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Abstract
In this paper, the notion of n-weak biamenability of Banach al-
gebras is introduced and for every n ≥ 3, it is shown that n-
weak biamenability of the second dual A∗∗ of a Banach alge-
bra A implies n-weak biamenability of A and this is true for
n = 1, 2 under some mild conditions. As a concrete example, it
is shown that for every abelian locally compact group G, L1(G)
is 1-weakly biamenable and `1(G) is n-weakly biamenable for
every odd integer n.

c© (2021) Wavelets and Linear Algebra

1. Introduction

Let X,Y and Z be normed spaces, and let f : X × Y → Z be a bounded bilinear mapping.
Following [1], the adjoint of f , denoted by f ∗ : Z∗ × X → Y∗, is defined by

〈 f ∗(z∗, x), y〉 = 〈z∗, f (x, y)〉 (x ∈ X, y ∈ Y, z∗ ∈ Z∗).
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Similarly f ∗∗ : Y∗∗ × Z∗ → X∗ and f ∗∗∗ : X∗∗ × Y∗∗ → Z∗∗ are defined by f ∗∗ = ( f ∗)∗ and
f ∗∗∗ = ( f ∗∗)∗, respectively. Let f t : Y × X → Z be the flip map of f defined by f t(y, x) = f (x, y).
Then both f ∗∗∗ and f t∗∗∗t are bounded bilinear mappings extending f . If f ∗∗∗ = f t∗∗∗t, then f is said
to be (Arens) regular.

A derivation from a Banach algebra A into a Banach A-module X is a bounded linear mapping
d : A→ X such that

d(ab) = d(a)b + ad(b) (a, b ∈ A).

For every x ∈ X, the mapping δx : a→ ax − xa (a ∈ A) is called an inner derivation.
Let X be a Banach A-module. Then X∗ is a dual Banach A-module, considering a · f and f · a, for
every a ∈ A and f ∈ X∗, as

a · f (x) = f (xa), f · a(x) = f (ax) (x ∈ X).

Similarly, the higher duals X(n) can be made into Banach A-modules in a natural fashion. We
denote these left and right A-module actions by π`n and πrn , respectively. Obviously for every
n ∈ N, π`n = πt∗t

rn−1
and πrn = π∗`n−1

, where π`0 and πr0 are the left and right A-module actions π` and
πr on X, respectively.

A Banach algebra A is called n-weakly amenable (n ∈ N), if every derivation from A to A(n)

is an inner derivation. The concept of n-weak amenability is initiated and developed by Dales,
Ghahramani, and Gronbæk in [6].

Let A be a Banach algebra, and let X be an A-module. A bounded bilinear mapping D :
A×A→ X is called a biderivation, if D is a derivation with respect to both arguments. That is, the
mappings aD : A→ X and Db : A→ X with

aD(b) = D(a, b) = Db(a) (a, b ∈ A)

are derivations. We denote the space of such biderivations by BZ1(A, X).
Let x ∈ Z(A, X), where

Z(A, X) = {x ∈ X; ax = xa (a ∈ A)}.

The map ∆x : A × A→ X with

∆x(a, b) = x[a, b] = x(ab − ba) (a, b ∈ A)

is a basic example of a biderivation and is called an inner biderivation. We denote the space of
such inner biderivations by BN1(A, X).
Biderivations are a subject of research in various areas. The algebraic aspects of biderivations on
certain algebras are investigated by several authors; see, for example, [4, 8], where the structures
of biderivations on triangular algebras and generalized matrix algebras are discussed, and partic-
ularly the question of whether biderivations on these algebras are inner, is investigated. For more
applications of biderivations in some other fields, see the survey article [5, Section 3].

Definition 1.1. Let n be a natural number. A Banach algebra A is n-weakly biamenable, if every
biderivation from A to A(n) is an inner biderivation. A is called permanently weakly biamenable if
A is n-weakly biamenable, for every n ∈ N.
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Note that despite the apparent similarity between derivations and biderivations and also inner
derivations and inner biderivations, there are fundamental differences between them. Especially
when a biderivation wants to be an inner bidetivation these differences become more apparent. A
part of these differences comes from the nature of biderivations, which depends on two compo-
nents. Another essential part of these differences goes back to the definition of inner biderivations,
which the implemented elements should be in Z(A, X). Accordingly, the concepts of amenability
and also weak amenability are different from biamenability and weak biamenability, respectively
[2].

Let A be a non-unital Banach algebra, and let A] = A ⊕ C be its unitization with the product

(a, α)(b, β) = (ab + αb + βa, αβ) (a, b ∈ A, α, β ∈ C).

Then A] is a Banach algebra, and we can consider for every natural number n, (A])(2n) = A(2n) ⊕ C
and for every non-negative integer n, (A])(2n+1) = A(2n+1)⊕C. The module actions of A] on (A])(2n+1)

are given by

(a, α)(λ, γ) = (aλ + αλ, αγ + 〈λ, a〉), and

(λ, γ)(a, α) = (λa + αλ, αγ + 〈λ, a〉) (a ∈ A, λ ∈ A(2n+1), α, γ ∈ C).

In this paper, we study the n-weak biamenability of a Banach algebra and its unitization and
introduce some permanently weakly biamenable Banach algebras. In [3] it is shown that for every
n ≥ 2, n-weak amenability of A∗∗ implies n-weak amenability of A and the same hold for n = 1
under some mild conditions. We obtain similar results for n-weak biamenability for n ≥ 3, in
general, and for n = 1 or n = 2, in certain cases. Also, we show that for every abelian locally
compact group G, L1(G) is 1-weakly biamenable and, for every discrete abelian locally compact
group G, `1(G) is n-weakly biamenable, for every odd integer n. For this, consider L∞(G) as an
M(G)-module with module actions

〈 f .µ, g〉 = 〈 f , µ ∗ g〉, 〈µ. f , g〉 = 〈 f , g ∗ µ〉 ( f ∈ L∞(G), g ∈ L1(G), µ ∈ M(G)).

We consider L∞(G) with the w∗-topology and M(G) with the strict topology. In strict topology,
a net (µα) in M(G) converges to µ ∈ M(G), if in the norm topology of L1(G) two convergences
µα ∗ f → µ ∗ f and f ∗ µα → f ∗ µ hold for every f ∈ L1(G).

2. n-weak biamenability of a Banach algebra and its unitization

In [2] it is shown that, despite the apparent similarities between the concepts of amenability
and biamenability of Banach algebras, they have very different and somewhat opposite properties
in some cases. In this regard, it is shown that commutative Banach algebras and also unitization
of Banach algebras are not biamenable, although they may be amenable. On the other hand, it is
shown that there are some noncommutative Banach algebras which are biamenable while they are
not amenable.
In this section, we study the n-weak biamenability of a Banach algebra and its unitization. Some
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known results on n-weak amenability (see [6] and [10]) are also studied for the concept of n-
weak biamenability. Before these, Let us give some examples of permanently weakly biamenable
Banach algebras.
If A is a commutative Banach algebra and n ∈ N, then A is n-weakly biamenable if and only if
the only biderivation D : A × A → A(n) is zero. For example, since C is amenable, there exists an
α(a) ∈ C such that

D(a, b) = δα(a)(b) = 0

for every biderivation D : C × C → C and every a, b ∈ C. This says that C is permanently
weakly biamenable. Also [2, Example 2.7 ] states that the module extension Banach algebras
B(H)⊕K(H) and B(H)⊕B(H)(2n), and also B(H)(2n) are permanently weakly biamenable for every
infinite-dimensional Hilbert space H and every integer n ≥ 0.

Let A be a Banach algebra, and let A2 = span{ab; a, b ∈ A}. We commence with the following
lemmas.

Lemma 2.1. If A is 1-weakly biamenable, then A2 is dense in A.

Proof. If A2 is not dense in A, then there exists a nonzero linear functional f ∈ A∗ such that it is
zero on A2. Now the bilinear map

D : A × A → A∗

(a, b) 7→ f (a) f (b) f

is a biderivation, which is not inner. Indeed, since f is zero on A2 we conclude that D(ab, c), aD(b, c)+
D(a, c)b,D(a, bc) and bD(a, c) + D(a, b)c are zero, for every a, b, c ∈ A. On the other hand since
f is nonzero, there is ξ ∈ A such that f (ξ) and so D(ξ, ξ) are nonzero. While for every inner
biderivation ∆, we have ∆(ξ, ξ) = 0.
So A is not 1-weakly biamenable, which is a contradiction. So A2 is dense in A.

Lemma 2.2. If A is (n + 2)-weakly biamenable, then it is n-weakly biamenable.

Proof. Let D ∈ BZ1(A, An). Then by embedding An in A(n+2) we can consider D ∈ BZ1(A, A(n+2)).
Hence there is φ ∈ Z(A, A(n+2)) such that D = ∆φ in A(n+2). Now for the projection map P : A(n+2) →

An, a ∈ A, ψ ∈ A(n+2) and Ω ∈ A(n−1) we have

〈P(aψ),Ω〉 = 〈aψ,Ω〉
= 〈ψ,Ωa〉
= 〈P(ψ),Ωa〉
= 〈aP(ψ),Ω〉;

and similarly P(ψa) = P(ψ)a. Therefore

P(φ)a = P(φa)
= P(aφ)
= aP(φ);
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and

P ◦ ∆φ(a, b) = P(φ[a, b])
= P(φ)[a, b]
= ∆P(φ)(a, b).

That is P(φ) ∈ Z(A, An) and D = ∆P(φ) in An.

Theorem 2.3. Let A be a non-unital Banach algebra, and let n ∈ N.

(i) Suppose that A is (2n − 1)-weakly biamenable. Then A] is (2n − 1)-weakly biamenable.

(ii) If A is commutative or it has an approximate identity, then (2n)-weak biamenability of A]

implies (2n)-weak biamenability of A.

Proof. (i) Let D : A × C→ A(n) be a biderivation, for some n. Then

D(a, β) = βD(a, 1) = 0, (a ∈ A, β ∈ C).

Similarly the only biderivations D : C × A→ A(n) and D : C × C→ A(n) are zero.
Now let D : A]×A] → (A])(2n−1) be a biderivation, and let P : (A])(2n−1) → A(2n−1) be the projection
map. Then D : A × A → A(2n−1) defined by D(a, b) = P ◦ D((a, 0), (b, 0)) is a biderivation, and
thereforeD = ∆F for some F ∈ Z(A, A(2n−1)).
Now the first part of the proof implies that

D((a, α), (b, β)) = D((a, 0), (b, 0)) + D((a, 0), (0, β))
+ D((0, α), (b, 0)) + D((0, α), (0, β))
= D((a, 0), (b, 0)) (a, b ∈ A and α, β ∈ C). (2.1)

Also for every a, b, c ∈ A we have D((ab, 0), (c, 0)) = (F[ab, c], γ) for some γ ∈ C. On the other
hand, there are ζ, η ∈ C such that

D((ab, 0), (c, 0)) = (a, 0)D((b, 0), (c, 0)) + D((a, 0), (c, 0))(b, 0)
= (a, 0)(F[b, c], ζ) + (F[a, c], η)(b, 0)
= (aF[b, c], 〈F[b, c], a〉) + (F[a, c]b, 〈F[a, c], b〉)
= (F[ab, c], 〈F, [ab, c]〉).

Hence γ = 〈F, [ab, c]〉 and D((ab, 0), (c, 0)) = (F, 0)([ab, c], 0). Also since A is (2n − 1)-weakly
biamenable, Lemmas 2.2 and 2.1 imply that A2 is dense in A, and by applying (2.1), we have

D((a, α), (b, β)) = D((a, 0), (b, 0))
= (F, 0)([a, b], 0)
= (F, 0)[(a, α), (b, β)] (a, b ∈ A, α, β ∈ C).

Now since (F, 0) ∈ Z(A], (A])(2n−1)), D is inner and hence A] is (2n − 1)-weakly biamenable.
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(ii) Let D : A × A → A(2n) be a biderivation. Then D : (A]) × (A]) → (A])(2n) defined by
D((a, α), (b, β)) = (D(a, b), 0) is a biderivation. So there is (φ, γ) ∈ Z(A], (A])(2n)) such that

(D(a, b), 0) = D((a, α), (b, β))
= (φ, γ)[(a, α), (b, β)]
= (φ, γ)([a, b], 0)
= (φ[a, b] + γ[a, b], 0).

That is, D(a, b) = φ[a, b] + γ[a, b].
Now if A is commutative, then D = 0, and so A is (2n)-weakly biamenable.
Also if A has an approximate identity (eα) and E is a w∗-cluster point of (eα), then ψ = φ + γE ∈
Z(A, A(2n)) and D = ∆ψ.

3. n-weak biamenability of the second dual of a Banach algebra

We know that for every n ≥ 2, n-weak amenability of A∗∗ implies n-weak amenability of A and
the same hold for n = 1 under some mild conditions [3]. In this section, we obtain similar results
for n-weak biamenability for n ≥ 3, in general, and for n = 1 or n = 2, under some conditions.

Lemma 3.1. Let a ∈ A, and let ϕ ∈ X(n) for n > 1. Then

(i) π`n(a, ϕ) = π∗∗∗`n−2
(a, ϕ).

(ii) πrn(ϕ, a) = π∗∗∗rn−2
(ϕ, a).

Proof. (i) Let λ ∈ X(n−1), and let {ωα} be a net in X(n−2) w∗-converging to ϕ. We have

〈π`n(a, ϕ), λ〉 = 〈ϕ, πrn−1(λ, a)〉
= lim

α
〈πrn−1(λ, a), ωα〉

= lim
α
〈λ, π`n−2(a, ωα)〉

= 〈π∗∗∗`n−2
(a, ϕ), λ〉

(ii) can be proved similarly.

Note that the above lemma implies, by an inductive argument, that

π`2k(a, ϕ) = π(3k)
` (a, ϕ), πr2k(ϕ, a) = π(3k)

r (ϕ, a)

and
π`2k+1(a, ψ) = π(3k)

`1
(a, ψ) = πt∗t3k

r (a, ψ), πr2k+1(ψ, a) = π(3k)
r1

(ψ, a) = π3k+1
` (ψ, a),

for every non-negative integer k and for every a ∈ A, ϕ ∈ X(2k) and ψ ∈ X(2k+1). So we arrive at the
next lemma, where a Banach algebra A with a product π is considered as an A-module and also
A∗∗ with the first Arens product π∗∗∗ is considered as an A∗∗-module. Although we have similar
results with the second Arens product.
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Lemma 3.2. Let F ∈ A∗∗, φ ∈ A(n+2) and n ≥ 0. Then

(i) π∗∗∗`n
(F, φ) = (π∗∗∗)`n(F, φ).

(ii) π∗∗∗rn
(φ, F) = (π∗∗∗)rn(φ, F).

Proof. (i) It is easy to see that
π∗∗∗t∗t(a, λ) = πt∗t∗∗∗(a, λ)

for every a ∈ A and λ ∈ A∗∗∗. Consider the nets {aα} in A and {ϕβ} in A(n), which are w∗-convergent
to F and φ, respectively. In the case when n = 2k + 1, the latter lemma yields

π∗∗∗`n
(F, φ) = w∗ − lim

α
w∗ lim

β
π`n(aα, ϕβ)

= w∗ − lim
α

w∗ lim
β
πt∗t(3k)(aα, ϕβ)

= w∗ − lim
α

w∗ lim
β

(πt∗t∗∗∗)(3k−3)(aα, ϕβ)

= w∗ − lim
α

w∗ lim
β

(π∗∗∗t∗t)(3k−3)(aα, ϕβ)

= w∗ − lim
α

w∗ lim
β

(π∗∗∗)t∗t(3k−3)(aα, ϕβ)

= (π∗∗∗)t∗t(3k)(F, φ)
= (π∗∗∗)`n(F, φ).

Also if n is even, then one can prove (i) with the same argument.
The proof of (ii) is similar.

For every n ≥ 0, let Jn : A(n) → A(n+2) be the inclusion map, and consider A(n) as a subspace of
A(n+2). In the following lemma, we consider A∗∗ with the first Arens product. Also, we can prove
similar results with the second Arens product.

Lemma 3.3.

(i) For every n ≥ 3, if D : A× A→ A(n) is a biderivation, then [J∗n−1 ◦D∗∗∗] : A∗∗ × A∗∗ → A(n+2)

is a biderivation.

(ii) Fix n ∈ N. If D : A × A → A(n) is a biderivation and πrn and π`n are Arens regular, then
D∗∗∗ : A∗∗ × A∗∗ → A(n+2) is a biderivation.

Proof. (i) Let F,G and H be elements of A∗∗, and let ω ∈ A(n−1). Also suppose that {aα}, {bβ}, and
{cγ} are three nets in A w∗-converging to F,G and H, respectively. Then since n ≥ 3, we have

π∗∗∗`n−1
(A∗∗, A(n−1)) = π∗∗∗∗∗∗`n−3

(A∗∗, A(n−1)) = π∗∗∗`n−3
(A∗∗, A(n−1)) ⊆ A(n−1).
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Hence

〈[J∗n−1 ◦ D∗∗∗](F�G,H), ω〉 = lim
α

lim
β

lim
γ
〈D(aαbβ, cγ), ω〉

= lim
α

lim
β

lim
γ
〈πrn(D(aα, cγ), bβ), ω〉

+ lim
α

lim
β

lim
γ
〈π`n(aα,D(bβ, cγ)), ω〉

= lim
α

lim
β

lim
γ
〈D(aα, cγ), π`n−1(bβ, ω〉

+ lim
α

lim
β

lim
γ
〈D(bβ, cγ), πrn−1(ω, aα)〉

= lim
α
〈[J∗n−1 ◦ D∗∗∗](aα,H), π∗∗∗`n−1

(G, ω)〉

+ 〈[J∗n−1 ◦ D∗∗∗](G,H), π∗∗∗rn−1
(ω, F)〉

= 〈[J∗n−1 ◦ D∗∗∗](F,H), π∗∗∗`n−1
(G, ω)〉

+ 〈[J∗n−1 ◦ D∗∗∗](G,H), (π∗∗∗)rn−1(ω, F)〉
= 〈π∗∗∗rn

([J∗n−1 ◦ D∗∗∗](F,H),G), ω)〉
+ 〈(π∗∗∗)`n(F, [J∗n−1 ◦ D∗∗∗](G,H)), ω〉
= 〈(π∗∗∗)rn([J∗n−1 ◦ D∗∗∗](F,H),G), ω)〉
+ 〈(π∗∗∗)`n(F, [J∗n−1 ◦ D∗∗∗](G,H)), ω〉.

Similarly we have

[J∗n−1 ◦ D∗∗∗](F,G�H) = (π∗∗∗)rn([J∗n−1 ◦ D∗∗∗](F,G),H) + (π∗∗∗)`n(G, [J∗n−1 ◦ D∗∗∗](F,H)).

Therefore [J∗n−1 ◦ D∗∗∗] is a biderivation.
(ii) We have

D∗∗∗(F�G,H) = w∗ − lim
α

w∗ − lim
β

w∗ − lim
γ

D(aαbβ, cγ)

= w∗ − lim
α

w∗ − lim
β

w∗ − lim
γ
πrn(D(aα, cγ), bβ)

+ w∗ − lim
α

w∗ − lim
β

w∗ − lim
γ
π`n(aα,D(bβ, cγ))

= π∗∗∗rn
(D∗∗∗(F,H),G) + π∗∗∗`n

(F,D∗∗∗(G,H))

= (π∗∗∗)rn(D
∗∗∗(F,H),G) + (π∗∗∗)`n(F,D

∗∗∗(G,H)).

Also, a similar argument shows that

D∗∗∗(F,G�H) = (π∗∗∗)rn(D
∗∗∗(F,G),H) + (π∗∗∗)`n(G,D

∗∗∗(F,H)).

Theorem 3.4.

(i) For every n ≥ 3, n-weak biamenability of A∗∗ implies n-weak biamenability of A.
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(ii) If π`2 and πr2 are Arens regular, then 2-weak biamenability of A∗∗ implies 2-weak biamenabil-
ity of A.

(iii) If π`1 and πr1 are Arens regular, then 1-weak biamenability of A∗∗ implies 1-weak biamenabil-
ity of A.

Proof. (i) Let D : A × A → A(n) be a biderivation. Then by the latter lemma, [J∗n−1 ◦ D∗∗∗] is a
biderivation and so there exists φ ∈ Z(A∗∗, A(n+2)) such that, for each F,G ∈ A∗∗,

[J∗n−1 ◦ D∗∗∗](F,G) = (π∗∗∗)rn(φ, [F,G]).

In particular, for every a, b ∈ A, since D(a, b) ∈ A(n), we have

D(a, b) = [J∗n−1 ◦ D∗∗∗](a, b) = (π∗∗∗)rn(φ, [a, b]) = πrn(J∗n−1(φ), [a, b]).

Now since J∗n−1(φ) ∈ Z(A, A(n)), D is an inner biderivation and so A is n-weakly biamenable.
(ii) Consider D : A × A→ A∗∗. Then the part (ii) of Lemma 3.3 implies that D∗∗∗ is a biderivation.
Therefore there exists ρ ∈ A∗∗∗∗ such that for every F,G ∈ A∗∗,

D∗∗∗(F,G) = (π∗∗∗)r2(ρ, [F,G]).

In particular, for every a, b ∈ A, since D(a, b) ∈ A∗∗, we have

D(a, b) = D∗∗∗(a, b) = (π∗∗∗)r2(ρ, [a, b]) = πr2(J∗1(ρ), [a, b]).

That is D is an inner biderivation, and so A is 2-weakly biamenable.
(iii) The proof is similar to the proof of (ii).

4. n-Weak biamenability of the group algebra `1(G)

[9, Theorem 3], [6, Theorem 4.1] and the results of [7] show that for a locally compact group
G, L1(G) is n-weakly amenable for every n ∈ N. In what follows, we show that if G is abelian,
then `1(G) is (2n + 1)-weakly biamenable. First of all note that if A is a unital Banach algebra and
X is a unital Banach A-module, then for every biderivation D : A × A → X and every invertible
element a in A we have for every b ∈ A, a−1D(a, b) = D(a−1a, b) − D(a−1, b)a = −D(a−1, b)a, and
similarly a−1D(b, a) = −D(b, a−1)a.

Lemma 4.1. Let G be a locally compact group, and let D : L1(G) × L1(G) → L∞(G) be a
biderivation. Then D has an extension to a biderivationD : M(G) × M(G)→ L∞(G).

Proof. Let (eα) be the approximate identity of L1(G), and let f ∈ L1(G) and µ, ν ∈ M(G). Cohen’s
factorization theorem implies that there are g, h, s, t, u, v ∈ L1(G) such that f = g ∗ h, h = s ∗ t, and
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h ∗ µ = u ∗ v. So

lim
β

lim
α
〈D(µ ∗ eα, ν ∗ eβ), f 〉 = lim

β
lim
α
〈D(µ ∗ eα, ν ∗ eβ), g ∗ h〉

= lim
β

lim
α
〈D(µ ∗ eα, ν ∗ eβ).g, h〉

= lim
β

lim
α
〈D(µ ∗ eα ∗ g, ν ∗ eβ)

− µ ∗ eα.D(g, ν ∗ eβ), h〉
= lim

β
(〈D(µ ∗ g, ν ∗ eβ), h〉 − 〈D(g, ν ∗ eβ), h ∗ µ〉)

= lim
β

(〈D(µ ∗ g, ν ∗ eβ), s ∗ t〉 − 〈D(g, ν ∗ eβ), u ∗ v〉)

= lim
β

(〈D(µ ∗ g, ν ∗ eβ).s, t〉 − 〈D(g, ν ∗ eβ).u, v〉)

= lim
β

(〈D(µ ∗ g, ν ∗ eβ ∗ s) − ν ∗ eβ.D(µ ∗ g, s), t〉)

− lim
β

(〈D(g, ν ∗ eβ ∗ u) − ν ∗ eβ.D(g, u), v〉)

= 〈D(µ ∗ g, ν ∗ s), t〉 − 〈D(µ ∗ g, s), t ∗ ν〉
− 〈D(g, ν ∗ u), v〉 − 〈D(g, u), v ∗ ν〉.

Therefore the existence of this limit shows that we can define

D(µ, ν) = w∗ − lim
β

w∗ − lim
α

D(µ ∗ eα, ν ∗ eβ).

The continuity of D on each argument follows from the latter equation. Also a similar argument
as above, which shows that D(µ ∗ g, ν) = D(µ, ν).g + µ.D(g, ν), can be applied to prove that
D(µ ∗ λ, ν) = D(µ, ν).λ + µ.D(λ, ν) and D(µ, ν ∗ λ) = D(µ, ν).λ + ν.D(µ, λ) for every µ, ν, λ ∈
M(G).

Now we show that L1(G) is 1-weakly biamenable, if G is abelian.

Theorem 4.2. Let G be a locally compact abelian group. Then L1(G) is 1-weakly biamenable.

Proof. By Lemma 4.1, it is sufficient to show that every biderivation D : M(G) × M(G)→ L∞(G)
is inner. For this, since G is abelian, we have f δx = δx f for every x ∈ G and f ∈ L∞(G). So we
have for every x, y, s, and t in G,

D(δx, δy) = D(δt−1tx, δs−1 sy)
= δt−1 D(δtx, δs−1)δsy + δ(st)−1 D(δtx, δsy)
+ δs−1 D(δt−1 , δsy)δtx + D(δt−1 , δs−1)δsytx

= δx(δ(tx)−1 D(δtx, δs−1)δs)δy + δx(tx)−1δy(sy)−1 D(δtx, δsy)
+ δy(δ(sy)−1 D(δt−1 , δsy)δt)δx + D(δt−1 , δs−1)δstyx

= (δ(tx)−1 D(δtx, δs−1)δs + δ(tx)−1 D(δtx, δsy)δy(sy)−1)δxy

− (δ(t)−1 D(δt, δs−1)δs + δt−1 D(δt, δsy)δ(sy)−1)δyx.
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Now if we define φy(s) as an element of L∞(G)R by

φy(s) = sup{δ(t)−1ReD(δt, δs−1)δs + δt−1ReD(δt, δsy)δ(sy)−1; t ∈ G},

then ReD(δx, δy) + φy(s)δyx = φy(s)δxy. Therefore ReD(δx, δy) = φy(s)[δx, δy] = 0. Similarly, we
have ImD(δx, δy) = 0. Hence D = 0 and by Lemma 4.1 the only biderivation D : L1(G)× L1(G)→
L∞(G) is zero. That is L1(G) is 1-weakly biamenable.

Theorem 4.3. For every abelian locally compact group G and every n ∈ N∪{0}, `1(G) is (2n + 1)-
weakly biamenable.

Proof. As we see in Theorem 4.2, `1(G) is 1-weakly amenable. Now let n ∈ N, F ∈ `∞(G)(2n)

and δx ∈ `
1(G), then since Fδx = δxF, similar to proof of Theorem 4.2 we conclude for every

biderivation D : `1(G) × `1(G)→ `∞(G)(2n),

D(δx, δy) = (δ(tx)−1 D(δtx, δs−1)δs + δ(tx)−1 D(δtx, δsy)δy(sy)−1)δxy

− (δ(t)−1 D(δt, δs−1)δs + δt−1 D(δt, δsy)δ(sy)−1)δyx.

and since `∞(G)(2n) is a commutative Von Neumann algebra and so an L∞-space, similar the proof
of Theorem 4.2, since the set of real parts of an L∞-space is a complete vector latice and the set

Γ = {δ(t)−1ReD(δt, δs−1)δs + δt−1ReD(δt, δsy)δ(sy)−1; t ∈ G}

is bounded above, we can define φy(s) as the suprimum of Γ. Then a similar argument as Theorem
4.2 shows that every biderivation from `1(G) × `1(G) to `∞(G)(2n) is zero and so `1(G) is (2n + 1)-
weakly biamenable.
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