A Necessary Condition for a Shearlet System to be a Frame via Admissibility

M. Amin khah ${ }^{\text {a }}$, A. Askari Hemmat ${ }^{\text {b }}$, R. Raisi Tousi ${ }^{\text {c,* }}$
${ }^{a}$ Department of Applied Mathematics, Faculty of Sciences and new
Technologies, Graduate University of Advanced Technology, Kerman, Islamic Republic of Iran.
${ }^{b}$ Department of Applied Mathematics, Faculty of Mathematics and Computer, Shahid Bahonar Uninersity of Kerman, Kerman, Islamic Republic of Iran.
${ }^{\text {c Department of Mathematics, Ferdowsi University of Mashhad, P. O. Box }}$ 1159-91775, Mashhad, Islamic Republic of Iran.

Article Info

Article history:
Received 27 February 2017
Accepted 11 June 2017
Available online 24 June 2017
Communicated by Farshid Abdollahi

Keywords:

Shearlet system, Cone-adapted shearlet system, Shearlet frame, Admissibility condition.

2000 MSC:
42C15, 42C40.

Abstract

Necessary conditions for shearlet and cone-adapted shearlet systems to be frames are presented with respect to the admissibility condition of generators.

(C) (2018) Wavelets and Linear Algebra

[^0]Amin khah, Askari Hemmat, Raisi Tousi/ Wavelets and Linear Algebra 5(1) (2018) 11-26 12

1. Introduction and Preliminaries

Shearlets were introduced by Guo, Kutyniok, Labate, Lim and Weiss in [8, 14] and developed by some others in e.g. [10, 13] as the first directional representation system which allows a unified treatment of the continuum and digital world similar to wavelets. Shealets were derived within a larger class of affine-like systems, composite wavelets, using shearing to control directional selectivity. In contrast to other x-lets which mostly utilize the geometry of the data, shearlet systems form an affine system, generated by dilations and translations of a generator, where the dilation matrix is the product of a parabolic scaling matrix and a shear matrix. This makes the shearlet approach more remunerative for obtaining the anisotropic and directional features of multidimensional data [13]. This property provides additional simplicity of construction and a connection with the theory of square integrable group representations of the affine group [1, 2, 4, 5, 12]. Of particular importance for the shearlet transform is the situations under which any vector in $L^{2}\left(\mathbb{R}^{2}\right)$ can be reconstructed from shearlet atoms. Admissibility condition is a sufficient condition for this facility.

Discrete and cone-adapted discrete shearlet systems are studied by Kutyniok and Labate in [11, 13]. They have derived sufficient conditions in [11] for a discrete shearlet system to form a frame for $L^{2}\left(\mathbb{R}^{2}\right)$, whereas in this paper, we establish a necessary condition for both discrete and cone-adapted discrete shearlet systems to be frames via admissibility. In fact, we provide a relation between shearlet frames and admissibility condition of the generators.

We propose here some preliminaries and notation about shearlets. We define the shearlet group \mathbb{S}, as the semi-direct product

$$
\left(\mathbb{R}^{+} \times \mathbb{R}\right) \times \mathbb{R}^{2}
$$

equipped with group multiplication given by

$$
(a, s, t) \cdot\left(a^{\prime}, s^{\prime}, t^{\prime}\right)=\left(a a^{\prime}, s+s^{\prime} \sqrt{a}, t+S_{s} A_{a} t^{\prime}\right)
$$

where the parabolic scaling matrices A_{a} and the shearing matrix S_{s} are given by

$$
A_{a}=\left[\begin{array}{cc}
a & 0 \\
0 & a^{\frac{1}{2}}
\end{array}\right], \quad S_{s}=\left[\begin{array}{ll}
1 & s \\
0 & 1
\end{array}\right] .
$$

The left-invariant Haar measure of this group is $\frac{d a}{a^{3}} d s d t$. Let $\psi \in L^{2}\left(\mathbb{R}^{2}\right)$. The continuous shearlet system associated with ψ is defined by

$$
\begin{equation*}
\left\{\psi_{a, s, t}=T_{t} D_{A_{a}} D_{S_{s}} \psi: a>0, s \in \mathbb{R}, t \in \mathbb{R}^{2}\right\}, \tag{1.1}
\end{equation*}
$$

where T and D are translation and dilation operators, respectively defined as $T_{t} f(x)=f(x-t)$, $D_{B} f(x)=|\operatorname{det} B|^{-\frac{1}{2}} f\left(B^{-1} x\right)$, where $t \in \mathbb{R}$ and B is an invertible 2×2 matrix. The continuous shearlet transform of $f \in L^{2}\left(\mathbb{R}^{2}\right)$ is the mapping

$$
f \mapsto \mathcal{S} \mathcal{H}_{\psi} \quad f(a, s, t)=\left\langle f, \psi_{a, s, t}\right\rangle, \quad(a, s, t) \in \mathbb{S} .
$$

One of our concerns in shearlet theory is the reconstruction formula which is associated with the admissibility condition on ψ.

A discrete shearlet system associated with ψ is defined by

$$
\begin{equation*}
\left\{\psi_{j, k, m}=a_{0}^{-\frac{3}{4} j} \psi\left(S_{k} A_{a_{0}^{-j}} \cdot-m\right): j, k \in \mathbb{Z}, m \in \mathbb{Z}^{2}\right\}, \quad a_{0}>0 . \tag{1.2}
\end{equation*}
$$

The discrete shearlet transform of $f \in L^{2}\left(\mathbb{R}^{2}\right)$ is the mapping defined by

$$
f \mapsto \mathcal{S} \mathcal{H}_{\psi} f(j, k, m)=\left\langle f, \psi_{j, k, m}\right\rangle, \quad(j, k, m) \in \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}^{2}
$$

Definition 1.1. If $\psi \in L^{2}\left(\mathbb{R}^{2}\right)$ satisfies

$$
\begin{equation*}
c_{\psi}:=\int_{\mathbb{R}^{2}} \frac{\left|\widehat{\psi}\left(\xi_{1}, \xi_{2}\right)\right|^{2}}{\xi_{1}^{2}} d \xi_{1} d \xi_{2}<\infty, \tag{1.3}
\end{equation*}
$$

it is called an admissible shearlet. We denote by $c_{\psi}^{+}, c_{\psi}^{-}$the following formulas

$$
\begin{equation*}
c_{\psi}^{+}=\int_{0}^{\infty} \int_{\mathbb{R}} \frac{\left|\widehat{\psi}\left(\xi_{1}, \xi_{2}\right)\right|^{2}}{\xi_{1}^{2}} d \xi_{2} d \xi_{1}, \quad c_{\psi}^{-}=\int_{-\infty}^{0} \int_{\mathbb{R}} \frac{\left|\widehat{\psi}\left(\xi_{1}, \xi_{2}\right)\right|^{2}}{\xi_{1}^{2}} d \xi_{2} d \xi_{1} . \tag{1.4}
\end{equation*}
$$

Here, we recall the definitions of a cone-adapted discrete shearlet system and transform from [13]. For $\phi, \psi, \tilde{\psi} \in L^{2}\left(\mathbb{R}^{2}\right)$ and $c=\left(c_{1}, c_{2}\right) \in\left(\mathbb{R}^{+}\right)^{2}$, the cone-adapted discrete shearlet system is defined by

$$
\begin{equation*}
\Phi\left(\phi ; c_{1}\right) \cup \Psi(\psi ; c) \cup \tilde{\Psi}(\tilde{\psi} ; c) \tag{1.5}
\end{equation*}
$$

where

$$
\begin{gathered}
\Phi\left(\phi ; c_{1}\right)=\left\{\phi_{m}=\phi\left(\cdot-c_{1} m\right): m \in \mathbb{Z}^{2}\right\}, \\
\Psi(\psi ; c)=\left\{\psi_{j, k, m}=a_{0}^{\frac{3}{4} j} \psi\left(S_{k} A_{a_{0}^{j}} \cdot-M_{c} m\right): j \geq 0,|k| \leq\left[a_{0}^{\frac{j}{2}}\right], m \in \mathbb{Z}^{2}\right\}, \\
\tilde{\Psi}(\tilde{\psi} ; c)=\left\{\tilde{\psi}_{j, k, m}=a_{0}^{\frac{3}{j} j} \tilde{\psi}\left(S_{k}^{T} \tilde{A}_{a_{0}^{j}} \cdot-\tilde{M}_{c} m\right): j \geq 0,|k| \leq\left[a_{0}^{\frac{j}{2}}\right], m \in \mathbb{Z}^{2}\right\},
\end{gathered}
$$

with

$$
M_{c}=\left[\begin{array}{cc}
c_{1} & 0 \\
0 & c_{2}
\end{array}\right], \quad \tilde{M}_{c}=\left[\begin{array}{cc}
c_{2} & 0 \\
0 & c_{1}
\end{array}\right] .
$$

The system $\Phi\left(\phi ; c_{1}\right)$ is associated with \mathcal{R} and the systems $\Psi(\psi ; c)$ and $\tilde{\Psi}(\tilde{\psi} ; c)$ are associated with $\mathcal{E}_{1} \cup \mathcal{E}_{3}$ and $\mathcal{E}_{2} \cup \mathcal{E}_{4}$, respectively, where

$$
\begin{gathered}
\mathcal{R}=\left\{\left(\xi_{1}, \xi_{2}\right):\left|\xi_{1}\right|,\left|\xi_{2}\right| \leq 1\right\}, \\
\mathcal{E}_{1} \cup \mathcal{E}_{3}=\left\{\left(\xi_{1}, \xi_{2}\right):\left|\frac{\xi_{2}}{\xi_{1}}\right| \leq 1,\left|\xi_{1}\right|>1\right\}, \quad \mathcal{E}_{2} \cup \mathcal{E}_{4}=\left\{\left(\xi_{1}, \xi_{2}\right):\left|\frac{\xi_{2}}{\xi_{1}}\right|>1,\left|\xi_{2}\right|>1\right\}, \\
\tilde{\psi}\left(\xi_{1}, \xi_{2}\right)=\psi\left(\xi_{2}, \xi_{1}\right) .
\end{gathered}
$$

The cone-adapted discrete shearlet transform of $f \in L^{2}\left(\mathbb{R}^{2}\right)$ is the mapping defined by

$$
f \mapsto \mathcal{S H} \mathcal{H}_{\phi, \psi, \tilde{\psi}} f\left(m^{\prime \prime},(j, k, m),\left(j^{\prime}, k^{\prime}, m^{\prime}\right)\right)=\left(\left\langle f, \phi_{m^{\prime \prime}}\right\rangle,\left\langle f, \psi_{j, k, m}\right\rangle,\left\langle f, \tilde{\psi}_{j^{\prime}, k^{\prime}, m^{\prime}}\right\rangle\right),
$$

with

$$
\left(m^{\prime \prime},(j, k, m),\left(j^{\prime}, k^{\prime}, m^{\prime}\right)\right) \in \mathbb{Z}^{2} \times \Lambda \times \Lambda,
$$

where

$$
\Lambda=\mathbb{N}_{0} \times\left\{-\left[a_{0}^{\frac{j}{2}}\right], \ldots,\left[a_{0}^{\frac{j}{2}}\right]\right\} \times \mathbb{Z}^{2} .
$$

We define for $C \subseteq \mathbb{R}^{2}, L^{2}(C)^{\vee}=\left\{f: f \in L^{2}\left(\mathbb{R}^{2}\right): \operatorname{suppf} \subseteq \mathrm{C}\right\}$.
In a discrete shearlet system $\left\{\psi_{j, k, m}\right\}_{j, k, m}$, in order to have a numerically stable reconstruction algorithm for f from the coefficients $\left\langle f, \psi_{j, k, m}\right\rangle$, we require that $\left\{\psi_{j, k, m}\right\}_{j, k, m}$ constitutes a frame. In this paper, using several ideas in [7] we establish a relation between shearlet frames and admissibility condition. The manuscript is organized as follows. In Section 2, we give a necessary condition via admissibility, for a discrete shearlet system to be a frame. In fact, we show that if a discrete shearlet system $\left\{\psi_{j, k, m}\right\}_{j, k, m}$ is a frame, then ψ is admissible. In Section 3, we establish such a condition for cone-adapted discrete shearlet systems. Finally, we give a similar result for higher dimensions.

2. The necessary condition for discrete shearlet systems

In this section, we will consider a discrete shearlet system $\left\{\psi_{j, k, m}\right\}_{j, k, m}$ as defined in (1.2) and we establish a necessary condition for this system to be a frame. The system $\left\{\psi_{j, k, m}\right\}_{j, k, m}$ is called a shearlet frame for $L^{2}\left(\mathbb{R}^{2}\right)$, if there exist constants $0<A \leq B<\infty$ such that for all $f \in L^{2}\left(\mathbb{R}^{2}\right)$,

$$
\begin{equation*}
A\|f\|^{2} \leq \sum_{j, k, m}\left|\left\langle f, \psi_{j, k, m}\right\rangle\right|^{2} \leq B\|f\|^{2} . \tag{2.1}
\end{equation*}
$$

Recall that an operator E is called of trace-class if $\sum_{n}\left|\left\langle E e_{n}, e_{n}\right\rangle\right|$ is finite for all orthonormal bases $\left\{e_{n}\right\}$. The trace of E is defined to be

$$
\operatorname{Tr} E=\sum_{n}\left\langle E e_{n}, e_{n}\right\rangle
$$

Theorem 2.1. If the discrete shearlet system $\left\{\psi_{j, k, m}\right\}_{j, k, m}$ constitutes a frame for $L^{2}\left(\mathbb{R}^{2}\right)$ with frame bounds A, B, then

$$
\begin{equation*}
\alpha A \leq \int_{0}^{\infty} \int_{\mathbb{R}} \frac{\left|\widehat{\psi}\left(\xi_{1}, \xi_{2}\right)\right|^{2}}{\xi_{1}^{2}} d \xi_{2} d \xi_{1} \leq \alpha B \tag{2.2}
\end{equation*}
$$

for some constant $\alpha>0$, i.e. ψ is an admissible shearlet.
Proof. Let $\left\{\psi_{j, k, m}\right\}_{j, k, m}$ constitute a frame with bounds A, B and $\left\{e_{l}\right\}_{l}$ be an orthonormal basis for $L^{2}\left(\mathbb{R}^{2}\right)$. Put $f=e_{l}$ in (2.1). Then for coefficients $c_{l} \geq 0$ with $\sum_{l} c_{l}\left\|e_{l}\right\|^{2}<\infty$, we obtain

$$
\begin{equation*}
A \sum_{l} c_{l}\left\|e_{l}\right\|^{2} \leq \sum_{l} c_{l} \sum_{j, k, m}\left|\left\langle e_{l}, \psi_{j, k, m}\right\rangle\right|^{2} \leq B \sum_{l} c_{l}\left\|e_{l}\right\|^{2} . \tag{2.3}
\end{equation*}
$$

If C is any positive trace-class operator, then $C=\sum_{l} c_{l}\left\langle., e_{l}\right\rangle e_{l}$ and $\sum_{l} c_{l}=\operatorname{Tr} C>0$. We have therefore, by (2.3)

$$
\begin{equation*}
A \operatorname{Tr} C \leq \sum_{j, k, m}\left\langle C \psi_{j, k, m}, \psi_{j, k, m}\right\rangle \leq B \operatorname{Tr} C . \tag{2.4}
\end{equation*}
$$ [13]). We consider

$$
\begin{equation*}
C=\int_{0}^{\infty} \int_{\mathbb{R}} \int_{\mathbb{R}^{2}}\left\langle., h_{a, s, t}\right\rangle h_{a, s, t}(a, s, t) \frac{d t d s d a}{a^{3}}, \tag{2.5}
\end{equation*}
$$

where $h_{a, s, t}$ is defined as in (1.1) and

$$
c(a, s, t)= \begin{cases}w\left(\frac{s s \mid}{a}, \frac{|t|}{a}\right), & 1 \leq a \leq a_{0} \tag{2.6}\\ 0, & \text { otherwise }\end{cases}
$$

with $t=\left(t_{1}, t_{2}\right) \in \mathbb{R}^{2}$ and w positive and integrable i.e. $\int_{\mathbb{R}} \int_{\mathbb{R}^{2}} w(|s|,|t|) d t d s<\infty$. We then have

$$
C=\int_{1}^{a_{0}} \int_{\mathbb{R}} \int_{\mathbb{R}^{2}}\left\langle., h_{a, s, t}\right\rangle h_{a, s, t} w\left(\frac{|s|}{a}, \frac{|t|}{a}\right) d t d s \frac{d a}{a^{3}} .
$$

So

$$
\begin{equation*}
\sum_{j, k, m}\left\langle C \psi_{j, k, m}, \psi_{j, k, m}\right\rangle=\sum_{j, k, m} \int_{1}^{a_{0}} \int_{\mathbb{R}} \int_{\mathbb{R}^{2}} w\left(\frac{|s|}{a}, \frac{|t|}{a}\right)\left|\left\langle\psi_{j, k, m}, h_{a, s, t}\right\rangle\right|^{2} d t d s \frac{d a}{a^{3}} . \tag{2.7}
\end{equation*}
$$

We calculate

$$
\begin{align*}
\left\langle\psi_{j, k, m}, h_{a, s, t}\right\rangle & =a_{0}^{-\frac{3}{4} j} \cdot a^{-\frac{3}{4}} \int \psi\left(S_{k} A_{a_{0}^{-j}}(x-m)\right) \cdot \overline{h\left(A_{a}^{-1} S_{s}^{-1}(x-t)\right)} d x \\
& =a_{0}^{\frac{3}{4} j} \cdot a^{-\frac{3}{4}} \int \psi(y) \cdot \bar{h}\left(A_{a a_{0}^{-j}}^{-1} S_{s \sqrt{a_{0}^{-j}}+k}^{-1}\left(y-S_{k} A_{a_{0}^{-j}}(t-m)\right)\right) d y \tag{2.8}\\
& =\left\langle\psi, h_{a a_{0}^{-j}, s \sqrt{a_{0}^{-j}}+k, S_{k} A_{a_{0}^{-j}}(t-m)}\right\rangle,
\end{align*}
$$

where in the second equality above, we have chosen the change of variable $y=S_{k} A_{a_{0}^{-j}}(x-m)$. After the change of variables,

$$
a^{\prime}=a a_{0}^{-j}, \quad s^{\prime}=s \sqrt{a_{0}^{-j}}+k, \quad t^{\prime}=S_{k} A_{a_{0}^{-j}}(t-m),
$$

the sum in (2.7) becomes

$$
\begin{align*}
& \sum_{j, k, m} \int_{a_{0}^{-j}}^{a_{0}^{-j+1}} \int_{\mathbb{R}} \int_{\mathbb{R}^{2}} w\left(\frac{\left|a_{0}^{\frac{j}{2}} s^{\prime}-a_{0}^{\frac{j}{2}} k\right|}{a_{0}^{j} a^{\prime}}, \frac{\left|A_{a_{0}^{-j}}^{-1} S_{k}^{-1} t+m\right|}{a_{0}^{j} a^{\prime}}\right)\left|\left\langle\psi, h_{\left.a^{\prime}, s^{\prime}, t^{\prime}\right\rangle}\right\rangle\right|^{2} a_{0}^{\frac{3}{2} j} d t^{\prime} a_{0}^{\frac{j}{2}} d s^{\prime} \frac{a_{0}^{j} d a^{\prime}}{a^{\prime 3} a_{0}^{3 j}} \\
&=\int_{0}^{\infty} \int_{\mathbb{R}} \int_{\mathbb{R}^{2}}\left|\left\langle\psi, h_{a, s, t}\right\rangle\right|^{2} \sum_{k, m} w\left(\frac{\left|a_{0}^{-\frac{j}{2}}(s-k)\right|}{a}, \frac{\left|A_{a_{0}^{-j}}^{-1} S_{k}^{-1} t+m\right|}{a_{0}^{j} a}\right) d t d s \frac{d a}{a^{3}} \tag{2.9}
\end{align*}
$$

Now consider w as

$$
w(s, t)=\lambda^{3} e^{-\lambda^{2} \pi s^{2}} e^{-\lambda^{2} \pi t_{1}^{2}} e^{-\lambda^{2} \pi t_{2}^{2}}, \quad s \in \mathbb{R}, t=\left(t_{1}, t_{2}\right) \in \mathbb{R}^{2}
$$

Amin khah, Askari Hemmat, Raisi Tousi/ Wavelets and Linear Algebra 5(1) (2018) 11-26 16 By a similar argument as in the proof of [6, Lemma 2.2], we get

$$
\begin{aligned}
\int_{\mathbb{R}} \int_{\mathbb{R}^{2}} w(\alpha s & +\beta, \gamma t+\eta) d t d s-w_{\max } \\
& \leq \sum_{m \in \mathbb{Z}} \sum_{n \in \mathbb{Z}^{2}} w(\alpha m+\beta, \gamma n+\eta) \\
& \leq \int_{\mathbb{R}} \int_{\mathbb{R}^{2}} w(\alpha s+\beta, \gamma t+\eta) d t d s+w_{\max } .
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \int_{\mathbb{R}} \int_{\mathbb{R}^{2}} w(s, t) d t d s-(\alpha|\operatorname{det} \gamma|) w_{\max } \\
& \leq(\alpha|\operatorname{det} \gamma|) \sum_{m} \sum_{n} w(\alpha m+\beta, \gamma n+\eta) \\
& \leq \int_{\mathbb{R}} \int_{\mathbb{R}^{2}} w(s, t) d t d s+(\alpha|\operatorname{det} \gamma|) w_{\max },
\end{aligned}
$$

where $\alpha=\frac{a_{0}^{-\frac{j}{2}}}{a},|\operatorname{det} \gamma|=\frac{1}{a_{0}^{j} a}\left|\operatorname{det} A_{a_{0}^{j}}^{-1} S_{k}^{-1}\right|=\frac{a_{0}^{\frac{j}{2}}}{a}$.
Then, we have

$$
\sum_{m} \sum_{n} w(\alpha m+\beta, \gamma n+\eta)=a^{2}+\rho(a, s, t)
$$

such that $|\rho(a, s, t)| \leq w(0,0)=\lambda^{3}$. Therefore continuing from (2.9), (2.7) will be

$$
\begin{align*}
\sum_{j, k, m}\left\langle C \psi_{j, k, m}, \psi_{j, k, m}\right\rangle & =\int_{0}^{\infty} \int_{\mathbb{R}} \int_{\mathbb{R}^{2}}\left|\left\langle\psi, h_{a, s, t}\right\rangle\right|^{2}\left(a^{2}+\rho(a, s, t)\right) d t d s \frac{d a}{a^{3}} \tag{2.10}\\
& =\int_{0}^{\infty} \int_{\mathbb{R}} \int_{\mathbb{R}^{2}}\left|\left\langle\psi, h_{a, s, t}\right\rangle\right|^{2} d t d s \frac{d a}{a}+R,
\end{align*}
$$

where $R=\int_{0}^{\infty} \int_{\mathbb{R}} \int_{\mathbb{R}^{2}}\left|\left\langle\psi, h_{a, s, t}\right\rangle\right|^{2} \rho(a, s, t) d t d s \frac{d a}{a^{3}}$. Note that R is bounded. Indeed,

$$
\begin{align*}
|R| & \leq \int_{0}^{\infty} \int_{\mathbb{R}} \int_{\mathbb{R}^{2}}\left|\left\langle\psi, h_{a, s, t}\right\rangle\right|^{2}|\rho(a, s, t)| d t d s \frac{d a}{a^{3}} \\
& \leq \lambda^{3} \int_{0}^{\infty} \int_{\mathbb{R}} \int_{\mathbb{R}^{2}}\left|\left\langle\psi, h_{a, s, t}\right\rangle\right|^{2} d t d s \frac{d a}{a^{3}} \\
& =\lambda^{3} \int_{0}^{\infty} \int_{\mathbb{R}} \int_{\mathbb{R}^{2}}\left|\psi * h_{a, s, 0}^{*}(t)\right|^{2} d t d s \frac{d a}{a^{3}} \tag{2.11}\\
& =\lambda^{3} \int_{0}^{\infty} \int_{\mathbb{R}} \int_{\mathbb{R}^{2}}|\widehat{\psi}(\xi)|^{2} \cdot \mid \widehat{h^{*}} a, s, 0 \\
& \left.=\lambda^{3} \int_{0}^{\infty} \int_{\mathbb{R}} \int_{\mathbb{R}^{2}}|\widehat{\psi}(\xi)|^{2} \cdot a^{2} \cdot \frac{3}{2} \cdot \right\rvert\, \widehat{h}\left(a \frac{d a}{a^{3}}\right. \\
& \left.\left(a \xi_{1}, \sqrt{a}\left(\xi_{2}+s \xi_{1}\right)\right)\right|^{2} d \xi d s d a,
\end{align*}
$$ in which $h^{*}(x)=\overline{h(-x)}$. Moreover, the first term in (2.10), using the Plancherel theorem, is computed as follows

$$
\begin{aligned}
\int_{0}^{\infty} \int_{\mathbb{R}} \int_{\mathbb{R}^{2}} \left\lvert\,\left\langle\psi,\left.h_{a, s, t}\right|^{2} d t d s \frac{d a}{a}\right.\right. & =\left.\int_{0}^{\infty} \int_{\mathbb{R}} \int_{\mathbb{R}^{2}}|\widehat{\psi}(\xi)|^{2} \cdot a^{\frac{1}{2}} \cdot \widehat{h}\left(a \xi_{1}, \sqrt{a}\left(\xi_{2}+s \xi_{1}\right)\right)\right|^{2} d \xi d s d a \\
& =\int_{0}^{\infty} \int_{\mathbb{R}} \int_{\mathbb{R}^{2}}|\widehat{\psi}(\xi)|^{2} \cdot \frac{1}{\xi_{1}^{2}}\left|\widehat{h}\left(w_{1}, w_{2}\right)\right|^{2} d \xi d w_{2} d w_{1} \\
& =\int_{\mathbb{R}} \int_{0}^{\infty} \frac{\left.\widehat{\psi}\left(\xi_{1}, \xi_{2}\right)\right|^{2}}{\xi_{1}^{2}} d \xi_{1} d \xi_{2} \int_{0}^{\infty} \int_{\mathbb{R}}\left|\widehat{h}\left(w_{1}, w_{2}\right)\right|^{2} d w_{2} d w_{1} \\
& +\int_{\mathbb{R}} \int_{-\infty}^{0} \frac{\left|\widehat{\psi}\left(\xi_{1}, \xi_{2}\right)\right|^{2}}{\xi_{1}^{2}} d \xi_{1} d \xi_{2} \int_{-\infty}^{0} \int_{\mathbb{R}}\left|\widehat{h}\left(w_{1}, w_{2}\right)\right|^{2} d w_{2} d w_{1} \\
& =c_{\psi \|}^{+} \mid \widehat{h} \|^{2},
\end{aligned}
$$

where $\xi=\left(\xi_{1}, \xi_{2}\right), w_{1}=a \xi_{1}, w_{2}=\sqrt{a}\left(\xi_{2}+s \xi_{1}\right)$. Furthermore,

$$
\begin{align*}
\operatorname{Tr} C & =\int_{1}^{a_{0}} \int_{\mathbb{R}} \int_{\mathbb{R}^{2}}\|h\|^{2} w\left(\frac{|s|}{a}, \frac{|t|}{a}\right) d t d s \frac{d a}{a^{3}} \\
& =\|h\|^{2} \ln a_{0} \int_{\mathbb{R}} \int_{\mathbb{R}^{2}} w(|s|,|t|) d t d s . \tag{2.12}
\end{align*}
$$

Since $\int_{\mathbb{R}} \int_{\mathbb{R}^{2}} w(|s|,|t|) d s d t=1$, then by (2.12), $\operatorname{Tr} C=\|h\|^{2} \ln a_{0}$. Hence by (2.4)

$$
\begin{equation*}
A\left(\|h\|^{2} \ln a_{0}\right) \leq c_{\psi}^{+}\|h\|^{2}+R \leq B\left(\|h\|^{2} \ln a_{0}\right), \tag{2.13}
\end{equation*}
$$

where $|R| \leq \lambda^{3}\|\widehat{\psi}\|^{2}\left(c_{h}^{+}+c_{h}^{-}\right)$. If we divide (2.13) by $\|h\|^{2}$ and let λ tend to zero, then the result follows by considering $\alpha:=\ln a_{0}$.

In the following example, we give a Parseval shearlet frame which is admissible by Theorem 2.1.

Example 2.2. Let $\psi_{1} \in L^{2}(\mathbb{R})$ be a Lemarie'-Meyer wavelet that satisfies the discrete Caldero'n condition

$$
\sum_{j \in \mathbb{Z}}\left|\widehat{\psi}_{1}\left(2^{-j} w\right)\right|^{2}=1
$$

with $\widehat{\psi}_{1} \in C^{\infty}(\mathbb{R})$ and $\operatorname{supp} \widehat{\psi}_{1} \subseteq\left[-\frac{1}{2},-\frac{1}{16}\right] \cup\left[\frac{1}{16}, \frac{1}{2}\right]$, Consider $\psi_{2} \in L^{2}(\mathbb{R})$ is a bump function such that $\left\|\widehat{\psi_{2}}\right\|_{2}=1$ and for all $w \in[-1,1]$,

$$
\sum_{k=-1}^{1}\left|\widehat{\psi}_{2}(w+k)\right|^{2}=1
$$

where $\widehat{\psi}_{2} \in C^{\infty}(\mathbb{R})$ and supp $\widehat{\psi}_{2} \subseteq[-1,1]$. Suppose $\psi \in L^{2}\left(\mathbb{R}^{2}\right)$ is given by

$$
\widehat{\psi}\left(\xi_{1}, \xi_{2}\right)=\widehat{\psi}_{1}\left(\xi_{1}\right) \widehat{\psi}_{2}\left(\frac{\xi_{2}}{\xi_{1}}\right) .
$$

By [13, Proposition 2], the shearlet system $\left\{\psi_{j, k, m}\right\}_{j, k, m}$ as defined in (1.2) with $a_{0}=2$ is a Parseval frame for $L^{2}\left(\mathbb{R}^{2}\right)$. So by Theorem 2.1, we have $C_{\psi}^{+}=C_{\psi}^{-}=\ln 2$.

In [3] the continuous shearlet transform is generalized to higher dimensions. Here we give the discrete version and state our main result in this setting. In fact, for $\psi \in L^{2}\left(\mathbb{R}^{d}\right)$, we define the discrete shearlet system as

$$
\left\{\psi_{j, k, m}=\left(a_{0}^{-\frac{j}{2}}\right)^{2-\frac{1}{d}} \psi\left(S_{k} A_{a_{0}^{-j}}(x-m)\right): j \in \mathbb{Z}, k \in \mathbb{Z}^{d-1}, m \in \mathbb{Z}^{d}\right\}, a_{0}>0,
$$

where

$$
\left.A_{a_{0}^{-j}}=\left[\begin{array}{cc}
a_{0}^{-j} & 0_{d-1}^{T} \\
0_{d-1} & \operatorname{sgn}\left(a_{0}^{-j}\right)\left|a_{0}^{-j}\right| \frac{1}{d}
\end{array}\right], I_{d-1}\right], \quad S_{k}=\left[\begin{array}{cc}
1 & k^{T} \\
0_{d-1} & I_{d-1}
\end{array}\right] .
$$

Proposition 2.3. If the system $\left\{\psi_{j, k, m}\right\}_{j, k, m}$ constitutes a frame for $L^{2}\left(\mathbb{R}^{d}\right)$ with frame bounds A, B, then ψ is admissible, in the sense that

$$
\begin{equation*}
\alpha A \leq \int_{0}^{\infty} \int_{\mathbb{R}^{d-1}} \frac{\left|\widehat{\psi}\left(\xi_{1}, \xi_{2}\right)\right|^{2}}{\xi_{1}^{d}} d \xi_{2} d \xi_{1} \leq \alpha B \tag{2.14}
\end{equation*}
$$

for some constant $\alpha>0$, ((2.14) is the admissibility condition appeared in [3, Theorem 2.4]).
The proof of Proposition 2.3 is straightforward and therefore is omitted.
The sufficient condition for the shearlet system $\left\{\psi_{j, k, m}\right\}_{j, k, m}$ to be a frame for $L^{2}\left(\mathbb{R}^{2}\right)$ is proposed in [11, Theorem 3.1].

3. The necessary condition for cone-adapted discrete shearlet systems

Similar to Theorem 2.1 a necessary condition can be given for a cone-adapted discrete shearlet system to be a frame. For convenience we denote the cone-adapted discrete shearlet system (1.5) by $\left\{g_{\alpha}\right\}_{\alpha}$. We define a cone-adapted discrete shearlet system $\left\{g_{\alpha}\right\}_{\alpha}$ to be a frame for $L^{2}\left(\mathbb{R}^{2}\right)$ if there exists $0<A, B<\infty$ such that

$$
\begin{equation*}
A\|f\|^{2} \leq \sum_{m^{\prime \prime}}\left|\left\langle f, \phi_{m^{\prime \prime}}\right\rangle\right|^{2}+\sum_{j, k, m}\left|\left\langle f, \psi_{j, k, m}\right\rangle\right|^{2}+\sum_{j^{\prime}, k^{\prime}, m^{\prime}}\left|\left\langle f, \psi_{\left.j^{\prime}, k^{\prime}, m^{\prime}\right\rangle}\right\rangle\right|^{2} \leq B\|f\|^{2}, \tag{3.1}
\end{equation*}
$$

for all $f \in L^{2}\left(\mathbb{R}^{2}\right)$.
The following theorem is our main result of this section which is a necessary condition via admissibility for a cone-adapted discrete shearlet system to be a frame.
Theorem 3.1. If the cone-adapted discrete shearlet system $\left\{g_{\alpha}\right\}_{\alpha}$ is a frame for $L^{2}\left(\mathbb{R}^{2}\right)$, then there exists $\Delta \subseteq \mathbb{R}^{2}$ such that the following admissibility condition holds

$$
\begin{equation*}
A \zeta \leq|\widehat{\phi}(\xi)|^{2}+c_{\psi}^{+}+c_{\tilde{\psi}}^{+} \leq B \zeta, \quad \xi \in \Delta \tag{3.2}
\end{equation*}
$$

Proof. Let the system $\left\{g_{\alpha}\right\}_{\alpha}$ constitute a frame with bounds A, B. Consider $\left\{e_{l}\right\}_{l}$ an orthonormal basis for $L^{2}\left(\mathbb{R}^{2}\right)$. Put $f=e_{l}$ in (3.1). Then for coefficients $c_{l} \geq 0$ with $\sum_{l} c_{l}\left\|e_{l}\right\|^{2}<\infty$, we obtain

$$
\begin{equation*}
A \sum_{l} c_{l}\left\|e_{l}\right\|^{2} \leq \sum_{l} c_{l} \sum_{\alpha}\left|\left\langle e_{l}, g_{\alpha}\right\rangle\right|^{2} \leq B \sum_{l} c_{l}\left\|e_{l}\right\|^{2} . \tag{3.3}
\end{equation*}
$$

If C is any positive trace-class operator, then as in the proof of Theorem 2.1

$$
\begin{equation*}
A \operatorname{Tr} C \leq \sum_{\alpha}\left\langle C g_{\alpha}, g_{\alpha}\right\rangle \leq B \operatorname{Tr} C . \tag{3.4}
\end{equation*}
$$

Suppose that $h \in L^{2}\left(\mathbb{R}^{2}\right)$, with $\operatorname{supp}(\hat{\mathrm{h}}) \subseteq[0, \infty) \times \mathbb{R}$ and $\int_{0}^{\infty} \int_{\mathbb{R}} \frac{\bar{h}(\xi))^{2}}{\xi_{1}^{2}} d \xi_{2} d \xi_{1}<\infty$. Also assume that for $a \in \mathbb{R}^{+}-\{1\}, s \in \mathbb{R}-\{0\}$ and $t \in \mathbb{R}^{2}$, we have $h_{a, s, t} \in L^{2}\left(\left(\mathcal{E}_{1} \cup \mathcal{E}_{3}\right) \cup\left(\mathcal{E}_{2} \cup \mathcal{E}_{4}\right)\right)^{\vee}$, and for $a=1, s=0, t \in \mathbb{R}$, we have $h_{a, s, t} \in L^{2}(\mathcal{R})^{\vee}$.

Consider

$$
\begin{equation*}
C=\int_{0}^{\infty} \int_{\mathbb{R}} \int_{\mathbb{R}^{2}}\left\langle., h_{a, s, t}\right\rangle h_{a, s, t} c(a, s, t) d t d s \frac{d a}{a^{3}}+\int_{\mathbb{R}^{2}}\left\langle., h_{1,0, t}\right\rangle h_{1,0, t} c(1,0, t) d t, \tag{3.5}
\end{equation*}
$$

in which $c(a, s, t)$ is defined as (2.6) for $1<a \leq a_{0}, s \in \mathbb{R}-\{0\}, t=\left(t_{1}, t_{2}\right) \in \mathbb{R}^{2}$ and $c(1,0, t)=\lambda^{2} e^{-\pi \lambda^{2}|t|^{2}}$. Then we have

$$
\begin{equation*}
\sum_{\alpha}\left\langle C g_{\alpha}, g_{\alpha}\right\rangle=\sum_{m^{\prime \prime}}\left\langle C \phi_{m^{\prime \prime}}, \phi_{m^{\prime \prime}}\right\rangle+\sum_{j, k, m}\left\langle C \psi_{j, k, m}, \psi_{j, k, m}\right\rangle+\sum_{j^{\prime}, k^{\prime}, m^{\prime}}\left\langle C \tilde{\psi}_{j^{\prime}, k^{\prime}, m^{\prime}}, \tilde{\psi}_{j^{\prime}, k^{\prime}, m^{\prime}}\right\rangle . \tag{3.6}
\end{equation*}
$$

By definition of C as in (3.5), we obtain

$$
\begin{aligned}
\sum_{m^{\prime \prime}}\left\langle C \phi_{m^{\prime \prime}}, \phi_{m^{\prime \prime}}\right\rangle & =\sum_{m^{\prime \prime}}\left\langle\int_{\mathbb{R}^{2}}\left\langle\phi_{m^{\prime \prime}}, h_{1,0, t}\right\rangle h_{1,0, t} c(1,0, t) d t, \phi_{m^{\prime \prime}}\right\rangle \\
& =\sum_{m^{\prime \prime}} \int_{\mathbb{R}^{2}}\left|\left\langle\phi_{m^{\prime \prime}}, h_{1,0, t}\right\rangle\right|^{2} c(1,0, t) d t \\
& =\sum_{m^{\prime \prime}} \int_{\mathbb{R}^{2}}\left|\left\langle\phi, h_{1,0, t}\right\rangle\right|^{2} \lambda^{2} e^{-\pi \lambda^{2}\left|t+m^{\prime \prime}\right|^{2}} d t
\end{aligned}
$$

where $\sum_{m^{\prime \prime}} \lambda^{2} e^{-\pi \lambda^{2}\left|t+m^{\prime \prime}\right|^{2}}=1+\rho(t)$, such that $|\rho(t)| \leq \lambda^{2}$. Hence we have

$$
\begin{aligned}
\sum_{m^{\prime \prime}}\left\langle C \phi_{m^{\prime \prime}}, \phi_{m^{\prime \prime}}\right\rangle & =\int_{\mathbb{R}^{2}}\left|\left\langle\phi, h_{1,0, t}\right\rangle\right|^{2} d t+\int_{\mathbb{R}^{2}}\left|\left\langle\phi, h_{1,0, t}\right\rangle\right|^{2} \rho(t) d t \\
& =\left.\int_{\mathbb{R}^{2}}\left|\phi, h_{1,0, t}\right\rangle\right|^{2} d t+R_{1}
\end{aligned}
$$ where $R_{1}=\int_{\mathbb{R}^{2}}\left|\left\langle\phi, h_{1,0, t}\right\rangle\right|^{2} \rho(t) d t$. Also R_{1} is bounded, since

$$
\begin{aligned}
\left|R_{1}\right| & \leq \lambda^{2} \int_{\mathbb{R}^{2}}\left|\left\langle\phi, h_{1,0, t}\right\rangle\right|^{2} d t \\
& =\lambda^{2} \int_{\mathbb{R}^{2}}\left|\left(\phi * h^{*}\right)(t)\right|^{2} d t \\
& \leq \lambda^{2}\|\widehat{\phi}\|^{2}\|\widehat{h}\|^{2}<\infty
\end{aligned}
$$

Similarly,

$$
\int_{\mathbb{R}^{2}}\left|\left\langle\phi, h_{1,0, t}\right\rangle\right|^{2} d t=\left.\int_{\mathbb{R}^{2}}|\widehat{\phi}(\xi)|^{2} \widehat{h}(\xi)\right|^{2} d \xi
$$

So

$$
\sum_{m^{\prime \prime}}\left\langle C \phi_{m^{\prime \prime}}, \phi_{m^{\prime \prime}}\right\rangle=\left.\int_{\mathbb{R}^{2}}|\widehat{\phi}(\xi)|^{2} \widehat{h}(\xi)\right|^{2} d \xi+R_{1} .
$$

Also, similar to the proof of Theorem 2.1 for $\psi_{j, k, m}$ and $\tilde{\psi}_{j^{\prime}, k^{\prime}, m^{\prime}}$, we have

$$
\sum_{j, k, m}\left\langle C \psi_{j, k, m}, \psi_{j, k, m}\right\rangle=\left.c_{\psi}^{+} \int_{\mathbb{R}^{2}} \widehat{h}(\xi)\right|^{2} d \xi+R_{2}
$$

where $R_{2}=\int_{0}^{\infty} \int_{\mathbb{R}} \int_{\mathbb{R}^{2}}\left|\left\langle\psi, h_{a, s, t}\right\rangle\right|^{2} \rho(a, s, t) d t d s \frac{d a}{a^{3}}$ and

$$
\sum_{j^{\prime}, k^{\prime}, m^{\prime}}\left\langle C \tilde{\psi}_{j^{\prime}, k^{\prime}, m^{\prime}}, \tilde{\psi}_{j^{\prime}, k^{\prime}, m^{\prime}}\right\rangle=c_{\tilde{\psi}}^{+} \int_{\mathbb{R}^{2}}|\widehat{h}(\xi)|^{2} d \xi+R_{3},
$$

where $R_{3}=\int_{0}^{\infty} \int_{\mathbb{R}} \int_{\mathbb{R}^{2}}\left|\left\langle\tilde{\psi}, h_{a, s, t}\right\rangle\right|^{2} \rho(a, s, t) d t d s \frac{d a}{a^{3}}$. Then

$$
\sum_{\alpha}\left\langle C g_{\alpha}, g_{\alpha}\right\rangle=\left.\int_{\mathbb{R}^{2}}\left(\left.\widehat{\phi}(\xi)\right|^{2}+c_{\psi}^{+}+c_{\tilde{\psi}}^{+}\right) \widehat{h}(\xi)\right|^{2} d \xi+R_{1}+R_{2}+R_{3} .
$$

Furthermore,

$$
\begin{aligned}
\operatorname{Tr} C & =\sum_{n}\left\langle C e_{n}, e_{n}\right\rangle \\
& =\sum_{n}\left\langle\int_{1}^{a_{0}} \int_{\mathbb{R}} \int_{\mathbb{R}^{2}}\left\langle e_{n}, h_{a, s, t}\right\rangle h_{a, s, t} c(a, s, t) d t d s \frac{d a}{a^{3}}, e_{n}\right\rangle \\
& +\sum_{n}\left\langle\int_{\mathbb{R}^{2}}\left\langle e_{n}, h_{1,0, t}\right\rangle h_{1,0, t} c(1,0, t) d t, e_{n}\right\rangle \\
& =\int_{1}^{a_{0}} \int_{\mathbb{R}} \int_{\mathbb{R}^{2}} \sum_{n}\left|\left\langle e_{n}, h_{a, s, t}\right\rangle\right\rangle^{2} c(a, s, t) d t d s \frac{d a}{a^{3}} \\
& +\int_{\mathbb{R}^{2}} \sum_{n}\left|\left\langle e_{n}, h_{1,0, t}\right\rangle\right|^{2} c(1,0, t) d t \\
& =\left\|h_{a, s, t}\right\|^{2} \int_{1}^{a_{0}} \int_{\mathbb{R}} \int_{\mathbb{R}^{2}} c(a, s, t) d t d s \frac{d a}{a^{3}}+\left\|h_{1,0, t}\right\|^{2} \int_{\mathbb{R}^{2}} c(1,0, t) d t \\
& =\|h\|^{2} \cdot \zeta,
\end{aligned}
$$ where $\zeta=\int_{1}^{a_{0}} \int_{\mathbb{R}} \int_{\mathbb{R}^{2}} c(a, s, t) d t d s \frac{d a}{a^{3}}+\int_{\mathbb{R}^{2}} c(1,0, t) d t=\ln a_{0}+1$. Hence by (3.4)

$$
A\left(\|h\|^{2} \cdot \zeta\right) \leq \int_{\mathbb{R}^{2}}\left(|\widehat{\phi}(\xi)|^{2}+c_{\psi}^{+}+\left.c_{\psi}^{+} \widehat{\widehat{h}}(\xi)\right|^{2} d \xi+R_{1}+R_{2}+R_{3} \leq B\left(\| \| \|^{2} \cdot \zeta\right) .\right.
$$

Since $\|h\|=\|\widehat{h}\|$, so

$$
\int_{\mathbb{R}^{2}} A \zeta|\widehat{h}(\xi)|^{2} d \xi \leq\left.\int_{\mathbb{R}^{2}}\left(\left.\widehat{\phi}(\xi)\right|^{2}+c_{\psi}^{+}+c_{\tilde{\psi}}^{+}\right) \widehat{h}(\xi)\right|^{2} d \xi+R_{1}+R_{2}+R_{3} \leq \int_{\mathbb{R}^{2}} B \zeta|\widehat{h}(\xi)|^{2} d \xi .
$$

Let λ tend to zero, then

$$
\begin{equation*}
\left.\int_{\mathbb{R}^{2}} A \zeta \widehat{h}(\xi)\right|^{2} d \xi \leq\left.\int_{\mathbb{R}^{2}}\left(|\widehat{\phi}(\xi)|^{2}+c_{\psi}^{+}+c_{\tilde{\psi}}^{+}\right) \widehat{h}(\xi)\right|^{2} d \xi \leq\left.\int_{\mathbb{R}^{2}} B \zeta \widehat{h}(\xi)\right|^{2} d \xi . \tag{3.7}
\end{equation*}
$$

By (3.7), we have

$$
\begin{equation*}
\left.\int_{\mathbb{R}^{2}}\left(\left.\widehat{\phi}(\xi)\right|^{2}+c_{\psi}^{+}+c_{\tilde{\psi}}^{+}-B \zeta\right) \widehat{h}(\xi)\right|^{2} d \xi \leq 0 \tag{3.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.\int_{\mathbb{R}^{2}}\left(\left.\widehat{\phi}(\xi)\right|^{2}+c_{\psi}^{+}+c_{\tilde{\psi}}^{+}-A \zeta\right) \widehat{h}(\xi)\right|^{2} d \xi \geq 0 \tag{3.9}
\end{equation*}
$$

Now since $\left.\widehat{h}(\xi)\right|^{2}>0$, then by (3.8) there exists $\Delta_{1} \subseteq \mathbb{R}^{2}$ such that for all $\xi \in \Delta_{1}$, we have

$$
|\widehat{\phi}(\xi)|^{2}+c_{\psi}^{+}+c_{\tilde{\psi}}^{+}-B \zeta \leq 0,
$$

and by (3.9) there exists $\Delta_{2} \subseteq \mathbb{R}^{2}$ such that for all $\xi \in \Delta_{2}$, we have

$$
|\widehat{\phi}(\xi)|^{2}+c_{\psi}^{+}+c_{\tilde{\psi}}^{+}-A \zeta \geq 0
$$

Consider $\Delta:=\Delta_{1} \cap \Delta_{2}$, then for all $\xi \in \Delta$ we have

$$
A \zeta \leq|\widehat{\phi}(\xi)|^{2}+c_{\psi}^{+}+c_{\tilde{\psi}}^{+} \leq B \zeta .
$$

Example 3.2. Consider

$$
C_{1}=\left\{\left(\xi_{1}, \xi_{2}\right) \in \mathbb{R}^{2}:\left|\frac{\xi_{2}}{\xi_{1}}\right| \leq 1\right\}, \quad C_{2}=\left\{\left(\xi_{1}, \xi_{2}\right) \in \mathbb{R}^{2}:\left|\frac{\xi_{2}}{\xi_{1}}\right|>1\right\} .
$$

Define

$$
\begin{gathered}
f(x)=\left\{\begin{array}{cc}
0 & x<0 \\
35 x^{4}-84 x^{5}+70 x^{6}-20 x^{7} & , \quad 0 \leq x<1 \\
1 & , \\
v \geq 1
\end{array},\right. \\
v(u)=\left\{\begin{array}{cc}
\sqrt{f(1+u)}, & u \leq 0 \\
\sqrt{f(1-u)}, & u>0
\end{array}\right.
\end{gathered}
$$

Amin khah, Askari Hemmat, Raisi Tousi/ Wavelets and Linear Algebra 5(1) (2018) 11-26 22 It is obvious that $f, v \in C(\mathbb{R})$, also supp $v \subset[-1,1]$ and

$$
\begin{equation*}
|v(u-1)|^{2}+|v(u)|^{2}+|v(u+1)|^{2}=1, \quad \text { for }|u| \leq 1 . \tag{3.10}
\end{equation*}
$$

In addition, we have $v(0)=1$ and by (3.10),

$$
\begin{equation*}
\sum_{m=-2^{j}}^{2^{j}}\left|v\left(2^{j} u-m\right)\right|^{2}=1, \quad \text { for }|u| \leq 1 \tag{3.11}
\end{equation*}
$$

Let ϕ be given by

$$
\hat{\phi}(\xi)=c \xi^{2} e^{-\frac{1}{2}(5 \xi)^{2}}, \quad \xi \in \mathbb{R}
$$

in which we have chosen c so that $0 \leq \hat{\phi} \leq 1$. (e.g. $c=33.9264)$ and supp $\hat{\phi} \subseteq[-1,1],(\hat{\phi}(1)=$ 1.2647×10^{-4}).

Figure 1: The graph of $\hat{\phi}(c=33.9)$
We consider

$$
\begin{equation*}
\hat{\Phi}\left(\xi_{1}, \xi_{2}\right)=\hat{\phi}\left(\xi_{1}\right) \hat{\phi}\left(\xi_{2}\right), \quad\left(\xi_{1}, \xi_{2}\right) \in \mathbb{R}^{2} \tag{3.12}
\end{equation*}
$$

Then

$$
\begin{equation*}
0 \leq \hat{\Phi}\left(\xi_{1}, \xi_{2}\right) \leq 1 \tag{3.13}
\end{equation*}
$$

Now, define

$$
\hat{\Psi}\left(\xi_{1}, \xi_{2}\right)=\hat{\psi}\left(\xi_{1}\right) \hat{\psi}\left(\xi_{2}\right)
$$

where

$$
\hat{\psi}(\xi)=\left\{\begin{array}{cc}
(\xi-1)^{2} e^{-(\xi-1)^{2}}, & \xi>1 \\
(\xi+1)^{2} e^{-(\xi+1)^{2}}, & \xi<-1 \\
0, & -1 \leq \xi \leq 1
\end{array}\right.
$$

$\left(\xi_{1}, \xi_{2}\right) \in \mathbb{R}^{2}$.

Figure 2: The graph of $\hat{\psi}$

By definition of $\hat{\Psi}$, it is clear that for $\xi=\left(\xi_{1}, \xi_{2}\right)$

$$
0 \leq \sum_{j \geq 0}\left|\hat{\Psi}\left(2^{-2 j} \xi\right)\right|^{2}<\infty, \quad \text { for } \xi_{\mathrm{i}} \in \operatorname{supp} \hat{\psi}, \quad \mathrm{i}=1,2 .
$$

Infact, there exists a positive constant $b \in \mathbb{R}$ such that

$$
\begin{equation*}
0 \leq \sum_{j \geq 0}\left|\hat{\Psi}\left(2^{-2 j} \xi\right)\right|^{2} \leq b . \tag{3.14}
\end{equation*}
$$

Now, for $\xi=\left(\xi_{1}, \xi_{2}\right) \in \mathbb{R}^{2}$ consider the following cone-adapted shearlet system for $L^{2}\left(\mathbb{R}^{2}\right)$:

$$
\begin{align*}
\left\{\Phi(\cdot-k): k \in \mathbb{Z}^{2}\right\} & \cup\left\{\Psi_{j, k, m}^{(d)}: j \geq 0,|k|<2^{j}, m \in \mathbb{Z}^{2}, d=1,2\right\} \tag{3.15}\\
& \cup\left\{\tilde{\Psi} j, k, m: j \geq 0, k= \pm 2^{j}, m \in \mathbb{Z}^{2}\right\},
\end{align*}
$$

where

$$
\hat{\Psi}_{j, k, m}^{(1)}(\xi)=2^{-\frac{3}{2} j} \hat{\Psi}\left(2^{-2 j} \xi\right) V_{1}\left(\xi A_{1}^{-j} S_{1}^{-k}\right) e^{2 \pi i \xi A_{1}^{-j} S_{1} S^{-k} m},
$$

and

$$
\begin{gathered}
A_{1}=\left[\begin{array}{ll}
4 & 0 \\
0 & 2
\end{array}\right], \quad S_{1}=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right], \quad V_{1}\left(\xi_{1}, \xi_{2}\right)=v\left(\frac{\xi_{2}}{\xi_{1}}\right), \quad \xi \in \mathbb{R}^{2}, \\
\hat{\Psi}_{j, k, m}^{(2)}(\xi)=2^{-\frac{3}{2} j} \hat{\Psi}\left(2^{-2 j} \xi\right) V_{2}\left(\xi A_{2}^{-j} S_{2}^{-k}\right) e^{2 \pi i \xi A_{2}^{-j} S_{2}^{-k} m},
\end{gathered}
$$

and

$$
A_{2}=\left[\begin{array}{ll}
2 & 0 \\
0 & 4
\end{array}\right], \quad S_{2}=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right], \quad V_{2}\left(\xi_{1}, \xi_{2}\right)=v\left(\frac{\xi_{1}}{\xi_{2}}\right), \quad \xi \in \mathbb{R}^{2} .
$$

Also, for $j>0$, define

$$
\left(\tilde{\Psi}_{j, k, m}\right)^{\wedge}(\xi)= \begin{cases}2^{-\frac{3}{2} j-\frac{1}{2}} \hat{\Psi}\left(2^{-2 j} \xi_{1}, 2^{-2 j} \xi_{2}\right) v\left(2^{j} \frac{\xi_{2}}{\xi_{1}}-k\right) e^{2 \pi i \xi \xi^{-1} A_{1}^{-j} S_{1}^{-k} m}, & \text { if } \xi \in \mathrm{C}_{1} \\ 2^{-\frac{3}{2} j-\frac{1}{2}} \hat{\Psi}\left(2^{-2 j} \xi_{1}, 2^{-2 j} \xi_{2}\right) v\left(2^{j \frac{1}{1}} \xi_{2}-k\right) e^{2 \pi i \xi 2^{-1} A_{1}^{-j} S_{1}^{-k} m}, & \text { if } \xi \in \mathrm{C}_{2},\end{cases}
$$

Amin khah, Askari Hemmat, Raisi Tousi/ Wavelets and Linear Algebra 5(1) (2018) 11-26 24 and for $j=0, m \in \mathbb{Z}^{2}, k= \pm 1$,

$$
\left(\tilde{\Psi}_{0, k, m}\right)^{\wedge}(\xi)=\left\{\begin{array}{ll}
\hat{\Psi}\left(\xi_{1}, \xi_{2}\right) v\left(\frac{\xi_{2}}{\xi_{1}}-k\right) e^{2 \pi i \xi m}, & \text { if } \xi \in \mathrm{C}_{1} \\
\hat{\Psi}\left(\xi_{1}, \xi_{2}\right) v\left(\frac{\xi_{1}}{\xi_{2}}-k\right) e^{2 \pi i \xi m}, & \text { if } \xi \in \mathrm{C}_{2}
\end{array} .\right.
$$

The following calculations show that the shearlet system (3.15) is a frame for $L^{2}\left(\mathbb{R}^{2}\right)$.
For $f \in L^{2}\left(\mathbb{R}^{2}\right)$, we observe that

$$
\begin{aligned}
& \sum_{d=1}^{2} \sum_{j \geq 0} \sum_{|k|<2^{j}} \sum_{m \in \mathbb{Z}^{2}}\left|\left\langle f, \Psi_{j, k, m}^{(d)}\right\rangle\right|^{2}+\sum_{j \geq 0} \sum_{k= \pm 22^{j}} \sum_{m \in \mathbb{Z}^{2}}\left|\left\langle f, \tilde{\Psi}_{j, k, m}\right\rangle\right|^{2} \\
& =\sum_{j \geq 0} \sum_{|k|<2^{j}} \sum_{m \in \mathbb{Z}^{2}}\left(\left|\left\langle\hat{f}, \hat{\Psi}_{j, k, m}^{(1)}\right\rangle\right|^{2}+\left|\left\langle\hat{f}, \hat{\Psi}_{j, k, m}^{(2)}\right\rangle\right|^{2}\right)+\sum_{j \geq 0} \sum_{k= \pm 2^{j}} \sum_{m \in \mathbb{Z}^{2}}\left|\left\langle\hat{f},\left(\tilde{\Psi}_{j, k, m}\right)^{\wedge}\right\rangle\right|^{2} \\
& =\int_{\mathbb{R}^{2}}|\hat{f}(\xi)|^{2} \sum_{j \geq 0}\left|\hat{\Psi}\left(2^{-2 j} \xi\right)\right|^{2}\left(\sum_{|k|<2^{j}}\left|v\left(2^{j} \frac{\xi_{2}}{\xi_{1}}-k\right)\right|^{2}+\sum_{|k|<2^{j}}\left|v\left(2^{j} \frac{\xi_{1}}{\xi_{2}}-k\right)\right|^{2}\right) d \xi \\
& +\int_{C_{1}}|\hat{f}(\xi)|^{2} \sum_{j \geq 0}\left|\hat{\Psi}\left(2^{-2 j} \xi\right)\right|^{2}\left|v\left(2^{j}\left(\frac{\xi_{2}}{\xi_{1}}-1\right)\right)\right|^{2} d \xi \\
& +\int_{C_{1}}|\hat{f}(\xi)|^{2} \sum_{j \geq 0}\left|\hat{\Psi}\left(2^{-2 j} \xi\right)\right|^{2}\left|v\left(2^{j}\left(\frac{\xi_{2}}{\xi_{1}}+1\right)\right)\right|^{2} d \xi \\
& +\int_{C_{2}}|\hat{f}(\xi)|^{2} \sum_{j \geq 0}\left|\hat{\Psi}\left(2^{-2 j} \xi\right)\right|^{2}\left|\nu\left(2^{j}\left(\frac{\xi_{1}}{\xi_{2}}-1\right)\right)\right|^{2} d \xi \\
& +\int_{C_{2}}|\hat{f}(\xi)|^{2} \sum_{j \geq 0}\left|\hat{\Psi}\left(2^{-2 j} \xi\right)\right|^{2}\left|v\left(2^{j}\left(\frac{\xi_{1}}{\xi_{2}}+1\right)\right)\right|^{2} d \xi \\
& =\int_{\mathbb{R}^{2}}|\hat{f}(\xi)|^{2} \sum_{j \geq 0}\left|\hat{\Psi}\left(2^{-2 j} \xi\right)\right|^{2} \sum_{|k| \leq 2^{j}}\left(\left|v\left(2^{j} \frac{\xi_{2}}{\xi_{1}}-k\right)\right|^{2} \chi_{C_{1}}(\xi)+\left|v\left(2^{j} \frac{\xi_{1}}{\xi_{2}}-k\right)\right|^{2} \chi_{C_{2}}(\xi)\right) d \xi \\
& =\int_{\mathbb{R}^{2}}|\hat{f}(\xi)|^{2} \sum_{j \geq 0}\left|\hat{\Psi}\left(2^{-2 j} \xi\right)\right|^{2} d \xi,
\end{aligned}
$$

the last equality results from $C_{1} \cap C_{2}=\emptyset$ and (3.11).

Finally, using (3.12), for any $f \in L^{2}\left(\mathbb{R}^{2}\right)$ we have

$$
\begin{aligned}
\sum_{n \in \mathbb{Z}^{2}} & |\langle f, \Phi(\cdot-n)\rangle|^{2}+\sum_{d=1}^{2} \sum_{j \geq 0} \sum_{j|k|<2} \sum_{m \in \mathbb{Z}^{2}}\left|\left\langle f, \Psi_{j, k, m}^{(d)}\right\rangle\right|^{2}+\sum_{j \geq 0} \sum_{k= \pm 2^{j}} \sum_{m \in \mathbb{Z}^{2}}\left|\left\langle f, \tilde{\Psi}_{j, k, m}\right\rangle\right|^{2} \\
& =\int_{\mathbb{R}^{2}}|\hat{f}(\xi)|^{2}|\hat{\Phi}(\xi)|^{2} d \xi+\int_{\mathbb{R}^{2}}|\hat{f}(\xi)|^{2} \sum_{j \geq 0}\left|\hat{\Psi}\left(2^{-2 j} \xi\right)\right|^{2} d \xi \\
& =\int_{\mathbb{R}^{2}}|\hat{f}(\xi)|^{2}\left(|\hat{\Phi}(\xi)|^{2}+\sum_{j \geq 0}\left|\hat{\Psi}\left(2^{-2 j} \xi\right)\right|^{2}\right) d \xi .
\end{aligned}
$$

It follows from (3.14) there exists a positive constant $a \in \mathbb{R}$, so that

$$
a \leq|\hat{\Phi}(\xi)|^{2}+\sum_{j \geq 0}\left|\hat{\Psi}\left(2^{-2 j} \xi\right)\right|^{2} \leq(b+1) .
$$

(Note that $a \neq 0$. Indeed, for $\xi_{1}=\xi_{2}=1, \quad \sum_{j \geq 0}\left|\hat{\Psi}\left(2^{-2 j} \xi\right)\right|^{2}=0$ but $|\hat{\phi}(1)|=1.2647 \times 10^{-4} \neq 0$). Hence

$$
\begin{aligned}
a\|f\|^{2} \leq \sum_{n \in \mathbb{Z}^{2}}|\langle f, \Phi(\cdot-n)\rangle|^{2} & +\sum_{d=1}^{2} \sum_{j \geq 0} \sum_{|k|<2^{j}} \sum_{m \in \mathbb{Z}^{2}}\left|\left\langle f, \Psi_{j, k, m}^{(d)}\right\rangle\right|^{2} \\
& +\sum_{j \geq 0} \sum_{k= \pm 2^{j}} \sum_{m \in \mathbb{Z}^{2}}\left|\left\langle f, \tilde{\Psi}_{j, k, m}\right\rangle\right|^{2} \leq(b+1)\|f\|^{2} .
\end{aligned}
$$

So by Theorem 3.1 the admissibility condition (3.2) holds for the shearlet frame (3.15), i.e. there exist $\zeta \in \mathbb{R}^{+}$, so that for $\xi \in \operatorname{supp} \hat{\phi}$, we have

$$
a^{\prime} \zeta \leq\left.\widehat{\phi}(\xi)\right|^{2}+c_{\psi^{(1)}}^{+}+c_{\psi^{(2)}}^{+}+c_{\tilde{\psi}}^{+} \leq(b+1) \zeta .
$$

Acknowledgments

The authors are indebted to Professor Hartmut Führ for valuable comments and remarks on an earlier version of this paper.

References

[1] S. Dahlke, G. Kutyniok, P. Maass, C. Sagiv, H.-G. Stark and G. Teschke, The uncertainty principle associated with the continuous shearlet transform, Int. J. Wavelets Multiresolut. Inf. Process., 6(2) (2008), 157-181.
[2] S. Dahlke, G. Kutyniok, G. Steidl and G. Teschke, Shearlet coorbit spaces and associated Banach frames, Appl. Comput. Harmon. Anal., 27(2) (2009), 195-214.
[3] S. Dahlke, G. Steidl and G. Teschke, The continuous shearlet transform in arbitrary space dimensions, J. Fourier Anal. Appl., 16(3) (2010), 340-364.
[4] S. Dahlke, G. Steidl and G. Teschke, Multivariate shearlet transform, shearlet coorbit spaces and their structural properties, Shearlets: Multiscale Analysis for Multivariate Data, Springer, (2012), 105-144.
[5] S. Dahlke, G. Steidl and G. Teschke, Shearlet coorbit spaces: compactly supported analyzing shearlets traces and embeddings, J. Fourier Anal. Appl., 17(6) (2011), 1232-1255.
[6] I. Daubechies, The wavelet transform, time-frequency localization and signal analysis, IEEE Trans. Inf. Theory, 36(5), (1990), 961-1005.
[7] I. Daubechies, Ten Lectures on Wavelets, SIAM, Philadelphia, 1992.
[8] K. Guo, G. Kutyniok, and D. Labate, Sparse Multidimensional Representations using Anisotropic Dilation and Shear Operators, Wavelets and Splines (Athens, GA, 2005), Nashboro Press, Nashville, (2006), 189-201.
[9] S. Huser and G. Steidl, Convex multiclass segmentation with shearlet regularization, Int. J. Comput Math., 90(1) (2013), 62-81.
[10] P. Kittipoom, G. Kutyniok and W.-Q. Lim, Construction of compactly supported shearlet frames, Constr. Approx., 35(1) (2012), 21-72.
[11] G. Kutyniok and D. Labate, Construction of regular and irregular shearlet frames, J. Wavelet Theory and Appl., 1(1) (2007), 1-12.
[12] G. Kutyniok and D. Labate, Resolution of the wavefront set using continuous shearlets, Trans. Am. Math. Soc., 361(5) (2009), 2719-2754.
[13] G. Kutyniok and D. Labate, Shearlets: Multiscale Analysis for Multivariate Data, Birkhäuser, Basel, 2012.
[14] D. Labate, W.-Q Lim, G. Kutyniok and G. Weiss, Sparse multidimensional representation using shearlets, Proceedings Volume 5914, Wavelets XI; 59140U, 2005.

[^0]: *Corresponding author
 Email addresses: m.aminkhah@student.kgut.ac.ir (M. Amin khah), askari@uk.ac.ir (A. Askari Hemmat), raisi@um.ac.ir (R. Raisi Tousi)
 http://doi.org/10.22072/wala.2017.59948.1105 © (2018) Wavelets and Linear Algebra

