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Abstract
In this paper, we first investigate the continuity of the spectral
radius functions on continuous inverse algebras. Then we sup-
port our results by some examples. Finally, we continue our
investigation by further determining the automatic continuity of
linear mappings and homomorphisms on these algebras.
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1. Introduction

Newburgh [13] introduced the concept of spectral continuity and proved that the spectrum
function is upper semi-continuous on any Banach algebra. He gave a first sufficient condition for
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continuity of the spectrum function at a point of a Banach algebra. Since then, this topic has been
studied widely by many researchers and mathematicians. The most outstanding results in this di-
rection are due to Aupetit, and Burlando who have generalized the results of Newburgh in certain
Banach algebras (see [1, 4]).
Continuity of the spectrum and spectral radius functions play a crucial role in automatic continu-
ity. Automatic continuity of linear mappings and homomorphisms are very important in advanced
studies on topological algebras and mathematical analysis. The starting point for automatic con-
tinuity theory is the easily proved fact that every homomorphism from a Banach algebra onto the
complex field is automaticly continuous [1, 14]. It follows easily from the continuity of mul-
tiplicative linear functionals that every surjective homomorphism from a Banach algebra onto a
commutative semisimple Banach algebra is continuous. A famous theorem due to Johnson [9]
extends this result to arbitrary semisimple Banach algebras. Some results for automatic continuity
in the area of Banach and Frechet algebras have also been obtained by Aupetit [1], and Husain [8].
For further information about the automatic continuity one can refer to [5, 6, 12].
An important class of topological algebras namely continuous inverse algebras have interesting
properties regarding the automatic continuity problems. Hence we can extend and prove some
automatic continuity results of Banach algebras to continuous inverse algebras.
Biller [3] showed that every multiplicative linear functional on a continuous inverse algebra is
continuous, which leads easily to the continuity of all homomorphisms from a continuous in-
verse F-algebra into a semisimple commutative continuous inverse F-algebra, but it remains an
intriguing open question, commonly known as Michael’s problem, whether all multiplicative lin-
ear functionals on Frechet algebras are continuous.
In this paper, we first investigate the continuity of the spectral radius functions on continuous in-
verse algebras. Then several examples of spectral continuity are discussed as well. Finally, the
automatic continuity of linear mappings and homomorphisms are studied on these algebras.
Throughout this paper, all algebras will be assumed unital and the units will be denoted by e.

2. Definitions and known results

In this section, we present a collection of definitions and known results, which are included in
the list of our references.

Definition 2.1. Let A and B be two F-spaces and let T : A → B be a linear mapping. The
separating space of T is defined by

G(T ) = {y ∈ B : there exists (xn)n in A s.t. xn → 0 and T xn → y}.

The separating space G(T ) is a closed linear subspace of B; moreover, by the Closed Graph Theo-
rem, T is continuous if and only if G(T ) = {0} [5, 5.1.2].

Definition 2.2. Let A be an algebra. The set of all invertible elements of A is denoted by Inv(A).
A topological algebra A is called Q-algebra if Inv(A) is open.



Naziri-Kordkandi/ Wavelets and Linear Algebra 8(2) (2022) 53-61 55

Definition 2.3. For an algebra A, the spectrum spA(x) of an element x ∈ A is the set of all λ ∈ C
such that λe − x is not invertible in A. The spectral radius rA(x) of an element x ∈ A is defined by
rA(x) = sup{|λ| : λ ∈ spA(x)}.

Definition 2.4. [3, 2.1] Let A be an algebra.

(i) Define the Gelfand spectrum of A as ΓA := Hom(A,C) with the topology of pointwise
convergence on A. Note that 0 < ΓA because we require homomorphisms to preserve the
unit elements.

(ii) Each element a ∈ A gives rise to a continuous function â : ΓA → C defined by â(ϕ) := ϕ(a).
The function â is called the Gelfand transform of a. The map a→ â : A→ C(ΓA), which is
a homomorphism of unital algebras, is called the Gelfand homomorphism of the algebra A.

Definition 2.5. [8, p. 2] A complete metrizable algebra is called an F-algebra.

Definition 2.6. [3, p. 1034] A locally convex algebra is an algebra A with a locally convex Haus-
dorff vector space topology such that the algebra multiplication is separately continuous.

Definition 2.7. [3, p. 1036] A locally convex algebra in which the topology can be described
by a family of sub-multiplicative seminorms is called locally multiplicatively convex, or locally
m-convex for short.

Definition 2.8. [8, p. 3] A complete metrizable locally m-convex algebra is called a Frechet
algebra.

Definition 2.9. [3, 1.1] A continuous inverse algebra is a locally convex algebra in which the set
of invertible elements is a neighbourhood of e and inversion is continuous at e.

Proposition 2.10. [10, II. Proposition 4.1] Let A be a continuous inverse algebra. Then Inv(A) is
an open subset of A, and inversion is a continuous map from Inv(A) into itself.

Proposition 2.11. [3, 1.5] Let A be a continuous inverse algebra. Then every element of A has
non-empty compact spectrum.

Proposition 2.12. Let A be a commutative continuous inverse algebra. Then every maximal ideal
of A is closed and it is the kernel of some continuous character (non-zero multiplicative linear
functional) of A.

Proof. Since Inv(A) is open, every maximal ideal of A is closed. Hence the result follows from
[10, II. Corollary 7.2].

In the sequel, ΓA denotes the space of continuous characters of A.
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3. Main Results

To prove some of the results, we need the following lemma.

Lemma 3.1. Let A be a commutative continuous inverse algebra. Then the following assertions
hold:
(i) Every a ∈ A satisfies

spA(a) = {ϕ(a) : ϕ ∈ ΓA} = â(ΓA);

(ii) If x, y ∈ A, then

rA(x + y) ≤ rA(x) + rA(y), rA(xy) ≤ rA(x)rA(y);

(iii) rad(A) =
⋂

ϕ∈ΓA
kerϕ, where rad(A) is the Jacobson radical of A.

The algebra A is called semisimple if rad(A) = {0}.

Proof. (i) Let λ ∈ spA(a), so that a− λe is not invertible. Since (a− λe)A is a proper ideal in A, by
Zorn’s lemma it is contained in a maximal ideal. So by Proposition 2.12, there exists ϕ ∈ ΓA with
ϕ((a − λe)x) = 0, for all x ∈ A. Hence â(ϕ) = ϕ(a) = λ. Conversely, ϕ(a) is an element of spA(a)
for each ϕ in ΓA.
(ii) By the first part, we have

spA(x + y) = Im(x + y)∧ = Im(x̂ + ŷ) ⊆ Im x̂ + Im ŷ = spA(x) + spA(y),

spA(xy) = Im(xy)∧ = Im(x̂ŷ) ⊆ Im x̂ Im ŷ = spA(x)spA(y),

where Im(x̂) is the range of x̂. The analogous results hold for the spectral radius.
(iii) The kernel of the Gelfand transform consists of those a ∈ A which satisfy â(ϕ) = ϕ(a) = 0 for
every ϕ ∈ ΓA. So by Proposition 2.12, rad(A), which is the intersection of all maximal ideals of A,
is equal to

⋂
ϕ∈ΓA

kerϕ.

Now, we first present the following theorem which plays a crucial role in this section. Then
we support it by some examples.

Theorem 3.2. Let A be a continuous inverse algebra. Then rA is continuous at zero. Moreover, it
is continuous on A if A is commutative.

Proof. Since A is a Q-algebra by Proposition 2.10, the continuity of rA at zero follows from [6,
Theorem 9]. Let A be commutative. By Lemma 3.1, we have

rA(x + y) ≤ rA(x) + rA(y), for all x, y ∈ A,

so,

|rA(x) − rA(y)| ≤ rA(x − y).

From this and the continuity of rA at zero, we conclude that the spectral radius function is contin-
uous on A.
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The following example shows that the converse of Theorem 3.2 may be false in general.

Example 3.3. Let lp, 0 < p < 1 be the algebra of numerical sequences x = (ηi)∞i=1 for which

‖x‖p =

∞∑
i=1

|ηi|
p < ∞.

For sequences (ηi)∞i=1 and (ξi)∞i=1 in lp, we define their convolution as

(ηi)∞i=1 ∗ (ξi)∞i=1 = (
i∑

k=1

ηkξi−k)∞i=1.

Hence, lp with the multiplication defined as convolution is a complete p-normed algebra [2, 3.4.7]
. By [2, 3.6.23(b)], it is also a Q-algebra. Since ‖x‖p is a complete p-norm topology, lp is complete
with the topology given by the metric
d(x, y) = ‖x − y‖p, and so it is an F-algebra. By [6, Theorem 9], the spectral radius function
is continuous at zero. Also the inversion is continuous for lp [5, 2.2.39]. Now, we show that lp

with 0 < p < 1 is not locally convex. If it would be locally convex, then the unit ball B1(0)
would contain a convex neighbourhood U of 0. Then there must be δ > 0 with B2δ(0) ⊂ U, hence
also conv(B2δ(0)) ⊂ U ⊂ B1(0), where conv(B2δ(0)) is the convex hull of the ball B2δ(0). Let
ei := (0, ..., 0, 1︸    ︷︷    ︸

i

, 0, 0, ...). Then δ
1
p ei ∈ B2δ(0). We get

n∑
i=1

1
n
δ

1
p ei ∈ conv(B2δ(0)) ⊂ B1(0), for all n ∈ N.

This implies that

1 > ‖
n∑

i=1

1
n
δ

1
p ei‖

p
p = δn1−p, for all n ∈ N,

which is a contradiction because 1 − p > 0. Thus, lp is not locally convex and hence not a contin-
uous inverse algebra.

Example 3.4. Let A and B be two continuous inverse algebras. Then A×B is a continuous inverse
algebra. This is due to the fact that basic neighbourhoods are given by UA ×UB, where UA and UB

are open. For given two points x ∈ A and y ∈ B, we may choose convex neighbourhoods VA ⊆ UA

and VB ⊆ UB containing x and y respectively for the nontrivial components, and then VA × VB

containing (x, y) is a convex neighbourhood. Since A and B are locally convex algebras, so A × B
with product topology and pointwise algebraic operations is a locally convex algebra.
Let iA and iB be inversions in A and B respectively. Then

iA×B : Inv(A × B)→ Inv(A × B) by

(x, y) 7→ (x, y)−1 = (x−1, y−1),
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is also an inversion. Since iA and iB are continuous at eA and eB, so iA×B is continuous at (eA, eB).
Since Inv(A) and Inv(B) are open, from general topology we get

Inv(A × B) = Inv(A) × Inv(B).

By the definition of continuous inverse algebras, Inv(A) and Inv(B) are neighbourhoods of eA and
eB, and so Inv(A × B) is a neighbourhood of (eA, eB) as well. Thus, A × B is a continuous inverse
algebra. By Theorem 3.2, rA×B is continuous at zero. Moreover, if A and B are commutative, then
rA×B is continuous on A × B.

Example 3.5. The algebra C(R) of all continuous complex-valued functions on the real line R with
the sequence {pn} of seminorms defined by pn( f ) = sup|x|≤n | f (x)| is a Frechet algebra which is not
a Q-algebra, (see Example 2.2.46 (iii) of [5]). So the spectral radius function is not continuous
at zero. In general, this example shows that the spectral radius function may be discontinuous at
zero. Hence, C(R) is not a continuous inverse algebra.

Note that every Banach algebra is a continuous inverse algebra but the converse does not hold
in general, as the following example shows:

Example 3.6. [11, 3.6] Let A be the algebra of all formal power series x =
∑∞

k=1 ξk(x)tk with the
topology of pointwise convergence of the coefficients ξk(x) and with the Cauchy multiplication of
power series. It is a commutative locally m- convex Frechet algebra with the seminorms

‖x‖k =

k−1∑
i=0

|ξi(x)|.

Since the inversion is continuous and Inv(A) is open, A is a continuous inverse algebra. It has no
topological zero divisor and hence it is not equal to the field of complex numbers. This example
shows that A is not a Banach algebra because the Gelfand-Mazur theorem [11, 3.5] does not hold
for A.

In the sequel, we continue our investigation by further determining the automatic continuity of
linear mappings and homomorphisms on continuous inverse algebras.

Theorem 3.7. Let A and B be continuous inverse F-algebras such that B is semisimple and com-
mutative. If T : A→ B is a linear mapping satisfying

rB(T x) ≤ rA(x), for all x ∈ A,

then T is continuous.

Proof. Let xn → 0 in A and T xn → b in B. Since rA is continuous at zero and rB is continuous on
B by Thereom 3.2, we have

rA(xn)→ rA(0) = 0, rB(T xn)→ rB(b).
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on the other hend,

rB(T xn) ≤ rA(xn)→ 0.

Thus, rB(b) = 0. Let y be an arbitrary element in B. By Lemma 3.1, we have

rB(by) ≤ rB(b)rB(y) = 0,

hence, rB(by) = 0 for each y in B, so b ∈ rad(B). Since B is semisimple, b = 0. Therefore, by the
Closed Graph Theorem T is continuous.

Corollary 3.8. Let A and B be continuous inverse F-algebras such that B is semisimple and
commutative. Then every homomorphism T : A→ B is continuous.

Proof. Let T : A→ B be a homomorphism, then

rB(T x) ≤ rA(x), for all x ∈ A.

The result follows from Theorem 3.7.

Corollary 3.9. If A is a continuous inverse algebra, then every multiplicative linear functional
T : A→ C is continuous.

Proof. It is interesting to note that the above corollary is still valid if A is a Q-algebra, not neces-
sarily a continuous inverse algebra [5, Theorem 2.2.28]. For a more general case, see [6, Corollary
12].

Theorem 3.10. Let A be a continuous inverse F-algebra and B be an F-algebra. If there exists a
continuous surjective homomorphism T : A→ B, then every multiplicative linear functional on B
is continuous, i.e. B is functionally continuous.

Proof. If T : A→ B is continuous and surjective, then by the Open Mapping Theorem, it is open.
Let ϕ be a multiplicative linear functional on B, then ϕ ◦ T is a multiplicative linear functional on
A, and hence it is continuous by Corollary 3.9. Now suppose that U is an open subset of C, then
(ϕ ◦ T )−1(U) is an open subset of A. Since T is an open mapping and

ϕ−1(U) = ((T ◦ T−1) ◦ ϕ−1)(U) = T ((ϕ ◦ T )−1(U)),

it follows that ϕ−1(U) is open and hence ϕ is continuous.

Lemma 3.11. [7, 10.1.6] Let A be a Frechet algebra with rationally finitely many generators.
Then every multiplicative linear functional on A is continuous.

We now extend Lemma 3.11 as follows.

Theorem 3.12. Let A be a Frechet algebra with rationally finitely many generators and B be a
commutative semisimple continuous inverse F-algebra. Then every homomorphism T : A → B is
continuous.
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Proof. Let ϕ ∈ ΓB. Then ϕ◦T is a continuous multiplicative linear functional on A by Lemma 3.11.
Suppose that xn → 0 in A and T xn → y in B. By the continuity of ϕ ◦ T , we have (ϕ ◦ T )(xn)→ 0.
On the other hand, (ϕ ◦ T )(xn) = ϕ(T xn)→ ϕ(y). Consequently, ϕ(y) = 0. So we obtain

y ∈
⋂
ϕ∈ΓB

kerϕ = rad(B) = {0}.

Hence, by the Closed Graph Theorem, T is continuous.

Lemma 3.13. Let T : A → B be a homomorphism between continuous inverse F-algebras A and
B. If T is surjective, then G(T ) is a proper ideal of B.

Proof. Let b ∈ B and y ∈ G(T ). Then there exists a sequence (xn)n ⊆ A such that xn → 0 and
T xn → y. Since T is surjective, there exists x ∈ A such that T x = b. So xnx→ 0 and

T (xnx) = T xnT x = T xnb→ yb.

Thus, G(T ) is an ideal of B. Now we claim that G(T ) is a proper ideal. To see this, Let eA and eB

be the unit elements of A and B respectively. Since T is a homomorphism, rB(T x) ≤ rA(x), for all
x ∈ A. Now suppose on the contrary that eB ∈ G(T ). Then there exists a sequence (xn)n ⊆ A such
that xn → 0 and T xn → eB. By applying Lemma 3.1, we have

rB(TeA) = rB(eB) ≤ rB(eB − T xn) + rA(xn).

By Thereom 3.2, rA(xn) and rB(eB − T xn) converge to zero. Thus, rB(eB) = 0. This contradicts the
fact that rB(eB) = 1. Therefore, G(T ) is a proper ideal of B.

Theorem 3.14. Let T : A → B be a surjective homomorphism between continuous inverse F-
algebras A and B. If B is simple, then T is continuous.

Proof. Since G(T ) is an ideal of B and B is simple, we have G(T ) = {0} or G(T ) = B. By Lemma
3.13, G(T ) is a proper ideal. So, G(T ) = {0} and hence T is continuous.

Theorem 3.15. Let A be a continuous inverse F-algebra and B be a topological algebra. If B
satisfies the following property (C), then every homomorphism
T : A→ B is continuous.
(C) for every sequence (yn)n ⊆ B, yn , 0 and yn 9 0, there is a sequence (ϕm)m of multiplicative
linear functionals on B such that inf

m,n
|ϕm(yn)| = ε > 0.

Proof. Suppose that T is not continuous. Let (xn)n ⊆ A be a sequence such that xn → 0, but
T (xn) 9 0. Put yn = T (xn). We may assume that yn , 0 for all n ≥ 1 (otherwise choose a
subsequence). By hypothesis, there exists a sequence of multiplicative linear functionals (ϕm)m

on B such that inf
m,n
|ϕm(yn)| = ε > 0. Thus, we have |ϕm(T (ε−1xn))| = |ε−1ϕm(T (xn))| ≥ 1 for all

m, n ≥ 1. Set zn = ε−1xn. Then zn → 0. Since ϕm ◦ T is a multiplicative linear functional on A,it is
continuous by Corollary 3.9, and so ϕm ◦ T (zn)→ 0. On the other hand,

|ϕm ◦ T (ε−1xn)| = |ϕmT (zn)| ≥ 1.

This contradiction implies that T is continuous.
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Remark 3.16. T. Husain [8, p. 45] introduced property (C) for a class of topological algebras (in
particular, Frechet algebras). He has also indicated that if a Frechet algebra A satisfies property
(C), then

rA(x) = sup{|ϕ(x)| : ϕ ∈ ΓA} = ∞,

[8, p. 77]. This implies that a continuous inverse algebra B (in particular, a Banach algebra) cannot
satisfy property (C) because the spectrum spB(x) of every x ∈ B is compact and so rB(x) < ∞.

Acknowledgments

The author would like to thank the referee for helpful suggestions.

References

[1] B. Aupetit, A Primer on Spectral Theory, Springer-Verlag, 1991.
[2] V.K. Balachandran, Topological Algebras, New York, Elsevier, 2000.
[3] H. Biller, Continuous inverse algebras with involution, Forum Math., 22(6), (2010), 1033–1059.
[4] L. Burlando, Continuity of spectrum and spectral radius in Banach algebras, Functional Analysis and Operator

Theory, Banach Center Publ., Institute of Mathematics, Polish Academy of Sciences, Warszawa, 30, (1994),
53–100.

[5] H.G. Dales, Banach Algebras and Automatic Continuity, Clarendon Press, Oxford, 2000.
[6] T. Ghasemi Honary and M. Najafi Tavani, Upper semicontinuity of the spectrum function and automatic continu-

ity in topological Q-algebras, Note Mat., 28(2), (2008), 57–62.
[7] H. Goldmann, Uniform Frechet Algebras, North-Holland, 1990.
[8] T. Husain, Multiplicative Functionals on Topological Algebras, Research notes in Math. 85, Pitmann Publishing,

Boston, 1983.
[9] B.E. Johnson, The uniqueness of the complete norm topology, Bull. Am. Math. Soc., 73, (1967), 537–539.
[10] A. Mallios, Topological Algebras: Selected Topics, North-Holland, Amsterdam, 1986.
[11] A. Naziri-Kordkadi, Topics on continuous inverse algebras, J. Algebr. Syst., 9(2), (2022), 219–227.
[12] A. Naziri-Kordkandi, A. Zohri, F. Ershad and B. Yousefi, Continuity in Fundamental Locally multiplicative

topological Algebras, Int. J. Nonlinear Anal. Appl., 12(1), (2021), 129–141.
[13] J.D. Newburgh, The variation of spectra, Duke Math. J., 18, (1951), 165–176.
[14] W. Rudin, Functional Analysis, McGraw- Hill, 1973.


	Introduction
	Definitions and known results 
	Main Results

