2 and
c(1, 0, t) = λ2e−πλ

2 |t|2 . Then we have∑
α

〈Cgα, gα〉 =
∑
m′′
〈Cφm′′ , φm′′〉 +

∑
j,k,m

〈Cψ j,k,m, ψ j,k,m〉 +
∑

j′,k′,m′
〈Cψ̃ j′,k′,m′ , ψ̃ j′,k′,m′〉. (3.6)

By definition of C as in (3.5), we obtain∑
m′′
〈Cφm′′ , φm′′〉 =

∑
m′′

〈 ∫
R2
〈φm′′ , h1,0,t〉h1,0,tc(1, 0, t)dt, φm′′

〉

=
∑
m′′

∫
R2

∣∣∣∣〈φm′′ , h1,0,t〉

∣∣∣∣2c(1, 0, t)dt

=
∑
m′′

∫
R2

∣∣∣∣〈φ, h1,0,t〉

∣∣∣∣2λ2e−πλ
2 |t+m′′ |2dt,

where
∑

m′′ λ
2e−πλ

2 |t+m′′ |2 = 1 + ρ(t), such that |ρ(t)| ≤ λ2. Hence we have∑
m′′
〈Cφm′′ , φm′′〉 =

∫
R2
|〈φ, h1,0,t〉|

2dt +

∫
R2
|〈φ, h1,0,t〉|

2ρ(t)dt

=

∫
R2
|〈φ, h1,0,t〉|

2dt + R1,
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where R1 =
∫
R2 |〈φ, h1,0,t〉|

2ρ(t)dt. Also R1 is bounded, since

|R1| ≤ λ2
∫
R2
|〈φ, h1,0,t〉|

2dt

= λ2
∫
R2
|(φ ∗ h∗)(t)|2dt

≤ λ2‖φ̂‖2‖̂h‖2 < ∞.

Similarly, ∫
R2
|〈φ, h1,0,t〉|

2dt =

∫
R2
|̂φ(ξ)|2 |̂h(ξ)|2dξ.

So ∑
m′′
〈Cφm′′ , φm′′〉 =

∫
R2
|̂φ(ξ)|2 |̂h(ξ)|2dξ + R1.

Also, similar to the proof of Theorem 2.1 for ψ j,k,m and ψ̃ j′,k′,m′ , we have∑
j,k,m

〈Cψ j,k,m, ψ j,k,m〉 = c+
ψ

∫
R2
|̂h(ξ)|2dξ + R2,

where R2 =
∫ ∞

0

∫
R

∫
R2 |〈ψ, ha,s,t〉|

2ρ(a, s, t)dtdsda
a3 and∑

j′,k′,m′
〈Cψ̃ j′,k′,m′ , ψ̃ j′,k′,m′〉 = c+

ψ̃

∫
R2
|̂h(ξ)|2dξ + R3,

where R3 =
∫ ∞

0

∫
R

∫
R2 |〈ψ̃, ha,s,t〉|

2ρ(a, s, t)dtdsda
a3 . Then∑

α

〈Cgα, gα〉 =

∫
R2

(
|̂φ(ξ)|2 + c+

ψ + c+

ψ̃

)
|̂h(ξ)|2dξ + R1 + R2 + R3.

Furthermore,

TrC =
∑

n

〈Cen, en〉

=
∑

n

〈

∫ a0

1

∫
R

∫
R2
〈en, ha,s,t〉ha,s,tc(a, s, t)dtds

da
a3 , en〉

+
∑

n

〈

∫
R2
〈en, h1,0,t〉h1,0,tc(1, 0, t)dt, en〉

=

∫ a0

1

∫
R

∫
R2

∑
n

|〈en, ha,s,t〉|
2c(a, s, t)dtds

da
a3

+

∫
R2

∑
n

|〈en, h1,0,t〉|
2c(1, 0, t)dt

= ‖ha,s,t‖
2
∫ a0

1

∫
R

∫
R2

c(a, s, t)dtds
da
a3 + ‖h1,0,t‖

2
∫
R2

c(1, 0, t)dt

= ‖h‖2.ζ,
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where ζ =
∫ a0

1

∫
R

∫
R2 c(a, s, t)dtdsda

a3 +
∫
R2 c(1, 0, t)dt = ln a0 + 1 . Hence by (3.4)

A(‖h‖2.ζ) ≤
∫
R2

(|̂φ(ξ)|2 + c+
ψ + c+

ψ̃
)|̂h(ξ)|2dξ + R1 + R2 + R3 ≤ B(‖h‖2.ζ).

Since ‖h‖ = ‖̂h‖, so∫
R2

Aζ |̂h(ξ)|2dξ ≤
∫
R2

(|̂φ(ξ)|2 + c+
ψ + c+

ψ̃
)|̂h(ξ)|2dξ + R1 + R2 + R3 ≤

∫
R2

Bζ |̂h(ξ)|2dξ.

Let λ tend to zero, then∫
R2

Aζ |̂h(ξ)|2dξ ≤
∫
R2

(|̂φ(ξ)|2 + c+
ψ + c+

ψ̃
)|̂h(ξ)|2dξ ≤

∫
R2

Bζ |̂h(ξ)|2dξ. (3.7)

By (3.7), we have ∫
R2

(|̂φ(ξ)|2 + c+
ψ + c+

ψ̃
− Bζ)|̂h(ξ)|2dξ ≤ 0, (3.8)

and ∫
R2

(|̂φ(ξ)|2 + c+
ψ + c+

ψ̃
− Aζ)|̂h(ξ)|2dξ ≥ 0. (3.9)

Now since |̂h(ξ)|2 > 0, then by (3.8) there exists ∆1 ⊆ R2 such that for all ξ ∈ ∆1, we have

|̂φ(ξ)|2 + c+
ψ + c+

ψ̃
− Bζ ≤ 0,

and by (3.9) there exists ∆2 ⊆ R2 such that for all ξ ∈ ∆2, we have

|̂φ(ξ)|2 + c+
ψ + c+

ψ̃
− Aζ ≥ 0.

Consider ∆ := ∆1 ∩ ∆2, then for all ξ ∈ ∆ we have

Aζ ≤ |̂φ(ξ)|2 + c+
ψ + c+

ψ̃
≤ Bζ.

Example 3.2. Consider

C1 = {(ξ1, ξ2) ∈ R2 : |
ξ2

ξ1
| ≤ 1} , C2 = {(ξ1, ξ2) ∈ R2 : |

ξ2

ξ1
| > 1}.

Define

f (x) =


0 , x < 0

35x4 − 84x5 + 70x6 − 20x7 , 0 ≤ x < 1
1 , x ≥ 1

,

v(u) =

{ √
f (1 + u) , u ≤ 0√
f (1 − u) , u > 0

.
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It is obvious that f , v ∈ C(R), also supp v ⊂ [−1, 1] and

|v(u − 1)|2 + |v(u)|2 + |v(u + 1)|2 = 1, for |u| ≤ 1. (3.10)

In addition, we have v(0) = 1 and by (3.10),

2 j∑
m=−2 j

|v(2 ju − m)|2 = 1, for |u| ≤ 1. (3.11)

Let φ be given by
φ̂(ξ) = c ξ2e−

1
2 (5ξ)2

, ξ ∈ R,

in which we have chosen c so that 0 ≤ φ̂ ≤ 1. (e.g. c = 33.9264) and supp φ̂ ⊆ [−1, 1], (φ̂(1) =

1.2647 × 10−4).

Figure 1: The graph of φ̂ (c=33.9)

We consider
Φ̂(ξ1, ξ2) = φ̂(ξ1)φ̂(ξ2), (ξ1, ξ2) ∈ R2. (3.12)

Then
0 ≤ Φ̂(ξ1, ξ2) ≤ 1. (3.13)

Now, define
Ψ̂(ξ1, ξ2) = ψ̂(ξ1)ψ̂(ξ2),

where

ψ̂(ξ) =


(ξ − 1)2e−(ξ−1)2

, ξ > 1

(ξ + 1)2e−(ξ+1)2
, ξ < −1

0 , −1 ≤ ξ ≤ 1

,

(ξ1, ξ2) ∈ R2.
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Figure 2: The graph of ψ̂

By definition of Ψ̂, it is clear that for ξ = (ξ1, ξ2)

0 ≤
∑
j≥0

|Ψ̂(2−2 jξ)|2 < ∞, for ξi ∈ supp ψ̂ , i = 1, 2.

Infact, there exists a positive constant b ∈ R such that

0 ≤
∑
j≥0

|Ψ̂(2−2 jξ)|2 ≤ b. (3.14)

Now, for ξ = (ξ1, ξ2) ∈ R2 consider the following cone-adapted shearlet system for L2(R2) :

{Φ(· − k) : k ∈ Z2} ∪ {Ψ
(d)
j,k,m : j ≥ 0, |k| < 2 j,m ∈ Z2, d = 1, 2}

∪ {Ψ̃ j,k,m : j ≥ 0, k = ±2 j,m ∈ Z2},
(3.15)

where
Ψ̂

(1)
j,k,m(ξ) = 2−

3
2 jΨ̂(2−2 jξ)V1(ξA− j

1 S −k
1 )e2πiξA− j

1 S −k
1 m,

and

A1 =

[
4 0
0 2

]
, S 1 =

[
1 1
0 1

]
, V1(ξ1, ξ2) = v(

ξ2

ξ1
), ξ ∈ R2,

Ψ̂
(2)
j,k,m(ξ) = 2−

3
2 jΨ̂(2−2 jξ)V2(ξA− j

2 S −k
2 )e2πiξA− j

2 S −k
2 m,

and

A2 =

[
2 0
0 4

]
, S 2 =

[
1 0
1 1

]
, V2(ξ1, ξ2) = v(

ξ1

ξ2
), ξ ∈ R2.

Also, for j > 0, define

(Ψ̃ j,k,m)∧(ξ) =

 2−
3
2 j− 1

2 Ψ̂(2−2 jξ1, 2−2 jξ2)v(2 j ξ2
ξ1
− k)e2πiξ2−1A− j

1 S −k
1 m, if ξ ∈ C1

2−
3
2 j− 1

2 Ψ̂(2−2 jξ1, 2−2 jξ2)v(2 j ξ1
ξ2
− k)e2πiξ2−1A− j

1 S −k
1 m, if ξ ∈ C2,

,
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and for j = 0, m ∈ Z2, k = ±1,

(Ψ̃0,k,m)∧(ξ) =


Ψ̂(ξ1, ξ2)v( ξ2

ξ1
− k)e2πiξm, if ξ ∈ C1

Ψ̂(ξ1, ξ2)v( ξ1
ξ2
− k)e2πiξm, if ξ ∈ C2

.

The following calculations show that the shearlet system (3.15) is a frame for L2(R2).
For f ∈ L2(R2), we observe that

2∑
d=1

∑
j≥0

∑
|k|<2 j

∑
m∈Z2

|〈 f ,Ψ(d)
j,k,m〉|

2 +
∑
j≥0

∑
k=±2 j

∑
m∈Z2

|〈 f , Ψ̃ j,k,m〉|
2

=
∑
j≥0

∑
|k|<2 j

∑
m∈Z2

(
|〈 f̂ , Ψ̂(1)

j,k,m〉|
2 + |〈 f̂ , Ψ̂(2)

j,k,m〉|
2
)

+
∑
j≥0

∑
k=±2 j

∑
m∈Z2

|〈 f̂ , (Ψ̃ j,k,m)∧〉|2

=

∫
R2
| f̂ (ξ)|2

∑
j≥0

|Ψ̂(2−2 jξ)|2
∑
|k|<2 j

|v(2 j ξ2

ξ1
− k)|2 +

∑
|k|<2 j

|v(2 j ξ1

ξ2
− k)|2

 dξ

+
∫

C1
| f̂ (ξ)|2

∑
j≥0 |Ψ̂(2−2 jξ)|2|v(2 j( ξ2

ξ1
− 1))|2dξ

+

∫
C1

| f̂ (ξ)|2
∑
j≥0

|Ψ̂(2−2 jξ)|2|v(2 j(
ξ2

ξ1
+ 1))|2dξ

+

∫
C2

| f̂ (ξ)|2
∑
j≥0

|Ψ̂(2−2 jξ)|2|v(2 j(
ξ1

ξ2
− 1))|2dξ

+

∫
C2

| f̂ (ξ)|2
∑
j≥0

|Ψ̂(2−2 jξ)|2|v(2 j(
ξ1

ξ2
+ 1))|2dξ

=

∫
R2
| f̂ (ξ)|2

∑
j≥0

|Ψ̂(2−2 jξ)|2
∑
|k|≤2 j

(|v(2 j ξ2

ξ1
− k)|2χC1(ξ) + |v(2 j ξ1

ξ2
− k)|2χC2(ξ))dξ

=

∫
R2
| f̂ (ξ)|2

∑
j≥0

|Ψ̂(2−2 jξ)|2dξ,

the last equality results from C1 ∩C2 = ∅ and (3.11).
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Finally, using (3.12), for any f ∈ L2(R2) we have

∑
n∈Z2

|〈 f ,Φ(· − n)〉|2 +

2∑
d=1

∑
j≥0

∑
|k|<2 j

∑
m∈Z2

|〈 f ,Ψ(d)
j,k,m〉|

2 +
∑
j≥0

∑
k=±2 j

∑
m∈Z2

|〈 f , Ψ̃ j,k,m〉|
2

=

∫
R2
| f̂ (ξ)|2|Φ̂(ξ)|2dξ +

∫
R2
| f̂ (ξ)|2

∑
j≥0

|Ψ̂(2−2 jξ)|2dξ

=

∫
R2
| f̂ (ξ)|2

|Φ̂(ξ)|2 +
∑
j≥0

|Ψ̂(2−2 jξ)|2
 dξ.

It follows from (3.14) there exists a positive constant a ∈ R, so that

a ≤ |Φ̂(ξ)|2 +
∑
j≥0

|Ψ̂(2−2 jξ)|2 ≤ (b + 1).

(Note that a , 0. Indeed, for ξ1 = ξ2 = 1,
∑

j≥0 |Ψ̂(2−2 jξ)|2 = 0 but |φ̂(1)| = 1.2647 × 10−4 , 0).
Hence

a‖ f ‖2 ≤
∑
n∈Z2

|〈 f ,Φ(· − n)〉|2 +

2∑
d=1

∑
j≥0

∑
|k|<2 j

∑
m∈Z2

|〈 f ,Ψ(d)
j,k,m〉|

2

+
∑
j≥0

∑
k=±2 j

∑
m∈Z2

|〈 f , Ψ̃ j,k,m〉|
2 ≤ (b + 1)‖ f ‖2.

So by Theorem 3.1 the admissibility condition (3.2) holds for the shearlet frame (3.15), i.e. there
exist ζ ∈ R+, so that for ξ ∈ supp φ̂, we have

a′ζ ≤ |̂φ(ξ)|2 + c+

ψ(1) + c+

ψ(2) + c+

ψ̃
≤ (b + 1)ζ.
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