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1. Introduction

Let Mn be the set of n × n complex matrices and let A ∈ Mn. The numerical range of A is
defined as follows (see, for instance, [2, 4]):

W(A) =
{
x∗Ax : x ∈ Cn, x∗x = 1

}
,

which is a useful concept in studying matrices and operators. However, it does not respect the
block structure of block operator matrices, thus the new concept of the quadratic numerical range
was introduced in [6]. The definition of the quadratic numerical range was generalized to the
block numerical range in [11] as follows: Let D := (Ck1 , . . . ,Ckn) be a decomposition of Cm, i.e.,
Cm = Ck1 × · · · × Ckn . With respect to this decomposition, the block matrix A has the following
representation:

A =


A11 · · · A1n
...

...
An1 · · · Ann

 , (1.1)

where Ai j is a ki × k j matrix. Let us denote the spectrum of a matrix A by σ(A). For D define the
block numerical range as follows:

WD(A) =
∪{
σ (Ax) : x = (x1, . . . , xn) ∈ D, x∗i xi = 1, i = 1, . . . , n

}
,

where

Ax =


⟨A11x1, x1⟩ · · · ⟨A1nxn, x1⟩
...

...
⟨An1x1, xn⟩ · · · ⟨Annxn, xn⟩

 , x = (x1, . . . , xn) ∈ D. (1.2)

It has been investigated in [1, 11, 10].
The block numerical radius ofA is defined as follows:

ωD(A) = max{|λ| : λ ∈ WD(A)}.

Apparently, for D = (Cm), ωD(A) yields the classical numerical radius ofA, i.e.,

ω(Cm)(A) = ω(A) = max{|z| : z ∈ W(A)}.

Here is a summary of the results obtained by Tretter et al. in [11].

Lemma 1.1. LetA be of the form (1.1) and D = (Ck1 , . . . ,Ckn). Then

(1) For n = 1, the block numerical range coincides with the numerical range, i.e., W(Cm)(A) =
W(A).

(2) For an n× n matrix A, the block numerical range of A coincides with the spectrum of A, i.e.,
W(C,...,C)(A) = σ(A).

(3) IfA is a lower or upper block triangular matrix, then WD(A) = W(A11) ∪ · · · ∪W(Ann).
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(4) σ(A) ⊆ WD(A) ⊆ W(A).

(5) WD(A) is compact, but it is not necessarily convex.

(6) For all α, β ∈ C we have WD(αA + βIm) = αWD(A) + β.

We call a matrix A ∈ Mn irreducible if n = 1, or n ≥ 2 and there does not exist a permutation
matrix P such that

PT AP =
(

B C
0 D

)
,

where B and D are nonempty square submatrices.
Given A, B ∈ Mn, A is said to be diagonally similar to B if there exists a nonsingular diagonal

matrix D such that A = D−1BD; if, in addition, D can be chosen to be unitary, then we say A is
unitarily diagonally similar to B.

By the classical Perron-Frobenius theory, if A is a (square, entrywise) nonnegative matrix, then
its spectral radius ρ(A) is an eigenvalue of A and there is a corresponding nonnegative eigenvector.
If, in addition, A is irreducible, then ρ(A) is a simple eigenvalue and the corresponding eigenvector
can be chosen to be positive. Moreover, for an irreducible nonnegative matrix with index of
imprimitivity h > 1 (i.e., one having exactly h eigenvalues with modulus ρ(A)), Frobenius has
also obtained a deeper structure theorem: The set of eigenvalues of A with modulus ρ(A) consists
precisely of ρ(A) times all the h−th roots of unity, the spectrum of A is invariant under a rotation
about the origin of the complex plane through an angle of 2π/h and A is an h−cyclic matrix, i.e.,
there is a permutation matrix P such that PT AP is a matrix of the form

0 A12 0 . . . 0 0
0 0 A23 . . . 0 0
...

. . .
...

0 0 . . . 0 Ah−1,h

Ah,1 0 . . . 0 0


, (1.3)

where the zero blocks along the diagonal are all square. This theory has been extended to the
numerical range of a nonnegative matrix by Issos in his unpublished Ph.D. thesis [5] and then
completed in [7, 8]. In [1], Forster et al. extended the main theorem of Issos on the block numerical
range of a nonnegative irreducible matrix A. In Section 2, we redrive the main theorem of Issos on
the block numerical range by simple method. The Wielandt’s lemma [9, Chapter II, Theorem 2.1]
and also the Ky Fan’s theorem [3, Theorem 8.2.12] are the applications of the Perron-Frobenius
theorem, which can be extended to the block numerical range. This we do in Section 3.

We first add a comment on the notation that is used. We always use A = (ai j)n
i, j=1 to denote an

n×n complex matrix and useA = (Ai j)n
i, j=1 to denote an m×m (m > n) matrix with complex entries,

which is partitioned in the form (1.1), i.e., Ai j ∈ Mki×k j is the (i, j) block ofA and k1+k2+ · · ·+kn =

m. Let ≥ 0 be the symbol for real arrays with nonnegative entries, and ≥ the symbol for the induced
entrywise order. The symbol | . | is reserved for the entrywise absolute value of an array.

For a vector x ∈ Cn, we denote by ∥x∥ the Euclidean norm of x, i.e., ∥x∥ = (x∗x)1/2 . For a
matrix A ∈ Mn, we denote by ∥A∥ the operator norm of A, i.e., ∥A∥ = max∥x∥=1 ∥Ax∥, where ∥ · ∥
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is the Euclidean norm. Also we denote by λmaxH(A) and λminH(A) the largest eigenvalue and the
smallest eigenvalue of H(A), respectively, where H(A) = (A+ A∗)/2 denotes the Hermitian part of
the square matrix A.

2. Main result of Issos

In this section, we show that for a nonnegative irreducible matrixA, the set of points of WD(A)
with modulus ωD(A), consists precisely of ωD(A) times all the h−th roots of unity.

The following lemma shows that if A is h−cyclic, then the block numerical range of A is
invariant under rotations about the origin of the complex plane through the angles 2πt/h for all
t = 0, 1, . . . , h − 1.

Lemma 2.1. Let A = (Ai j)n
i, j=1 ∈ Mm be permutationally similar to the matrix of the form (1.3).

Then we have:

(1) WD(A) = WD(e2πti/hA), for all t = 0, 1, . . . , h − 1.

(2) α ∈ WD(A) if and only if αe2πti/h ∈ WD(A), for all t = 0, 1, . . . , h − 1.

(3) If h = 2t, then WD(A) is symmetric with respect to the origin.

Proof. (1). Let B = PTAP be an h−cyclic matrix for a permutation matrix P. By the proof of
Theorem 6 in [5], D−1BD = eiθB, where D = In1 ⊕ eiθIn2 ⊕ · · ·⊕ ei(h−1)θInh is unitary diagonal matrix
with θ = 2πt/h and n1 + · · · + nh = m, where ni(i = 1, . . . , h) is the dimension of the i-th diagonal
block of B. This shows that

e2πti/hA = (PDPT )−1A(PDPT ). (2.1)

As the block numerical range is invariant under diagonal unitary transformation [1, Equation
(2.13)], so we have WD(A) = WD(e2πti/hA), for all t = 0, . . . , h − 1.

(2). It is clear from part (1) and Lemma 1.1.
(3). Let h = 2t. Then by part (2), α ∈ WD(A) if and only if αe2πti/2t ∈ WD(A), i.e., −α ∈

WD(A).

The main theorem of Issos in [5] for the block numerical range can now be stated as follows:

Theorem 2.2. LetA = (Ai j)n
i, j=1 ∈ Mm be an irreducible nonnegative matrix with index of imprim-

itivity h. Then

{λ ∈ WD(A) : |λ| = ωD(A)} = {ωD(A)e2πti/h : t = 0, 1, . . . , h − 1}.

Proof. By the Perron-Frobenius theorem, there is a permutation matrix P such that PTAP is a
matrix of the form (1.3). By [1, Proposition 3.1] ωD(A) ∈ WD(A) and then by (2.1) and Lemma
2.1 (2), we have ωD(A)e2πti/h ∈ WD(A) for all t = 0, . . . , h − 1, i.e.,

{ωD(A)e2πti/h : t = 0, 1, . . . , h − 1} ⊆ {λ ∈ WD(A) : |λ| = ωD(A)}.

Again by (2.1) and the Perron-Frobenius theorem, h is equal to the largest positive integer such
that the matrixA is unitarily diagonally similar to the matrix e2πti/hA for t = 0, 1, . . . , h − 1.
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Therefore, the set {
0,

2π
h
, . . . ,

2π(h − 1)
h

}
,

is the cyclic group modulo 2π of the largest order, concluding that there does not exist υ = 2π
p <

2π
h

such that ωD(A)eiυ ∈ WD(A). Hence we establish the equality{
λ ∈ WD(A) : |λ| = ωD(A)

}
=

{
ωD(A)e2πti/h : t = 0, 1, . . . , h − 1

}
.

So, the proof is complete.

We illustrate Theorem 2.2 in the following example.

Example 2.3. Consider the nonnegative irreducible matrix

A =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

 ,
with index of imprimitivity h = 4. Here the spectrum of A is given by σ(A) = {−1,−i, i, 1}. If
D = {C2,C2}, then ωD(A) = 1. Figure 1 shows that the numbers −1,−i, i, 1 belong to WD(A),
with modulus ωD(A) = 1. Note that W(A) is the convex hull of the eigenvalues ofA.

Figure 1: The quadratic numerical range of the matrixA with respect to the decomposition C4 = C2 × C2.
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3. The block numerical radius

In this section, we generalize the Wielandt’s lemma and the Ky Fan’s theorem on the block
numerical range.

For proving the main result of this section, we need the following lemma due to Wielandt [9,
Chapter II, Theorem 2.1].

Lemma 3.1 (Wielandt’s lemma). Let A,C ∈ Mn and assume that A is nonnegative. If |C| ≤ A, then
ρ(C) ≤ ρ(A). Suppose, in addition, that A is irreducible. If ρ(C) = ρ(A) and ε is a unit complex
number such that ερ(C) ∈ σ(C), then C = εDAD−1 for some unitary diagonal matrix D.

Now, we can generalize the above lemma on the block numerical range.

Theorem 3.2. Assume that C = (Ci j)n
i, j=1 ∈ Mm is partitioned as in (1.1). Let A = (ai j)n

i, j=1 be such
that

∥Ci j∥ ≤ ai j, i, j = 1, . . . , n. (3.1)

Then
ωD(C) ≤ ω(A). (3.2)

Suppose, in addition, that A is irreducible. If ωD(C) = ω(A) and ξ is a unit complex number such
that ξωD(C) ∈ WD(C), then

∥Ci j∥ = ai j, i, j = 1, . . . , n (3.3)

and there exists a unitary matrix U such that

U∗CU = ξ
(

A 0
0 ∗

)
. (3.4)

Proof. Let D = (Ck1 , . . . ,Ckn) be a decomposition of Cm. In view of the Cauchy-Schwarz inequal-
ity, the entries of the matrix Cx, defined by (1.2), satisfy the relations

|(Cx)i j| ≤ ∥Ci jx j∥∥xi∥ ≤ ∥Ci j∥, i, j = 1, 2, . . . , n, (3.5)

for all x = (x1, . . . , xn) ∈ D with x∗i xi = 1, i = 1, 2, . . . , n. Taking into account (3.1) and (3.5), we
can apply Wielandt’s lemma to Cx and A, which yields the inequality

ρ(Cx) ≤ ρ(A). (3.6)

On the other hand, by definition of the block numerical range, there exists some y = (y1, . . . , yn) ∈
D with y∗i yi = 1, i = 1, 2, . . . , n such that ωD(C) = ρ(Cy). So by (3.6) and [4, Property 1.2.9], we
have

ωD(C) = ρ(Cy) ≤ ρ(A) ≤ ω(A), (3.7)

which shows (3.2). Now assume that the matrix A is irreducible and that ωD(C) = ω(A). So the
inequalities in (3.7) all become equalities, i.e.,

ρ(Cy) = ρ(A). (3.8)
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In view of |Cy| ≤ A and equality (3.8), by the second half of Wielandt’s lemma, it follows that
there is a unitary diagonal matrix D, say D = diag(d1, . . . , dn), such that

(Cy)i j = y∗i Ci jy j = ξdiai jd−1
j , i, j = 1, . . . , n. (3.9)

Using (3.9), (3.1) and (3.5), we derive |(Cy)i j| = ai j ≥ ∥Ci j∥ ≥ |(Cy)i j|, for all i, j = 1, . . . , n and
conclude that (3.3) holds true. By setting zi = diyi, i = 1, . . . , n in (3.9), we have

z∗i Ci jz j = ξ ai j, i, j = 1, . . . , n. (3.10)

In order to obtain (3.4), we form the matrix

U1 =



z1 0 · · · · · · 0
0 z2 0 · · · 0

0 0 . . .
. . .

...
...
...
. . .

. . . 0
0 0 · · · 0 zn


∈ Mm×n.

Obviously, the columns of U1 are orthonormal, i.e., U∗1U1 = In. Therefore, one can complete
U1 to a unitary matrix U = [U1 U2] ∈ Mm. Using relations (3.10), we derive the equality U∗1CU1 =

ξA. By (3.3) and (3.10), we have

∥Ci j∥ = ai j =
∣∣∣∣⟨Ci jz j, zi

⟩∣∣∣∣ ≤ ∥Ci jz j∥ ∥zi∥ ≤ ∥Ci j∥,

which implies that there exists α ∈ C such that Ci jz j = α zi for all i, j = 1, . . . , n. In view of
the unitarity of the matrix U and the collinearity of the column vectors Ci jz j and zi for all i, j =
1, . . . , n, we then obviously have U∗2CU1 = 0. The remaining equality U∗1CU2 = 0 is established in
a similar way, based on the collinearity of the row vectors z∗i Ci j and z∗j for all i, j = 1, . . . , n.

Remark 3.3. In Theorem 3.2, let D = Cm, i.e., the block numerical range coincides with the
numerical range (see Lemma 1.1). We consider the following two cases:

(1) Assume that C = (Ci j)n
i, j=1 ∈ Mm is partitioned as in (1.1). In this case Theorem 3.2 can be

reformulated for the numerical range.
(2) Assume that C = (ci j)m

i, j=1 is an m×m matrix. In this case Theorem 3.2 can be reformulated
in the following way, which is a version of the Wielandt’s lemma on the numerical range [7,
Lemma 3.8].

Lemma 3.4. Let A,C ∈ Mn and assume that A is nonnegative. If |C| ≤ A, then ω(C) ≤ ω(A).
Suppose, in addition, that A is irreducible. If ω(C) = ω(A) and ε is a unit complex number such
that εω(C) ∈ W(C), then C = εDAD−1 for some unitary diagonal matrix D.

In the following result we present a version of the Ky Fan’s theorem on the block numerical
range.
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Theorem 3.5. Assume that C = (Ci j)n
i, j=1 ∈ Mm is partitioned as in (1.1). Let A = (ai j)n

i, j=1 be such
that

∥Ci j∥ ≤ ai j, i, j = 1, . . . , n.

Then
WD(C) ⊆

∩
θ∈[0,2π]

{
z ∈ C : mθ ≤ cos θ Re z − sin θ Im z ≤ Mθ

}
,

where

mθ = min
j

(
λminH

(
eiθC j j

)
− ω(A) + a j j

)
, Mθ = max

j

(
λmaxH

(
eiθC j j

)
+ ω(A) − a j j

)
.

Proof. Let D = (Ck1 , . . . ,Ckn) be a decomposition of Cm. By (3.5), it is easy to see that for any
θ ∈ [0, 2π] and for all x ∈ D with x∗i xi = 1, i = 1, 2, . . . , n, we have |H(eiθCx)| ≤ H(|Cx|) ≤ H(A).
Then by the Ky Fan’s theorem

σ
(
H(eiθCx)

)
⊆

n∪
j=1

{
z ∈ C :

∣∣∣z − Re(eiθx∗jC j jx j)
∣∣∣ ≤ ρ(H(A)) − a j j

}
.

Since ρ(H(A)) = ω(A) (see [7, Proposition 3.3]), it follows that

Re W(eiθCx)

⊆
[
min

j

(
Re(eiθx∗jC j jx j) − ω(A) + a j j

)
, max

j

(
Re(eiθx∗jC j jx j) + ω(A) − a j j

)]
.

By [4, Properties 1.2.5 and 1.2.9] for all j = 1, . . . , n, we have

Re(eiθx∗jC j jx j) ∈ W
(
H

(
eiθC j j

))
=

[
λminH

(
eiθC j j

)
, λmaxH

(
eiθC j j

)]
which implies that

min
j

(
Re(eiθx∗jC j jx j) − ω(A) + a j j

)
≥ min

j

(
λminH

(
eiθC j j

)
− ω(A) + a j j

)
max

j

(
Re(eiθx∗jC j jx j) + ω(A) − a j j

)
≤ max

j

(
λmaxH

(
eiθC j j

)
+ ω(A) − a j j

)
.

Hence W(Cx) lies in the zone {z ∈ C : mθ ≤ Re(eiθz) ≤ Mθ}. Since σ(Cx) ⊆ W(Cx) and so, by
definition of the block numerical range, the proof is completed by taking the intersection of these
zones for all θ ∈ [0, 2π].
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