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1. Introduction

Let x = (x1, . . . , xn) ∈ Rn, where xi ≥ 0 and let p be a nonzero real number. The power mean

of x is defined as Lp(x) :=
(

1
n

∑n
i=1 xp

i

) 1
p . We know that limp→+∞ Lp(x) = max{x1, . . . , xn}, see [5].

The kth order divided difference of f : [a, b] −→ R at distinct points x0, . . . , xn in [a, b] is defined
by f [xi] := f (xi), and for 1 ≤ k ≤ n,

f [x0, . . . , xk] :=
f [x1, . . . , xk] − f [x0, . . . , xk−1]

xk − x0
. (1.1)

Also, we define f [x, x] := limy→x f [x, y] = f ′(x).
Convex function is appear in many fields of mathematics. In the last century mathematicians

introduced and investigated many generalizations of convexity. The notion of nth order convex-
ity or n-convexity was defined in terms of divided differences. The concept of n-convexity are
motived by some basic questions in optimization and convex programming. In this paper, we use
n-convexity to introduce a new concept of majorization.

It is perfectly reasonable, then, to consider new forms of majorization for x = (x1, . . . , xn) and
y = (y1, . . . , yn) in Rn, wherein inequality

∑n
i=1 f (xi) ≤

∑n
i=1 f (yi) is assumed to hold for the class

of n-convex functions instead of convex ones. This is the theme of our paper.

Definition 1.1. Let n ≥ 0. A function f : [a, b] −→ R is said to be n-convex on [a, b] if
f [x0, . . . , xn] ≥ 0, where xi ∈ [a, b], i = 0, 1, . . . , n.

Let F is a real- valued function defined on the bounded closed interval [a, b] and given the
(r + 1) points Pk, 0 ≤ k ≤ r, with coordinates (xk, F(xk)), 0 ≤ k ≤ r, respectively, there is a unique
polynomial of degree at most r passing through these points given by

πr(F; x; Pk) = πr(x; Pk) =

r∑
k=0

F(xk)
r∏

j=0, j,k

(x − x j)
(xk − x j)

.

Theorem 1.2. [3, Theorem 5] Let

Pk = (xk, yk), 1 ≤ k ≤ n, n ≥ 2, a ≤ x1 < . . . < xn ≤ b,

be any n distinct points on the graph of the function F. Then F is n−convex if and only if for all such
sets of n distinct points, the graph lies alternately above and below the curve y = πn−1(F; x; Pk),
lying below if xn−1 ≤ x ≤ xn. Further πn−1(x; Pk) ≤ F(x), xn ≤ x ≤ b; and πn−1(x; Pk) ≤ F(x)(≥
F(x)) if a ≤ x < x1, n being even (odd).

Definition 1.3. Let x, y ∈ Rn. Then x is said to be majorized by y, written x ≺ y, if

k∑
i=1

x[i] ≤

k∑
i=1

y[i],

for k = 1, . . . , n with equality at k = n, where x[i] and y[i] are the ith largest component of the
vectors x and y respectively.



Mohtashami, Salemi, Soleymani/ Wavelets and Linear Algebra 8(1) (2021) 17- 26 19

The following theorem characterizes majorization in terms of convex (2-convex) functions on
R.

Theorem 1.4. [5, Theorem 108] Let x, y ∈ Rn. Then the following statements are equivalent:

1. x ≺ y

2.
∑n

i=1 f (xi) ≤
∑n

i=1 f (yi), for all convex functions f : R −→ R.

Furthermore, if f is strictly convex, then the equality can occur, only when two vectors x and y are
permutations of each other.

In [1, 2, 6], the authors presented some consequences of inequalities describing the behavior
of 3-convex functions.

Theorem 1.5. [2, Theorem 2] Suppose that x1, x2, x3, y1, y2, y3 are real numbers. Then the inequal-
ity

∑3
i=1 f (xi) ≤

∑3
i=1 f (yi) is valid for all 3-convex functions f : R→ R if and only if

x1 + x2 + x3 = y1 + y2 + y3,

x2
1 + x2

2 + x2
3 = y2

1 + y2
2 + y2

3,

max{x1, x2, x3} ≤ max{y1, y2, y3}.

In this note, we state an extension of these results for 4-convex functions. Let x1, . . . , xn be
variables. For k ≥ 1, the kth power sum is denoted by

pk(x1, . . . , xn) :=
n∑

i=1

xk
i = xk

1 + · · · + xk
n. (1.2)

Let 1 ≤ k ≤ n. The kth elementary symmetric polynomial (that is, the sum of all distinct products
of k distinct variables) is denoted by

ek(x1, . . . , xn) :=
∑

1≤l1<···<lk≤n

xl1 · · · xlk , & e0(x1, . . . , xn) = 1. (1.3)

Newton’s identities, can be used to recursively express elementary symmetric polynomials in terms
of power sums (for more information see [7]).

kek(x1, . . . , xn) =

k∑
i=1

(−1)i−1ek−i(x1, . . . , xn)pi(x1, . . . , xn). (1.4)

Let f (x) := xn +
∑n

k=1 an−kxn−k =
∏n

k=1(x − αk). By Vieta’s formulas [4], for 1 ≤ k ≤ n,

an−k = (−1)kek(α1, . . . , αn). (1.5)

It is clear that a0 = en(α1, . . . , αn) =
∏n

i=1 αi and an−1 = e1(α1, . . . , αn) =
∑n

i=1 αi.
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2. 4-Convex functions

In this section, we will state two key lemmas to find some simpler conditions for inequalities on
4-convex functions.

Lemma 2.1. Let the polynomials f (x) = xn +
∑n

k=1 an−kxn−k =
∏n

k=1(x − αk) and g(x) = xn +∑n
k=1 bn−kxn−k =

∏n
k=1(x − βk) be given. If α = (α1, . . . , αn), β = (β1, . . . , βn) and there exists

1 ≤ m ≤ n such that p j(α) = p j(β), for all 1 ≤ j ≤ m − 1, then f − g is a polynomial of degree less
than or equal n − m. In particular, if m=n, then f − g is a constant polynomial.

Proof. We will show that e j(α) = e j(β), 1 ≤ j ≤ m − 1. By (1.4), for x = (x1, . . . , xn) ∈ Rn,

kek(x) =

k∑
i=1

(−1)i−1ek−i(x)pi(x), 1 ≤ k ≤ n. (2.1)

By taking k = 1 and x = α in (2.1), e1(α) = p1(α). Since p1(α) = p1(β), we obtain that e1(α) =

e1(β). Also, by taking k = 2 and x = α in (2.1), we have

2e2(α) = e1(α)p1(α) − p2(α).

Since p j(α) = p j(β), j = 1, 2 and e1(α) = e1(β), we obtain that e2(α) = e2(β). By (1.4), we know
that ek can be written recursively in terms of power sums pk. Now by continuing this method
ei(α) = ei(β), 1 ≤ i ≤ m−1. Then by (1.5), an−k = (−1)kek(α) = (−1)kek(β) = bn−k, k = 1, . . . ,m−1.
Therefore f − g = (an−m − bn−m)xn−m + · · · + (a1 − b1)x + (a0 − b0) is a polynomial of degree less
than or equal n − m. In particular, if m=n, then f − g = a0 − b0 is a constant polynomial and the
proof is complete.

Lemma 2.2. Let αk, βk, k = 1, . . . , n be real numbers such that α1 ≥ · · · ≥ αn and β1 ≥ · · · ≥ βn

and
∑n

k=1 α
j
k =

∑n
k=1 β

j
k for all 1 ≤ j ≤ n − 1. Then the following assertions hold.

1. If αp = βq, for some 1 ≤ p, q ≤ n, then αi = βi for all i = 1, . . . , n.

2. If α1 < β1, then (−1)n−1αn < (−1)n−1βn.

Proof. We consider two functions f , g : R → R, defined by f (x) =
∏n

k=1(x − αk) and g(x) =∏n
k=1(x − βk). Then, there exist ai, bi ∈ R, i = 0, . . . , n− 1 such that f (x) = xn + an−1xn−1 + · · ·+ a0

and g(x) = xn + bn−1xn−1 + · · · + b0. By (1.5), ek(α) = (−1)kan−k and ek(β) = (−1)kbn−k, where
α = (α1, . . . , αn) and β = (β1, . . . , βn). By Lemma 2.1, we know that f (x) − g(x) = a0 − b0, for any
x ∈ R. Define γ := a0 − b0.

1. Let αp = βq for some 1 ≤ p, q ≤ n. Then f (βq) = f (αp) = 0 and g(αp) = g(βq) = 0.
Therefore, γ = f (αp)− g(αp) = 0 and hence 0 = γ = f (x)− g(x) for any x ∈ R. Then αi = βi

for all i = 2, . . . , n.
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2. Let α1 < β1. We know that α1 is the largest root of the monic polynomial f (x). Then
f (x) ≥ 0 for any x ≥ α1. Since β1 > α1, we obtain that f (β1) > 0 = g(β1) and hence
γ = f (β1) − g(β1) > 0. Now, we consider two cases:
Case 1: suppose that n is even. We know that βn is the smallest root of the monic polynomial
g(x). Then g(x) ≥ 0 for any x ≤ βn. Since f (x) > g(x) for all x ∈ R, we obtain that f (x) > 0
for all x ≤ βn. Therefore, βn < αn.
Case 2: suppose that n is odd. We know that αn is the smallest root of the monic polynomial
f (x). By the same method as above, g(x) < f (x) ≤ 0 for any x ≤ αn. Therefore, βn > αn.

In [2], G. Bennett presented a p-free inequality. Now, by using Lemma 2.2, in the following
theorem, we extend [2, Theorem 1].

Theorem 2.3. Suppose that x1, x2, x3, x4, y1, y2, y3, y4 are positive numbers. Then the following
inequalities hold:

xp
1 + xp

2 + xp
3 + xp

4 ≤ yp
1 + yp

2 + yp
3 + yp

4 , p ∈ (−∞, 0] ∪ [1, 2] ∪ [3,∞)
xp

1 + xp
2 + xp

3 + xp
4 ≥ yp

1 + yp
2 + yp

3 + yp
4 , p ∈ [0, 1] ∪ [2, 3],

(2.2)

if and only if the following conditions are satisfied:

x1 + x2 + x3 + x4 = y1 + y2 + y3 + y4, (2.3)

x2
1 + x2

2 + x2
3 + x2

4 = y2
1 + y2

2 + y2
3 + y2

4, (2.4)

x3
1 + x3

2 + x3
3 + x3

4 = y3
1 + y3

2 + y3
3 + y3

4, (2.5)
max{x1, x2, x3, x4} ≤ max{y1, y2, y3, y4}. (2.6)

Proof. If inequalities in (2.2) hold, then (2.3), (2.4) and (2.5) follow by taking p = 1, 2, 3 in
(2.2). Now, we rephrase (2.2) in terms of Lp-means, p ≥ 3.(

xp
1 + xp

2 + xp
3 + xp

4

4

) 1
p

≤

(
yp

1 + yp
2 + yp

3 + yp
4

4

) 1
p

. (2.7)

Then (2.6) follows by making p→ +∞ in (2.7).
Conversely, we assume that the sets {x1, x2, x3, x4} and {y1, y2, y3, y4} are disjoint. If they have a
point in common then by Lemma 2.2 they coincide and the result holds. It will be convenient to
assume that the sets {x1, x2, x3, x4} and {y1, y2, y3, y4} are arranged in decreasing order

x1 ≥ x2 ≥ x3 ≥ x4 and y1 ≥ y2 ≥ y3 ≥ y4.

We will show that
y1 > x1 ≥ x2 > y2 ≥ y3 > x3 ≥ x4 > y4. (2.8)

We consider two functions h, l : R −→ R, defined by

h(x) =

4∏
i=1

(x − xi) , l(x) =

4∏
i=1

(x − yi).
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The first and last strict inequalities in (2.8) are followed by (2.6) and Lemma 2.2. If the third
inequality fails to hold, then x2 ≤ y2. Now, by (2.6) we have x1 + x2 ≤ y1 + y2. Since x4 ≥ y4,
by (2.3) we have x1 + x2 + x3 ≤ y1 + y2 + y3. Then equation (2.3) and Definition 1.3 implies that
(x1, x2, x3, x4) ≺ (y1, y2, y3, y4). By Theorem 1.4 we have

f (x1) + f (x2) + f (x3) + f (x4) < f (y1) + f (y2) + f (y3) + f (y4),

for all strictly convex functions f : [y4, y1] −→ R. By considering the strictly convex function
f (x) = x2, we obtain a contradiction by (2.4). Therefore x2 > y2. If the fifth inequality fails to hold,
then y3 ≤ x3. Since x4 ≥ y4, we have y3 + y4 ≤ x3 + x4. We deduce from (2.3) that x1 + x2 ≤ y1 + y2.
The same argument as above implies that y3 > x3 and hence y1 > x1 ≥ x2 > y2 ≥ y3 > x3 ≥ x4 > y4.
Now, we will show that∫ x4

y4

ϕ(x) dx +

∫ x2

y2

ϕ(x) dx ≤
∫ y3

x3

ϕ(x) dx +

∫ y1

x1

ϕ(x) dx, (2.9)

for all 3-convex functions ϕ : [y4, y1] −→ R. We consider a quadratic function g that agree with
ϕ at x4, y3 and x2. By Theorem 1.2, we know that ϕ(x) ≤ g(x) for x ∈ [y4, x4] or x ∈ [y2, x2] and
ϕ(x) ≥ g(x) for x ∈ [x3, y3] or x ∈ [x1, y1]. By (2.3), (2.4) and (2.5), the inequality (2.9) is an
equality for g. Therefore,∫ x4

y4

ϕ(x) dx +

∫ x2

y2

ϕ(x) dx ≤
∫ x4

y4

g(x) dx +

∫ x2

y2

g(x) dx

=

∫ y3

x3

g(x) dx +

∫ y1

x1

g(x) dx ≤
∫ y3

x3

ϕ(x) dx +

∫ y1

x1

ϕ(x) dx.

Now, applying (2.9) to the following 3-convex functions, the result holds.

ϕ(x) =

{
pxp−1 p ≤ 0 or 1 ≤ p ≤ 2 or p ≥ 3,
−pxp−1 0 ≤ p ≤ 1 or 2 ≤ p ≤ 3.

Example 2.4. Let x1 = x2 = 2, x3 = x4 = 7 and y1 = 1, y2 = 4, y3 = 5, y4 = 8. Since

xi
1 + xi

2 + xi
3 + xi

4 = yi
1 + yi

2 + yi
3 + yi

4,

for i = 1, 2, 3 and
max{x1, x2, x3, x4} ≤ max{y1, y2, y3, y4},

for p ≤ 0 or 1 ≤ p ≤ 2 or p ≥ 3, we have

2(2p) + 2(7p) ≤ 1p + 4p + 5p + 8p.

The inequality reverses direction if 0 ≤ p ≤ 1 or 2 ≤ p ≤ 3.

In the following, we define k-majorization ≺k on Rn, k ≤ n.
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Definition 2.5. Let k ≤ n be positive integers. The vector x = (x1, x2, . . . , xn) is said to be k-
majorized by y = (y1, y2, . . . , yn), denoted by x ≺k y, if Σn

i=1 f (xi) ≤ Σn
i=1 f (yi) for all k-convex

functions f : R→ R.

In the following theorem, we extend [2, Theorem 2] for 4-convex functions.

Theorem 2.6. Let x = (x1, x2, x3, x4), y = (y1, y2, y3, y4) ∈ R4. Then x ≺4 y if and only if hypotheses
(2.3)-(2.6) hold.

Proof. Let x ≺4 y. Then by choosing f j(x) := ±x j for j = 1, 2, 3,we obtain that x j
1+x j

2+x j
3+x j

4 ≤

y j
1 +y j

2 +y j
3 +y j

4 and x j
1 + x j

2 + x j
3 + x j

4 ≥ y j
1 +y j

2 +y j
3 +y j

4, j = 1, 2, 3. Therefore, (2.3)-(2.5) hold. It is
enough to show that (2.6) holds. Let m := max{y1, y2, y3, y4}. We consider non negative 4-convex
function

f (x) :=

(x − m)3 x > m,
0 x ≤ m.

Since x ≺4 y and f is a nonnegative 4-convex function, we obtain that

0 ≤ f (x1) + f (x2) + f (x3) + f (x4) ≤ f (y1) + f (y2) + f (y3) + f (y4)

= (y1 − m)3 + (y2 − m)3 + (y3 − m)3 + (y4 − m)3 ≤ 0.

Therefore, f (x1) + f (x2) + f (x3) + f (x4) = 0 and we obtain that f (x1) = f (x2) = f (x3) = f (x4) =

0. The definition of f (x) implies that xi ≤ m, i = 1, 2, 3, 4. Then max{x1, x2, x3, x4} ≤ m =

max{y1, y2, y3, y4} and (2.6) holds. Conversely, By Lemma 2.2, without loss of generality, we
assume that the sets {x1, x2, x3, x4} and {y1, y2, y3, y4} are disjoint. It will be convenient to assume
that the sets {x1, x2, x3, x4} and {y1, y2, y3, y4} are arranged in decreasing order x1 ≥ x2 ≥ x3 ≥

x4 and y1 ≥ y2 ≥ y3 ≥ y4. Then by the same method as in the proof of Theorem 2.3, we obtain that
y1 > x1 ≥ x2 > y2 ≥ y3 > x3 ≥ x4 > y4. Now, let f be an arbitrary 4-convex function. we consider
four cases:

Case 1: Let y2 , y3. Since f is 4−convex function, by using (1.1) several times

0 ≤ f [xi, y1, y2, y3, y4] =
f [y1, y2, y3, y4] − f [xi, y1, y2, y3]

y4 − xi

=
1

y4 − xi

(
f [y2, y3, y4] − f [y1, y2, y3]

y4 − y1
−

f [y1, y2, y3, ] − f [xi, y1, y2]
y3 − xi

)
=

1
(y4 − xi)(y4 − y1)(y4 − y2)

(
f (y4) − f (y3)

y4 − y3
−

f (y3) − f (y2)
y3 − y2

)

−
1

(y4 − xi)(y4 − y1)(y3 − y1)

(
f (y3) − f (y2)

y3 − y2
−

f (y2) − f (y1)
y2 − y1

)
−

1
(y4 − xi)(y3 − xi)(y3 − y1)

(
f (y3) − f (y2)

y3 − y2
−

f (y2) − f (y1)
y2 − y1

)
+

1
(y4 − xi)(y3 − xi)(y2 − xi)

(
f (y2) − f (y1)

y2 − y1
−

f (y1) − f (xi)
y1 − xi

)
.
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Easy computations show that

0 ≤
f (xi)

(y4 − xi)(y3 − xi)(y2 − xi)(y1 − xi)
+

f (y4)
(y4 − xi)(y4 − y1)(y4 − y2)(y4 − y3)

−
f (y3)

(y4 − y3)(y3 − y2)(y3 − y1)(y3 − xi)
+

f (y2)
(y4 − y2)(y3 − y2)(y2 − y1)(y2 − xi)

−
f (y1)

(y4 − y1)(y3 − y1)(y2 − y1)(y1 − xi)
.

Therefore f (xi) ≤
∑4

k=1 f (yk)
∏4

j=1, j,k
(y j−xi)
(y j−yk) , i = 1, 2, 3, 4 and hence

4∑
i=1

f (xi) ≤
4∑

i=1

4∑
k=1

f (yk)
4∏

j=1, j,k

(y j − xi)
(y j − yk)

=

4∑
k=1

f (yk)

 4∑
i=1

4∏
j=1, j,k

(y j − xi)
(y j − yk)

 .
By using (2.3)-(2.5), we obtain that

∑4
i=1

∏4
j=1, j,k

(y j−xi)
(y j−yk) = 1. Then∑4

i=1 f (xi) ≤
∑4

i=1 f (yk) for all 4−convex functions, and hence x ≺4 y.
Case 2: Let y2 = y3, x1 , x2, and x3 , x4. Since f is 4−convex function, the divided dif-

ference f [x1, x2, x3, x4, yi] ≥ 0. Then by the same method as in Case 1, we obtain that f (yi) ≥∑4
k=1 f (xk)

∏4
j=1, j,k

(yi−x j)
(xk−x j)

. Again, by using the same method as above,
∑4

i=1 f (yi) ≥
∑4

i=1 f (xi) for
all 4−convex functions f , and hence x ≺4 y.

Case 3: Let y2 = y3, x1 = x2, and x3 = x4. Since f is 4−convex function, the divided difference
f [x1, x1, x3, x3, x] ≥ 0. Note that f [l, l] := f ′(l). By the same method as above, we have

0 ≤ f [x1, x1, x3, x3, yi] =
f [x1, x3, x3, yi] − f [x1, x1, x3, x3]

yi − x1

=
1

(yi − x1)2(x − x3)

(
f (x) − f (x3)

x − x3
− f ′(x3)

)
−

1
(yi − x1)2(x3 − x1)

(
f ′(x3) −

f (x3) − f (x1)
x3 − x1

)
−

1
(yi − x1)(x3 − x1)2

(
f ′(x3) −

f (x3) − f (x1)
x3 − x1

)
+

1
(yi − x1)(x3 − x1)2

(
f (x3) − f (x1)

x3 − x1
− f ′(x1)

)
Therefore, for i = 1, 2, 3, 4,

f (yi) ≥
(yi − x1)(yi − x3)2

(x3 − x1)2 f ′(x1) +
(yi − x1)2(yi − x3)

(x3 − x1)2 f ′(x3)

+
(yi − x3)2(x3 + 2x − 3x1)

(x3 − x1)3 f (x1)

−
(yi − x3)2(x3 − x1) − (x3 − x1)3 + 2(yi − x1)(yi − x3)2

(x3 − x1)3 f (x3).
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By using (2.3)-(2.5), the coefficients of f ′(x1), f ′(x3), f (x1), f (x3) are equal 1. Thus,
∑4

i=1 f (yi) ≥∑4
i=1 f (xi) for all 4-convex functions f , and hence x ≺4 y.

Case 4: Let y2 = y3 and (x1 , x2, x3 = x4 or x1 = x2, x3 , x4). We consider the divided
differences f [x1, x2, x3, x3, x] or f [x1, x1, x3, x4, x] respectively. By the same method as in Case 3,∑4

i=1 f (yi) ≥
∑4

i=1 f (xi) for all 4-convex functions f , and hence x ≺4 y.
The following example gives us a pair of vectors x, y where x is 4-majorized but not majorized

by y.

Example 2.7. Let x = (2, 2, 7, 7) and y = (1, 4, 5, 8). By Definition 1.3, it is clear that the ma-
jorization fails but Example 2.4 and Theorem 2.6 imply that (2, 2, 7, 7) ≺4 (1, 4, 5, 8).

In the following remark, the equivalent conditions for x ≺k y in Rk, k = 2, 3, 4 are summarized.

Remark 2.8. 1. Let x = (x1, x2), y = (y1, y2) ∈ R2. Then by Theorem 1.4, x ≺2 y if and only if
the following hold:

x1 + x2 = y1 + y2,

max{x1, x2} ≤ max{y1, y2}.

2. Let x = (x1, x2, x3), y = (y1, y2, y3) ∈ R3. Then by Theorem 1.5, we obtain that x ≺3 y if and
only if the following hold:

x1 + x2 + x3 = y1 + y2 + y3,

x2
1 + x2

2 + x2
3 = y2

1 + y2
2 + y2

3,

max{x1, x2, x3} ≤ max{y1, y2, y3}.

3. Let x = (x1, x2, x3, x4), y = (y1, y2, y3, y4) ∈ R4. Then by Theorem 2.6 x ≺4 y if and only if
the following hold:

x1 + x2 + x3 + x4 = y1 + y2 + y3 + y4,

x2
1 + x2

2 + x2
3 + x2

4 = y2
1 + y2

2 + y2
3 + y2

4,

x3
1 + x3

2 + x3
3 + x3

4 = y3
1 + y3

2 + y3
3 + y3

4,

max{x1, x2, x3, x4} ≤ max{y1, y2, y3, y4}.

In the above remark, we state equivalent conditions for x ≺k y in Rk, k = 2, 3, 4.

Remark 2.9. Let x = (x1, x2, . . . , xk), y = (y1, y2, . . . , yk) ∈ Rk, k = 2, 3, 4. Then by Remark 2.8,
x ≺k y and y ≺k x hold if and only if x and y are permutation of each other.

It would be nice to characterize x ≺k y in Rk for k ≥ 5.

conjecture 2.10. Let x = (x1, x2, . . . , xk), y = (y1, y2, . . . , yk) ∈ Rk, k ≥ 5. Then x ≺k y if and only
if the following hold:

xi
1 + xi

2 + · · · + xi
k = yi

1 + yi
2 + · · · + yi

k, i = 1, 2, . . . , k − 1,
max{x1, x2, . . . , xk} ≤ max{y1, y2, . . . , yk}.
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