Approximate biprojectivity of Banach algebras with respect to their character spaces

A. Sahami ${ }^{\text {a,** }}$, B. Olfatian Gillan ${ }^{\text {b }}$, M.R. Omidi ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematics Faculty of Basic Sciences Ilam University P.O. Box 69315-516 Ilam, Iran.
${ }^{b}$ Department of Basic Sciences, Kermanshah University of Technology, Kermanshah, Iran.

Article Info
 Article history:
 Received 4 March 2021
 Accepted 24 January 2022
 Available online 14 March 2022
 Communicated by Farshid Abdollahi

Keywords:

Approximate
ϕ-biprojectivity,
ϕ-amenability, Segal
algebra, Semigroup
algebra, Measure algebra.

2000 MSC:
46M10, 43A07, 43A20

Abstract

In this paper we introduce approximate ϕ-biprojective Banach algebras, where ϕ is a non-zero character. We show that for SIN group G, the group algebra $L^{1}(G)$ is approximately ϕ-biprojective if and only if G is amenable, where ϕ is the augmentation character. Also we show that the Fourier algebra $A(G)$ over a locally compact G is always approximately ϕ-biprojective.

© (2022) Wavelets and Linear Algebra

[^0]
1. Introduction

Helemskii studied Banach algebras using the homological theory. There is an important notions in homological theory, namely biprojectivity. A Banach algebra A is biprojective, if there exists a bounded A-bimodule morphism $\rho: A \rightarrow A \otimes_{p} A$ such that $\pi_{A} \circ \rho(a)=a$ for all $a \in A$. It is known that the group algebra $L^{1}(G)$ over a locally compact group G is biprojective if and only if G compact and also the if the Fourier algebra $A(G)$ is biprojective, then G is discrete, see [10].

In [21] the first author with A. Pourabbas introduced a notion of biprojectivity related to a character. In fact a Banach algebra A is called ϕ-biprojective, if there exists a bounded A-bimodule morphism

$$
\rho: A \rightarrow A \otimes_{p} A
$$

such that

$$
\phi \circ \pi_{A} \circ \rho(a)=\phi(a) \quad(a \in A) .
$$

We showed that for a locally compact group G the Segal algebra $S(G)$ is ϕ-biprojective if and only if G is compact. Also the Fourier algebra $A(G)$ is ϕ-biprojective if and only if G is discrete, see [15] and [21].

An approximate notion of the homological theory was given by Zhang. A Banach algebra A is approximate biprojective if there exists a net of A-bimodule morphisms $\rho_{\alpha}: A \rightarrow A \otimes_{p} A$ such that

$$
\pi_{A} \circ \rho_{\alpha}(a) \rightarrow a \quad(a \in A)
$$

Approximate biprojectivity of some semigroup algebras and some related Triangular Banach algebras was studied in [1], [19] and [20].

Inspired by Zhang definition and also by replacing the "A-bimodule morphism" with "approximate A-bimodule morphism" in the definition of approximate biprojectivity, we give an approximate version of ϕ-biprojectivity here.
Definition 1.1. Let A be a Banach algebra and $\phi \in \Delta(A)$. Then A is called approximate ϕ biprojective if there exists $\left(\rho_{\alpha}\right)_{\alpha \in I}$ a net of bounded linear maps from A into $A \otimes_{p} A,\left(\rho_{\alpha}\right)_{\alpha \in I}$ such that
(i) $a \cdot \rho_{\alpha}(b)-\rho_{\alpha}(a b) \xrightarrow{\|\cdot\| \|} 0$,
(ii) $\rho_{\alpha}(b a)-\rho_{\alpha}(b) \cdot a \xrightarrow{\|\cdot\|} 0$,
(iii) $\phi \circ \pi_{A} \circ \rho_{\alpha}(a)-\phi(a) \rightarrow 0$,
for every $a, b \in A$. Also we say that A is approximately character biprojective if A is approximate ϕ-biprojective for each $\phi \in \Delta(A)$.

In this paper, first we study the general properties of approximate ϕ-biprojectivity. The hereditary properties of this notion were investigated. We show that for a $S I N$ group G, the Segal algebra $S(G)$ is approximate ϕ-biprojective if and only if G is amenable, where ϕ is the augmentation character on $S(G)$ and the measure algebra $M(G)$ is approximate character biprojective if and only if G is discrete and amenable. Finally some examples of Banach algebras among Triangular Banach algebras were given which we show that these matrix algebras are not approximate ϕ-biprojective and some examples which reveal the differences of our new notion and the classical ones.

2. Approximate ϕ-biprojectivity

This section is devoted to investigate the general properties of approximate ϕ-biprojectivity for Banach algebras.

Let A be a Banach algebra and $\phi \in \Delta(A)$. A Banach algebra A is called approximately left ϕ-amenable, if there exists a (not necessarily bounded) net $\left(m_{\alpha}\right)$ in A such that

$$
a m_{\alpha}-\phi(a) m_{\alpha} \rightarrow 0, \quad \phi\left(m_{\alpha}\right) \rightarrow 1, \quad(a \in A)
$$

The right case similarly defined. For further information see [2].
Proposition 2.1. Suppose that A is a Banach algebra and $\phi \in \Delta(A)$. Let A be approximate ϕ biprojective which has an element a_{0} such that $a a_{0}=a_{0}$ a for all $a \in A$ and $\phi\left(a_{0}\right)=1$. Then A is approximate left and approximate right ϕ-amenable.

Proof. Let $\left(\rho_{\alpha}\right)_{\alpha \in I}$ be as in Definition 1.1. Suppose that a_{0} be an element in A such that $a a_{0}=a_{0} a$ and $\phi\left(a_{0}\right)=1$ for every $a \in A$. Set $n_{\alpha}=\rho_{\alpha}\left(a_{0}\right)$. It is clear that $\left(n_{\alpha}\right)$ is a net in $A \otimes_{p} A$ such that

$$
\begin{aligned}
a \cdot n_{\alpha}-n_{\alpha} \cdot a & =a \cdot \rho_{\alpha}\left(a_{0}\right)-\rho_{\alpha}\left(a_{0}\right) \cdot a \\
& =a \cdot \rho_{\alpha}\left(a_{0}\right)-\rho_{\alpha}\left(a a_{0}\right)+\rho_{\alpha}\left(a a_{0}\right)-\rho_{\alpha}\left(a_{0} a\right)+\rho_{\alpha}\left(a_{0} a\right)-\rho_{\alpha}\left(a_{0}\right) \cdot a \rightarrow 0
\end{aligned}
$$

for every $a \in A$. Also we have

$$
\phi \circ \pi_{A}\left(n_{\alpha}\right)-1=\phi \circ \pi_{A} \circ \rho_{\alpha}\left(a_{0}\right)-\phi\left(a_{0}\right) \rightarrow 0 .
$$

Define $T: A \otimes_{p} A \rightarrow A$ by $T(a \otimes b)=\phi(b) a$ for each $a, b \in A$. It is clear that T is a bounded linear map which satisfies

$$
T(a \cdot x)=a T(x), \quad T(x \cdot a)=\phi(a) T(x), \quad \phi \circ T=\phi \circ \pi_{A}, \quad\left(a \in A, x \in A \otimes_{p} A\right) .
$$

Set $m_{\alpha}=T\left(n_{\alpha}\right)$. One can show that

$$
a m_{\alpha}-\phi(a) m_{\alpha}=a T\left(n_{\alpha}\right)-\phi(a) T\left(n_{\alpha}\right)=T\left(a \cdot n_{\alpha}-n_{\alpha} \cdot a\right) \rightarrow 0, \quad(a \in A)
$$

and

$$
\phi\left(m_{\alpha}\right)=\phi \circ T\left(n_{\alpha}\right)=\phi \circ \pi_{A}\left(n_{\alpha}\right) \rightarrow 1 .
$$

Thus A is approximate left ϕ-amenable. Defining $T: A \otimes_{p} A \rightarrow A$ by $T(a \otimes b)=\phi(b) a$ and following the similar method we can see that $m_{\alpha} a-\phi(a) m_{\alpha} \rightarrow 0$ and $\phi\left(m_{\alpha}\right) \rightarrow 1$, for all $a \in A$. It follows that A is approximately right ϕ-amenable.
Example 2.2. Let $T=\left\{\left(\begin{array}{ll}a & b \\ 0 & c\end{array}\right): a, b, c \in \mathbb{C}\right\}$. Equip T with matrix operations and the ℓ^{1}-norm. Then T becomes a Banach algebra. Define $\phi \in \Delta(T)$ by $\phi\left(\left(\begin{array}{ll}a & b \\ 0 & c\end{array}\right)\right)=c$ for all $a, b, c \in \mathbb{C}$. We claim that T is not approximate ϕ-biprojective. Suppose in contradiction that T is approximate ϕ-biprojective. Since T posses an element which commute with all elements of T and does not
belong to $\operatorname{ker} \phi$, Proposition 2.1 follows that T is approximately left ϕ-amenable. Set $I=\left(\begin{array}{ll}0 & \mathbb{C} \\ 0 & \mathbb{C}\end{array}\right)$. Clearly I is a closed ideal of T which $\left.\phi\right|_{I} \neq 0$. It gives that I is approximately left ϕ-amenable. Thus there exists a net $\left(i_{\alpha}\right)$ in I such that

$$
i i_{\alpha}-\phi(i) i_{\alpha} \rightarrow 0, \quad \phi\left(i_{\alpha}\right) \rightarrow 1, \quad(i \in I)
$$

So nets $\left(a_{\alpha}\right)$ and $\left(b_{\alpha}\right)$ in \mathbb{C} exist such that $i_{\alpha}=\left(\begin{array}{ll}0 & a_{\alpha} \\ 0 & b_{\alpha}\end{array}\right)$. Thus any $i=\left(\begin{array}{cc}0 & a \\ 0 & b\end{array}\right)$ in I, gives that

$$
\left(\begin{array}{cc}
0 & a \\
0 & b
\end{array}\right)\left(\begin{array}{cc}
0 & a_{\alpha} \\
0 & b_{\alpha}
\end{array}\right)-b\left(\begin{array}{cc}
0 & a_{\alpha} \\
0 & b_{\alpha}
\end{array}\right) \rightarrow 0
$$

which follows that $a b_{\alpha}-b a_{\alpha} \rightarrow 0$, for each $a, b \in \mathbb{C}$. Since $b_{\alpha} \rightarrow 1$, by considering $a=1$ and $b=0$ at above, we have a contradiction.

We recall that a Banach algebra A is pseudo-amenable if there exists a net $\left(m_{\alpha}\right)$ in $A \otimes_{p} A$ such that $a \cdot m_{\alpha}-m_{\alpha} \cdot a \rightarrow 0$ and $\pi_{A}\left(m_{\alpha}\right) a \rightarrow a$, for each $a \in A$, see [9].

Proposition 2.3. Let A be a Banach algebra and $\phi \in \Delta(A)$. If A is pseudo-amenable, then A is approximate ϕ-biprojective.

Proof. Suppose that A is pseudo-amenable. Then there exists a net (m_{α}) in $A \otimes_{p} A$ such that $a \cdot m_{\alpha}-m_{\alpha} \cdot a \rightarrow 0$ and $\pi_{A}\left(m_{\alpha}\right) a \rightarrow a$, for all $a \in A$. Define $\rho_{\alpha}(a)=a \cdot m_{\alpha}$. Clearly

$$
\rho_{\alpha}(a b)-\rho_{\alpha}(a) \cdot b \rightarrow 0, \quad \rho_{\alpha}(a b)-a \cdot \rho_{\alpha}(b) \rightarrow 0, \quad \phi \circ \pi_{A}\left(m_{\alpha}\right) \rightarrow 1,
$$

for all $a \in A$.
Theorem 2.4. Let A be a Banach algebra and $\phi \in \Delta(A)$. If A is biflat, then A is approximately ϕ-biprojective.

Proof. Suppose that A is ϕ-biflat. Then there exists a bounded A-bimodule morphism $\rho: A \rightarrow$ $\left(A \otimes_{p} A\right)^{* *}$ such that $\pi_{A}^{* *} \circ \rho(a)=a$ for each $a \in A$. So a net $\left(\rho_{\alpha}\right)$ in $B\left(A, A \otimes_{p} A\right)$, the set of all bounded linear maps from A into $A \otimes_{p} A$, exists such that $\rho_{\alpha} \xrightarrow{W^{*} O T} \rho$, where $W^{*} O T$ stands for the weak-star operator topology. Clearly $\pi_{A}^{* *}$ is a w^{*}-continuous map. Thus, for each $a \in A$ it gives that

$$
\pi_{A} \circ \rho_{\alpha}(a)=\pi_{A}^{* *} \circ \rho_{\alpha}(a) \xrightarrow{w^{*}} \pi_{A}^{* *} \circ \rho(a)=a,
$$

also we have

$$
a \cdot \rho_{\alpha}(b) \xrightarrow{w^{*}} \rho(a b), \quad \rho_{\alpha}(a b) \xrightarrow{w^{*}} \rho(a b)
$$

and

$$
\rho_{\alpha}(a) \cdot b \xrightarrow{w^{*}} \rho(a b), \quad \rho_{\alpha}(a b) \xrightarrow{w^{*}} \rho(a b),
$$

for every $a, b \in A$. Let $\epsilon>0$ and take arbitrary finite subsets $F=\left\{a_{1}, a_{2}, \ldots, a_{r}\right\}$ and $G=$ $\left\{x_{1}, x_{2}, \ldots, x_{r}\right\}$ of A. Define

$$
\begin{align*}
& M=\left\{\left(a_{1} \cdot T\left(x_{1}\right)-T\left(a_{1} x_{1}\right), a_{2} \cdot T\left(x_{2}\right)-T\left(a_{2} x_{2}\right), \ldots, a_{r} \cdot T\left(x_{r}\right)-T\left(a_{r} x_{r}\right),\right.\right. \\
& T\left(x_{1}\right) \cdot a_{1}-T\left(x_{1} a_{1}\right), T\left(x_{2}\right) \cdot a_{2}-T\left(x_{2} a_{2}\right), \ldots, T\left(x_{r}\right) \cdot a_{r}-T\left(x_{r} a_{r}\right) \\
&\left.\phi \circ \pi_{A} \circ T\left(x_{1}\right)-\phi\left(x_{1}\right), \phi \circ \pi_{A} \circ T\left(x_{2}\right)-\phi\left(x_{2}\right), \ldots, \phi \circ \pi_{A} \circ T\left(x_{r}\right)-\phi\left(x_{r}\right)\right) \tag{2.1}\\
&\left.: T \in B\left(A, A \otimes_{p} A\right)\right\}
\end{align*}
$$

It clear that M is a subset of $\prod_{i=1}^{2 r}\left(A \otimes_{p} A\right) \oplus_{1} \prod_{i=1}^{r} \mathbb{C}$. One can show that M is a convex set and $(0,0, \ldots, 0)$ belongs to $\bar{M}^{w}=\bar{M}^{\| \| \|}$. So there exists element $\theta_{(F, G, \epsilon)}$ in $B\left(A, A \otimes_{p} A\right)$ such that

$$
\left\|a_{i} \cdot \theta_{(F, G, \epsilon)}\left(b_{i}\right)-\theta_{(F, G, \epsilon)}\left(a_{i} b_{i}\right)\right\|<\epsilon, \quad\left\|\theta_{(F, G, \epsilon)}\left(a_{i} b_{i}\right)-\theta_{(F, G, \epsilon)}\left(a_{i}\right) \cdot b_{i}\right\|<\epsilon
$$

and

$$
\left|\phi \circ \pi_{A} \circ \theta_{(F, G, \epsilon)}\left(a_{i}\right)-\phi\left(a_{i}\right)\right|<\epsilon,
$$

for each $i \in\{1,2, \ldots, r\}$. Therefore $\left(\theta_{(F, G, \epsilon)}\right)_{(F, G, \epsilon)}$ satisfies

$$
a \cdot \theta_{(F, G, \epsilon)}(b)-\theta_{(F, G, \epsilon)}(a b) \rightarrow 0, \quad \theta_{(F, G, \epsilon)}(a b)-\theta_{(F, G, \epsilon)}(a) \cdot b \rightarrow 0
$$

and

$$
\left|\phi \circ \pi_{A} \circ \theta_{(F, G, \epsilon)}(a)-\phi(a)\right| \rightarrow 0,
$$

for each $a, b \in A$. It deduces that A is approximately ϕ-biprojective.
Proposition 2.5. Let A be a Banach algebra and $\phi \in \Delta(A)$. Suppose that I is a closed ideal of A such that $\left.\phi\right|_{I} \neq 0$. If A is approximate ϕ-biprojective, then I is approximate ϕ-biprojective.

Proof. Suppose that $\left(\rho_{\alpha}\right)_{\alpha}$ is a net of bounded maps satisfies Definition 1.1. Pick i_{0} in I such that $\phi\left(i_{0}\right)=1$. Define $T_{i_{0}}: A \otimes_{p} A \rightarrow I \otimes_{p} I$ by $T_{i_{0}}(a \otimes b)=a i_{0} \otimes i_{0} b$ for each $a, b \in A$. Clearly $T_{i_{0}}$ is a continuous linear map. Set $\eta_{\alpha}=T_{i_{0}} \circ \rho_{\alpha} \|_{I}: I \rightarrow I \otimes_{p} I$. So consider

$$
i \cdot \eta_{\alpha}(j)-\eta_{\alpha}(i j)=T\left(i \cdot \rho_{\alpha}(j)-\rho_{\alpha}(i j)\right) \rightarrow 0
$$

and

$$
\eta_{\alpha}(i j)-\eta_{\alpha}(i) \cdot j=T\left(\rho_{\alpha}(i j)-\rho_{\alpha}(i) \cdot j\right) \rightarrow 0
$$

also

$$
\phi \circ \pi_{I} \circ \eta_{\alpha}(i)-\phi(i)=\phi \circ \pi_{I} \circ T \circ \rho_{\alpha}(i)-\phi(i)=\phi \circ \pi_{A} \circ \rho_{\alpha}(i)-\phi(i) \rightarrow 0
$$

for all $i, j \in I$. So I is approximately ϕ-biprojective.
Suppose that A and B are Banach algebras. Let $\phi \in \Delta(A)$ and $\psi \in \Delta(B)$. Then $\phi \otimes \psi$ is a bounded linear map given by $\phi \otimes \psi(a \otimes b)=\phi(a) \psi(b)$ for all $a \in A$ and $b \in B$. Clearly $\phi \otimes \psi \in \Delta\left(A \otimes_{p} B\right)$. It worth mentioning that $A \otimes_{p} B$ with the following actions is a Banach A-bimodule:

$$
a_{1} \cdot\left(a_{2} \otimes b\right)=a_{1} a_{2} \otimes b, \quad\left(a_{2} \otimes b\right) \cdot a_{1}=a_{2} a_{1} \otimes b, \quad\left(a_{1}, a_{2} \in A, b \in B\right)
$$

Theorem 2.6. Suppose that A and B are Banach algebras. Let $\phi \in \Delta(A)$ and $\psi \in \Delta(B)$. Also let A be unital and B has an idempotent x_{0} with $x_{0} \notin \operatorname{ker} \psi$. If $A \otimes_{p} B$ is approximate $\phi \otimes \psi$-biprojective, then A is approximate ϕ-biprojective.

Proof. Suppose that $A \otimes_{p} B$ is approximately $\phi \otimes \psi$-biprojective. Then there exists $\left(\rho_{\alpha}\right): A \otimes_{p} B \rightarrow$ $\left(A \otimes_{p} B\right) \otimes_{p}\left(A \otimes_{p} B\right)$ a net of bounded linear maps such that

$$
\begin{equation*}
x \cdot \rho_{\alpha}(y)-\rho_{\alpha}(x y) \rightarrow 0, \quad \rho_{\alpha}(x y)-\rho_{\alpha}(x) \cdot y \rightarrow 0 \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\phi \otimes \psi \circ \pi_{A \otimes_{p} B} \circ \rho_{\alpha}(x)-\phi \otimes \psi(x) \rightarrow 0 \tag{2.3}
\end{equation*}
$$

for every $x, y \in A \otimes_{p} B$. We know that x_{0} is an idempotent. Then for a_{1} and a_{2} in A, the following happens

$$
\begin{equation*}
a_{1} a_{2} \otimes x_{0}=\left(a_{1} \otimes x_{0}\right)\left(a_{2} \otimes x_{0}\right) . \tag{2.4}
\end{equation*}
$$

Since A is unital with the unit element e, we have

$$
\begin{aligned}
\rho_{\alpha}\left(a_{1} a_{2} \otimes x_{0}\right)-a_{1} \cdot \rho_{\alpha}\left(a_{2} \otimes x_{0}\right)= & \rho_{\alpha}\left(\left(a_{1} \otimes x_{0}\right)\left(a_{2} \otimes x_{0}\right)\right)-a_{1} \cdot \rho_{\alpha}\left(a_{2} \otimes x_{0}\right) \\
= & \rho_{\alpha}\left(\left(a_{1} \otimes x_{0}\right)\left(a_{2} \otimes x_{0}\right)\right)-\left(a_{1} \otimes x_{0}\right) \cdot \rho_{\alpha}\left(a_{2} \otimes x_{0}\right)+ \\
& \left(a_{1} \otimes x_{0}\right) \cdot \rho_{\alpha}\left(a_{2} \otimes x_{0}\right)-a_{1} \cdot \rho_{\alpha}\left(a_{2} \otimes x_{0}\right) \\
= & \rho_{\alpha}\left(\left(a_{1} \otimes x_{0}\right)\left(a_{2} \otimes x_{0}\right)\right)-\left(a_{1} \otimes x_{0}\right) \cdot \rho_{\alpha}\left(a_{2} \otimes x_{0}\right)+ \\
& \left(a_{1} \cdot\left(e \otimes x_{0}\right)\right) \cdot \rho_{\alpha}\left(a_{2} \otimes x_{0}\right)-a_{1} \cdot \rho_{\alpha}\left(a_{2} \otimes x_{0}\right) \\
= & \rho_{\alpha}\left(\left(a_{1} \otimes x_{0}\right)\left(a_{2} \otimes x_{0}\right)\right)-\left(a_{1} \otimes x_{0}\right) \cdot \rho_{\alpha}\left(a_{2} \otimes x_{0}\right)+ \\
& \left(a_{1} \cdot\left(e \otimes x_{0}\right)\right) \cdot \rho_{\alpha}\left(a_{2} \otimes x_{0}\right)-a_{1} \cdot \rho_{\alpha}\left(e a_{2} \otimes x_{0} x_{0}\right)+ \\
& a_{1} \cdot \rho_{\alpha}\left(e a_{2} \otimes x_{0} x_{0}\right)-a_{1} \cdot \rho_{\alpha}\left(a_{2} \otimes x_{0}\right) \rightarrow 0 .
\end{aligned}
$$

By (2.3) and (2.2) the following happens

$$
\begin{aligned}
\rho_{\alpha}\left(a_{1} a_{2} \otimes x_{0}\right)-\rho_{\alpha}\left(a_{1} \otimes x_{0}\right) \cdot a_{2} & =\rho_{\alpha}\left(\left(a_{1} \otimes x_{0}\right)\left(a_{2} \otimes x_{0}\right)\right)-\rho_{\alpha}\left(a_{1} \otimes x_{0}\right) \cdot a_{2} \\
& =\rho_{\alpha}\left(\left(a_{1} \otimes x_{0}\right)\left(a_{2} \otimes x_{0}\right)\right)-\rho_{\alpha}\left(a_{1} \otimes x_{0}\right) \cdot\left(a_{2} \otimes x_{0}\right) \\
& +\rho_{\alpha}\left(a_{1} \otimes x_{0}\right) \cdot\left(a_{2} \otimes x_{0}\right)-\rho_{\alpha}\left(\left(a_{1} \otimes x_{0}\right) \cdot\left(e \otimes x_{0}\right) a_{2}+\right. \\
& \rho_{\alpha}\left(\left(a_{1} \otimes x_{0}\right) \cdot\left(e \otimes x_{0}\right) a_{2}-\rho_{\alpha}\left(\left(a_{1} \otimes x_{0}\right) \cdot a_{2}\right) \rightarrow 0,\right.
\end{aligned}
$$

for all $a_{1}, a_{2} \in A$. Define

$$
T:\left(A \otimes_{p} B\right) \otimes_{p}\left(A \otimes_{p} B\right) \rightarrow A \otimes_{p} A
$$

by

$$
T((a \otimes b) \otimes(c \otimes d))=\psi(b d) a \otimes c
$$

for each $a, c \in A, b, d \in B$.It is easy to see that T is continuous and linear. Also we have

$$
\pi_{A} \circ T=(i d \otimes \psi) \circ \pi_{A \otimes_{p} B}
$$

where $i d \otimes \psi(a \otimes b)=\psi(b) a$ for all $a \in A, b \in B$. Define $\eta_{\alpha}(a)=T \circ \rho_{\alpha}\left(a \otimes x_{0}\right)$.Clearly for each α, the operator $\eta_{\alpha}: A \rightarrow A \otimes_{p} A$ is bounded and linear. Note that

$$
a \cdot \eta_{\alpha}(b)-\eta_{\alpha}(a b) \rightarrow 0, \quad \eta_{\alpha}(a b)-\eta_{\alpha}(a) \cdot b \rightarrow 0, \quad(a, b \in A) .
$$

We can show that

$$
\begin{aligned}
\pi_{A} \circ \eta_{\alpha}(a)-a=\pi_{A} \circ T \circ \rho_{\alpha}\left(a \otimes x_{0}\right)= & (i d \otimes \psi) \circ \pi_{A \otimes_{p} B} \circ \rho_{\alpha}\left(a \otimes x_{0}\right)-(i d \otimes \psi)\left(a \otimes x_{0}\right) \\
& +(i d \otimes \psi)\left(a \otimes x_{0}\right)-a \\
& =(i d \otimes \psi)\left(\pi_{A \otimes_{p} B} \circ \rho_{\alpha}\left(a \otimes x_{0}\right)-a \otimes x_{0}\right)+0 \rightarrow 0,
\end{aligned}
$$

for all $a \in A$. Therefore A is approximate ϕ-biprojective.

3. Some applications for harmonic analysis

For a locally compact group G, a linear subspace $S(G)$ of $L^{1}(G)$ is called a Segal algebra, whenever
(i) $S(G)$ is dense in $L^{1}(G)$;
(ii) With a norm $\|\cdot\|_{S} S(G)$ becomes a Banach space which $\|f\|_{1} \leq\|f\|_{S}$ for every $f \in S(G)$;
(iii) For $f \in S(G)$ and $y \in G$, we have $L_{y} f \in S(G)$. Here the map $y \mapsto L_{y}(f)$ from G into $S(G)$ is continuous, where $L_{y}(f)(x)=f\left(y^{-1} x\right)$;
(iv) $\left\|L_{y}(f)\right\|_{S}=\|f\|_{S}$ for all $f \in S(G)$ and $y \in G$,
see [17].
We denote \widehat{G} for the dual of G, which consists of all non-zero continuous homomorphism ζ from G into the circle group \mathbb{T}. It is well-known that $\Delta\left(L^{1}(G)\right)=\left\{\phi_{\zeta}: \zeta \in \widehat{G}\right\}$, where $\phi_{\zeta}(f)=$ $\int_{G} \overline{\zeta(x)} f(x) d x$ and $d x$ is a left Haar measure on G, for more details, see [11, Theorem 23.7]. The map $\phi_{1}: L^{1}(G) \rightarrow \mathbb{C}$ which is specified by

$$
\phi_{1}(f)=\int_{G} f(x) d x
$$

is called augmentation character. It is well known that the augmentation character induces a character on $S(G)$ is still denoted by ϕ_{1}, see [3].

A locally compact group G is called SIN group if it contains a fundamental family of compact invariant neighborhoods of the identity, see [5, p. 86].

Theorem 3.1. Let G be a locally compact $S I N$-group. Then $S(G)$ is approximate ϕ_{1}-biprojective if and only if G is amenable.

Proof. Suppose that G is a $S I N$ group. Then by [14], $S(G)$ has a central approximate identity. It follows that there exists an element $f \in S(G)$ such that $g f=f g$ and $\phi_{1}(f)=1$ for all $g \in S(G)$. Now by Proposition 2.1, approximate ϕ_{1}-biprojectivity of $S(G)$ gives that $S(G)$ is approximate left ϕ_{1}-amenable. Thus there is a net $\left(m_{\alpha}\right)$ in $S(G)$ such that

$$
\left\|g m_{\alpha}-\phi_{1}(g) m_{\alpha}\right\|_{S} \rightarrow 0, \quad \phi_{1}\left(m_{\alpha}\right) \rightarrow 1 \quad(g \in S(G))
$$

We know that $\|\cdot\|_{1} \leq\|\cdot\|_{S}$. Thus it follows that

$$
\left\|g m_{\alpha}-\phi_{1}(g) m_{\alpha}\right\|_{1} \rightarrow 0, \quad \phi_{1}\left(m_{\alpha}\right) \rightarrow 1 \quad(g \in S(G))
$$

Put $f_{\alpha}=f m_{\alpha}$. For each $y \in G$ and $g \in S(G)$, consider

$$
\phi_{1}\left(\delta_{y} g\right)=\int_{G} \delta_{y} g(x) d x=\int_{G} g\left(y^{-1} x\right) d x=\int_{G} g(x) d x=\phi_{1}(g) .
$$

Noticing that here δ_{y} gives for the point mass at $\{y\}$. Using (iii) in the definition of the Segal algebras

$$
\begin{align*}
\left\|\delta_{y} f_{\alpha}-f_{\alpha}\right\|_{1}= & \left\|\left(\delta_{y} f\right) m_{\alpha}-f m_{\alpha}\right\|_{1} \\
\leq & \left\|\left(\delta_{y} f\right) m_{\alpha}-m_{\alpha}\right\|_{1}+\left\|m_{\alpha}-f m_{\alpha}\right\|_{1} \\
\leq & \left\|\left(\delta_{y} f\right) m_{\alpha}-\phi_{1}\left(\delta_{y} f\right) m_{\alpha}\right\|_{1}+\left\|\phi_{1}\left(\delta_{y} f\right) m_{\alpha}-m_{\alpha}\right\|_{1} \tag{3.1}\\
& +\left\|m_{\alpha}-\phi_{1}(f) m_{\alpha}\right\|_{1}+\left\|\phi_{1}(f) m_{\alpha}-f m_{\alpha}\right\|_{1} \rightarrow 0 .
\end{align*}
$$

On the other hand

$$
\phi_{1}\left(f_{\alpha}\right)=\phi_{1}\left(f m_{\alpha}\right)=\phi_{1}(f) \phi_{1}\left(m_{\alpha}\right) \rightarrow 1 .
$$

We know that ϕ_{1} is a character. Then ϕ_{1} is a bounded linear functional. So $\left|f_{\alpha}\right| \leq\left\|f_{\alpha}\right\|_{1}$ implies that the net f_{α} stays away from 0 . Hence we suppose that $\left\|f_{\alpha}\right\|_{1} \geq \frac{1}{2}$. Set $g_{\alpha}=\frac{\| f_{\alpha} \mid}{\left\|f_{\alpha}\right\|_{1}}$. It is clear that $\left(g_{\alpha}\right)$ is a bounded net in $L^{1}(G)$. Consider

$$
\left\|\delta_{y} g_{\alpha}-g_{\alpha}\right\|_{1} \leq 2\left\|\delta_{y}\left|f_{\alpha}\right|-\mid f_{\alpha}\right\|_{1} \leq 2\left\|\delta_{y} f_{\alpha}-f_{\alpha}\right\|_{1} \rightarrow 0
$$

Therefore [18, Exercise 1.1.6], follows that G is amenable.
Conversely, suppose that G is amenable. Using [22, Corollary 3.2], amenability of G gives that $S(G)$ is pseudo-amenable. Then it is easy to see that $S(G)$ is approximate ϕ_{1}-biprojective.

Suppose that G is a locally compact group G. Then the Fourier algebra on G is denoted by $A(G)$.

Lemma 3.2. Suppose that G is a locally compact group. Then $A(G)$ is approximate ϕ-biprojective, for all $\phi \in \Delta(A(G))$.

Proof. Using [13, Example 2.6], we know that $A(G)$ is left ϕ-amenable for each $\phi \in \Delta(A(G))$. Thus there is a bounded net $n_{\alpha} \in A(G)$ such that $a n_{\alpha}-\phi(a) n_{\alpha} \rightarrow 0$ and $\phi\left(n_{\alpha}\right)=1$ for all $a \in A(G)$, see [13]. Since $A(G)$ with respect to the pointwise multiplication is a commutative Banach algebra $a n_{\alpha}-\phi(a) n_{\alpha}=n_{\alpha} a-\phi(a) n_{\alpha} \rightarrow 0$. Define $\rho_{\alpha}: A \rightarrow A \otimes_{p} A$ by $\rho_{\alpha}(a)=a \cdot n_{\alpha} \otimes n_{\alpha}$ for all $a \in A(G)$. One can easily see that

$$
\rho_{\alpha}(a b)-a \cdot \rho_{\alpha}(b) \rightarrow 0, \quad \rho_{\alpha}(a b)-\rho_{\alpha}(a) \cdot b \rightarrow 0, \quad \phi \circ \pi_{A(G)} \circ \rho_{\alpha}(a) \rightarrow \phi(a),
$$

for all $a \in A(G)$. Therefore $A(G)$ is approximately ϕ-biprojective, for all $\phi \in \Delta(A(G))$.

For a locally compact group $G, M(G)$ is denoted the measure algebra with respect to G. We know that $L^{1}(G)$ is a closed ideal of $M(G)$. So we can extend every character of $L^{1}(G)$ to $M(G)$. So the augmentation character ϕ_{1} can be extended to $M(G)$ which we denote it by ϕ_{1} again.

Theorem 3.3. The measure algebra $M(G)$ is approximate ϕ_{1}-biprojective if and only if G is amenable.

Proof. Let $M(G)$ be approximate ϕ_{1}-biprojective. We know that $M(G)$ is unital. Applying Proposition 2.1 gives that $M(G)$ is approximate left ϕ_{1}-amenable. Since $L^{1}(G)$ is a closed ideal of $M(G)$ and $\left.\phi_{1}\right|_{L^{1}(G)} \neq 0$, by [13, Lemma 3.1] $L^{1}(G)$ is approximate left ϕ_{1}-amenable. By Theorem 3.1, G is amenable.

Conversely, Suppose that G is amenable. So by Johnson's theorem $L^{1}(G)$ is an amenable Banach algebra[18]. Hence $L^{1}(G)$ is left and right ϕ_{1}-amenable. So there exist bounded nets (a_{α}) and $\left(b_{\alpha}\right)$ in $L^{1}(G)$ such that

$$
b_{\alpha} b-\phi_{1}(b) b_{\alpha} \rightarrow 0, \quad a a_{\alpha}-\phi_{1}(a) a_{\alpha} \rightarrow 0, \quad \phi_{1}\left(a_{\alpha}\right)=1 \quad\left(a, b \in L^{1}(G)\right) .
$$

Pick $i_{0} \in L^{1}(G)$ such that $\phi_{1}\left(i_{0}\right)=1$. Set $m_{\alpha}=i_{0} a_{\alpha} \otimes b_{\alpha} i_{0} \in M(G) \otimes_{p} M(G)$. Thus

$$
\begin{align*}
a m_{\alpha}-m_{\alpha} a & =a i_{0} a_{\alpha} \otimes b_{\alpha} i_{0}-\phi_{1}(a) i_{0} a_{\alpha} \otimes b_{\alpha} i_{0} \\
& +\phi_{1}(a) i_{0} a_{\alpha} \otimes b_{\alpha} i_{0}-i_{0} a_{\alpha} \otimes b_{\alpha} i_{0} a \tag{3.2}\\
& =\left(a i_{0} a_{\alpha}-\phi_{1}(a) i_{0} a_{\alpha}\right) \otimes b_{\alpha} i_{0}+i_{0} a_{\alpha} \otimes\left(b_{\alpha} i_{0} a-\phi_{1}(a) b_{\alpha} i_{0}\right) \rightarrow 0
\end{align*}
$$

and

$$
\phi_{1} \circ \pi_{M(G)}\left(i_{0} a_{\alpha} \otimes b_{\alpha} i_{0}\right)=\phi_{1}\left(i_{0} a_{\alpha} b_{\alpha} i_{0}\right)=\phi_{1}\left(a_{\alpha}\right) \phi_{1}\left(b_{\alpha}\right)=1,
$$

for each $a \in M(G)$. Define $\rho_{\alpha}: A \rightarrow A \otimes_{p} A$ by $\rho_{\alpha}(a)=a \cdot m_{\alpha}$. It is easy to see that

$$
\rho_{\alpha}(a b)-a \cdot \rho_{\alpha}(b) \rightarrow 0, \quad \rho_{\alpha}(a b)-\rho_{\alpha}(a) \cdot b \rightarrow 0, \quad \phi \circ \pi_{M(G)} \circ \rho_{\alpha}(a) \rightarrow \phi(a),
$$

for all $a \in M(G)$. It finishes the proof.
Corollary 3.4. The measure algebra $M(G)$ is approximate character biprojective if and only if G is discrete and amenable.

Proof. Let $M(G)$ be approximate character biprojective. We know that $M(G)$ ha s unit. Using Proposition 2.1, approximate character biprojectivity gives that $M(G)$ is approximate character amenable. By [2, Theorem 7.2] G is discrete and amenable.

Conversely, Suppose that G is discrete and amenable. By [9, Proposition 4.2] $M(G)$ is pseudoamenable. Hence one can easily see that $M(G)$ is approximate character biprojective.

In fact, in the proof of above Corollary we showed if a Banach algebra A is pseudo-amenable, then A is approximately ϕ-biprojective. In the following example we show that the converse of this fact is not true.

Example 3.5. Suppose that G is an infinite compact group. So the compactness of G gives that $\widehat{G} \subseteq L^{\infty}(G) \subseteq L^{1}(G)$. Therefore each $\rho \in \widehat{G}$ implies that

$$
f \rho(x)=\int f(y) \rho\left(y^{-1} x\right) d y=\rho(x) \int f(y) \rho\left(y^{-1}\right) d y=\rho(x) \int f(y) \overline{\rho(y)} d y=\phi_{\rho}(f) \rho(x)
$$

and

$$
\phi_{\rho}(\rho)=\int_{G} \rho(x) \overline{\rho(x)} d x=\int_{G} 1 d x=1, \quad\left(f \in L^{1}(G)\right)
$$

where the normalized left Haar measure on G considered here, for all $x \in G$. We know that $\rho \in$ $Ł^{1}(G)$. Then $f \mapsto \rho f$ and $f \mapsto f \rho$ become w^{*}-continuous maps on $L^{1}(G)^{* *}$. So for $\tilde{\phi}_{\rho} \in \Delta\left(L^{1}(G)^{* *}\right)$ we have

$$
\rho f=f \rho=\tilde{\phi}_{\rho}(f) \rho, \quad \phi_{\rho}(\rho)=\tilde{\phi}_{\rho}(\rho)=1, \quad\left(f \in L^{1}(G)^{* *}\right) .
$$

Define $\eta: L^{1}(G)^{* *} \rightarrow L^{1}(G)^{* *} \otimes_{p} L^{1}(G)^{* *}$ by $\eta(f)=f \cdot \rho \otimes \rho$. Clearly

$$
\eta(f g)=f \cdot \eta(g)=\eta(f) \cdot g
$$

and

$$
\tilde{\phi} \circ \pi_{L^{1}(G)^{* *}} \circ \eta(f)=\tilde{\phi} \circ \pi_{L^{1}(G)^{* *}}(f \cdot \rho \otimes \rho)=\tilde{\phi}(f)
$$

for each $f, g \in L^{1}(G)^{* *}$. It deduces that $L^{1}(G)^{* *}$ is approximate ϕ-biprojective. Suppose in contradiction that $L^{1}(G)^{* *}$ is pseudo-amenable. Hence by [9, Proposition 4.2] G is discrete and amenable. Then the compactness of G gives that G is finite which is impossible.

The semigroup S is called inverse semigroup, if for each $s \in S$ there exists $s^{*} \in S$ such that $s s^{*} s=s^{*}$ and $s^{*} s s^{*}=s$. An inverse semigroup S is called Clifford semigroup if for each $s \in S$ there exists $s^{*} \in S$ such that $s s^{*}=s^{*} s$. There exists a partial order on each inverse semigroup S, that is,

$$
s \leq t \Leftrightarrow s=s s^{*} t \quad(s, t \in S) .
$$

Let (S, \leq) be an inverse semigroup. For each $s \in S$, set $(x]=\{y \in S \mid y \leq x\}$. S is called uniformly locally finite if $\sup \{|(x]|: x \in S\}<\infty$. Suppose that S is an inverse semigroup and $e \in E(S)$, where $E(S)$ is the set of all idempotents of S. Then $G_{e}=\left\{s \in S \mid s s^{*}=s^{*} s=e\right\}$ is a maximal subgroup of S with respect to e. See [12] as a main reference of semigroup theory.

In the following theorem, we show that for certain semigroup algebras the notion of approximate character biprojectivity is equivalent with pseudo-amenability.
Theorem 3.6. Let $S=\cup_{e \in E(S)} G_{e}$ be a Clifford semigroup such that $E(S)$ is uniformly locally finite. Then $\ell^{1}(S)$ is approximate character biprojective if and only if $\ell^{1}(S)$ pseudo-amenable.
Proof. Let $\ell^{1}(S)$ be approximate character biprojective. By [16, Theorem 2.16], $\ell^{1}(S) \cong \ell^{1}-$ $\oplus_{e \in E(S)} \ell^{1}\left(G_{e}\right)$. Since $\ell^{1}\left(G_{e}\right)$ has a character ϕ_{1} (at least augmentation character), then this character extends to $\ell^{1}(S)$ which we denote it again by ϕ_{1}. Then $\ell^{1}(S)$ is approximate ϕ_{1}-biprojective. Because $\left.\phi_{1}\right|_{\ell^{1}\left(G_{e}\right)} \neq 0$ and $\ell^{1}\left(G_{e}\right)$ is a closed ideal of $\ell^{1}(S)$, Proposition 2.5 gives that $\ell^{1}\left(G_{e}\right)$ is approximate ϕ_{1}-biprojective. We know that $\ell^{1}\left(G_{e}\right)$ is unital. So Proposition 2.1 gives that $\ell^{1}\left(G_{e}\right)$ is approximate left ϕ_{1}-amenable. So by [2, Theorem 7.1], G_{e} is amenable for all $e \in E(S)$. Thus by [6, Corollary 3.9] $\ell^{1}(S)$ is pseudo-amenable.
Converse is clear.

Example 3.7. We give a Banach algebra which is approximate ϕ-biprojective but it is not ϕ biprojective.

Let $\mathbb{N}_{\text {max }}$ be a semigroup with the operation $m * n=\max \{m, n\}$, for all $m, n \in \mathbb{N}$. The maximal ideal space of this algebra is $\Delta\left(\ell^{1}\left(\mathbb{N}_{\max }\right)\right)$. It consists of all maps $\phi_{n}: \ell^{1}\left(\mathbb{N}_{\max }\right) \rightarrow \mathbb{C}$ given by $\phi_{n}\left(\sum_{i=1}^{\infty} \alpha_{i} \delta_{i}\right)=\sum_{i=1}^{n} \alpha_{i}$ for every $n \in \mathbb{N} \cup\{\infty\}$, for more information see [4]. Define $m=w^{*}-$ $\lim \delta_{n} \otimes \delta_{n} \in\left(\ell^{1}\left(\mathbb{N}_{\text {max }}\right) \otimes_{p} \ell^{1}\left(\mathbb{N}_{\text {max }}\right)\right)^{* *}$. Clearly $a \cdot m=m \cdot a$ and $\tilde{\phi_{\infty}} \circ \pi_{\ell^{1}\left(\mathbb{N}_{\text {max }}\right)}(m)=1$ for all $a \in \ell^{1}\left(\mathbb{N}_{\text {max }}\right)$. Following the similar method as in the proof of Theorem 2.4, gives that $\ell^{1}\left(\mathbb{N}_{\text {max }}\right)$ is approximate ϕ_{∞}-biprojective. We assume toward a contradiction that $\ell^{1}\left(\mathbb{N}_{\max }\right)$ is ϕ_{∞}-biprojective. Define

$$
m_{n}=\left(\delta_{n}-\delta_{n+1}\right) \otimes\left(\delta_{n}-\delta_{n+1}\right) \in \ell^{1}\left(\mathbb{N}_{\max }\right) \otimes_{p} \ell^{1}\left(\mathbb{N}_{\max }\right)
$$

one can see that

$$
a m_{n}=m_{n} a, \quad \phi_{n} \circ \pi_{\ell^{1}\left(\mathbb{N}_{\text {max }}\right)}\left(m_{n}\right)=1, \quad\left(a \in \ell^{1}\left(\mathbb{N}_{\text {max }}\right)\right) .
$$

By defining $\rho_{n}(a)=a \cdot m_{n}$, we can show that $\phi_{n} \circ \pi_{\ell^{1}\left(\mathbb{N}_{\text {max }}\right)} \circ \rho_{n}(a)=\phi(a)$ for all $a \in \pi_{\ell^{1}\left(\mathbb{N}_{\text {max }}\right)}$. It follows that $\pi_{\ell^{1}\left(\mathbb{N}_{\text {max }}\right)}$ is ϕ_{n}-biprojective for all $\phi_{n} \in \Delta\left(\ell^{1}\left(\mathbb{N}_{\text {max }}\right)\right)$. Therefore [15, Remark 3.6] and [15, Lemma 3.7] imply the maximal ideal space of $\ell^{1}\left(\mathbb{N}_{\vee}\right)$ is finite which is impossible, because the maximal ideal space of $\ell^{1}\left(\mathbb{N}_{\mathrm{v}}\right)$ is $\mathbb{N} \cup\{\infty\}$.

Acknowledgements The authors are grateful to the referee for his/her useful comments which improved the manuscript. The first author is thankful to Ilam university, for it's support.

References

[1] H.P. Aghababa and M.H. Sattari, Approximate biprojectivity and biflatness of some algebras over certain semigroups, Bull. Iran. Math. Soc., 2, (2020), 145-155.
[2] H.P. Aghababa, L.Y. Shi and Y.J. Wu, Generalized notions of character amenability, Acta Math. Sin., Engl. Ser., 29(7), (2013), 1329-1350.
[3] M. Alaghmandan, R. Nasr Isfahani and M. Nemati, Character amenability and contractibility of abstract Segal algebras, Bull. Aust. Math. Soc., 82, (2010), 274-281.
[4] H.G. Dales and R.J. Loy, Approximate amenability of semigroup algebras and Segal algebras, Diss. Math., 474, (2010), 1-58.
[5] R.S. Doran and J. Whichman, Approximate identities and factorization in Banach modules, Lecture Notes in Mathematics, 768, Springer, 1979.
[6] M. Essmaili, M. Rostami and A. Pourabbas, Pseudo-amenability of certain semigroup algebras, Semigroup Forum, 82(3), (2011), 478-484.
[7] F. Ghahramani and R.J. Loy, Generalized notions of amenability, J. Funct. Anal., 208, (2004), 229-260.
[8] F. Ghahramani, R.J. Loy and Y. Zhang, Generalized notions of amenability II, J. Func. Anal., 254, (2008), 17761810.
[9] F. Ghahramani and Y. Zhang, Pseudo-amenable and pseudo-contractible Banach algebras, Math. Proc. Camb. Philos. Soc., 142, (2007), 111-123.
[10] A.Ya. Helemskii, The Homology of Banach and Topological Algebras, Kluwer, Academic Press, Dordrecht, 1989.
[11] E. Hewitt and K.A. Ross, Abstract Harmonic Analysis I, Springer-Verlag, Berlin, 1963.
[12] J. Howie, Fundamental of Semigroup Theory, London Math. Soc Monographs, 12, Clarendon Press, Oxford, 1995.
[13] E. Kaniuth, A.T. Lau and J. Pym, On ϕ-amenability of Banach algebras, Math. Proc. Camb. Philos. Soc., 144, (2008), 85-96.
[14] E. Kotzmann and H. Rindler, Segal algebras on non-abelian groups, Trans. Am. Math. Soc., 237, (1978), 271281.
[15] A. Pourabbas and A. Sahami, On character biprojectivity of Banach algebras, Sci. Bull., Ser. A, Appl. Math. Phys., Politeh. Univ. Buchar., 78(4), (2016), 163-174.
[16] P. Ramsden, Biflatness of semigroup algebras, Semigroup Forum, 79, (2009), 515-530.
[17] H. Reiter, L^{1}-algebras and Segal algebras, Lecture Notes in Mathematics, 231, Springer, 1971.
[18] V. Runde, Lectures on Amenability, Springer, New York, 2002.
[19] A. Sahami and A. Pourabbas, Approximate biprojectivity and ϕ-biflatness of some Banach algebras, Colloq. Math., 145, (2016), 273-284.
[20] A. Sahami and A. Pourabbas, Approximate biprojectivity of certain semigroup algebras, Semigroup Forum, 92, (2016), 474-485.
[21] A. Sahami and A. Pourabbas, On ϕ-biflat and ϕ-biprojective Banach algebras, Bull. Belg. Math. Soc.-Simon Stevin, 20, (2013), 789-801.
[22] E. Samei, N. Spronk and R. Stokke, Biflatness and pseudo-amenability of Segal algebras, Can. J. Math., 62, (2010), 845-869.
[23] Y. Zhang, Nilpotent ideals in a class of Banach algebras, Proc. Am. Math. Soc., 127(11), (1999), 3237-3242.

[^0]: *Corresponding author
 Email addresses: amir.sahami@aut.ac.ir (A. Sahami), b.olfatian@kut.ac.ir (B. Olfatian Gillan), m.omidi@kut.ac.ir (M.R. Omidi)
 http://doi.org/10.22072/wala.2022.526365.1322 © (2022) Wavelets and Linear Algebra

