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Abstract
We use of two notions functionally convex (briefly, F–convex)
and functionally closed (briefly, F–closed) in functional analysis
and obtain more results. We show that if {Aα}α∈I is a family F–
convex subsets with non empty intersection of a Banach space
X, then

∪
α∈I Aα is F–convex. Moreover, we introduce new def-

inition of notion F–convexiy.

c⃝ (2016) Wavelets and Linear Algebra

1. Introduction

In [5], M. Eshahgi, H. R. Reisi and A. R. Moazzen introduced two new notions in functional
analysis. By defining functionally convex (briefly, F–convex) and functionally closed (briefly, F–
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closed) sets, they improved some basic theorems in functional analysis. Among other things, the
Krein-Milman theorem has been generalized on finite dimensional Banach spaces. Hence, they
have proved that, the set of extreme points of every bounded, F-convex and F-closed subset of a
finite dimensional space is nonempty. Additionally, they partially proved the famous Chebyshev
open problem (which asks whether or not every Chebyshev set in a Hilbert space is convex?).
Hence, they have shown that, if A is a Chebyshev subset of a Hilbert space and the metric projec-
tion PA is continuous, then A is F-convex

From now on, we suppose that all normed spaces and Banach spaces are real.

Definition 1.1. [5] In a normed space X, we say that K(⊆ X) is functionally convex (briefly, F–
convex) if for every bounded linear transformation T ∈ B(X,R), the subset T (K) of R is convex.

Proposition 1.2. [5] If T is a bounded linear mapping from a normed space X into a normed
space Y, and K is F–convex in X, then T (K) is F–convex in Y.

Corollary 1.3. [5] Let A, B be two F–convex subsets of a normed space X and λ be a real number,
then

A + B = {a + b : a ∈ A, b ∈ B}, and λA = {λ.a : a ∈ A}

are F–convex.

Proposition 1.4. [5] Let A and B be F–convex subsets of a linear space X, which have nonempty
intersection. Then A ∪ B is F–convex.

Definition 1.5. [5] Let X be a normed space and let A ⊆ X. A is functionally closed (briefly,
F–closed), if f (A) is closed for all f ∈ X∗.

Note that every compact set is F–closed. Also, every closed subset of real numbers R is F–
closed. In X = R2, the set A = {(x, y) : x, y ≥ 0} is (non-compact) F–closed whereas, the set
A = Z×Z is closed but it is not F–closed (by taking f (x, y) = x+

√
2y, the set f (A) is not closed in

R). By taking A = {(x, y) : 1 ≤ x2 + y2 ≤ 4} a nonconvex F–closed and F– convex set is obtained.
Also, the set B = {(x, y) : x ∈ [0, π2 ), y ≥ tan(x)} is a closed convex set which is not F–closed. On
the other hand, A = {(x, y) : 1 < x2 + y2 ≤ 4} is a non-compact and F–closed set. The two last
examples show that weakly closed( weakly compact) and F–closed sets are different.

Remark 1.6. Note that we can not reduce definition of F–convexity to a basis of X∗, in the sence
that a set in X is F–convex whenever its image under elements of a basis is convex. For instance,
by taking the Euclidean space R2 and the set

A = {(0, α) : α ∈ R −Q ∩ [−
√

2, 1]} ∪ {(β, 1) : β ∈ R −Q ∩ [0,
√

2]}
∪ {(r,−

√
2) : r ∈ Q ∩ [0,

√
2]} ∪ {(

√
2, s) : s ∈ Q ∩ {[−

√
2, 1]}

∪ {(0, 1), (0,
√

2), (
√

2,−
√

2), (
√

2, 1)}

px(x, y) = x and py(x, y) = y, projections on axis, is a base for X = R2 and Px(A) = [0, 1] also,
py(A) = [−

√
2, 1] but f (x, y) = x + y is an element of X∗ and f (A) is not convex.
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In [5], we prove the following theorem, which help us to find a big class of F–convex sets.

Theorem 1.7. Every arcwise connected subset of a normed space X is F–convex.

Remark 1.8. The converse of the above theorem is not valid. Hence, by taking S = {(x, sin( 1
x ) :

0 < x ≤ 1}, the set S which is called the sine’s curve of topologist is connected and so for any
linear functional f ∈ (R ×R)∗, the set f (S ) is an interval. Thus, S is an F–convex set which is not
arcwise connected.

2. Main Results

In this section, we show, how construct new subset F–convex one of given ones.

Proposition 2.1. Let A, B be subsets of Banach space X. If A is F–convex and A ⊂ B ⊂ A then, B
is F–convex.

Proof. For every f ∈ X∗, we have f (A) ⊆ f (B) ⊆ f (A) ⊆ f (A). Hence, by assumption, f (A) is an
interval. This completes the proof.

Remark 2.2. In contrary the case of convex sets, interior of an F–convex set, necessarily is not
F–convex. For instance, take X = R×R and let B = {(x, y) : x2 + y2 ≤ 1}. Then if A is all elements
surrounded by B and B + 1

2 is F–convex, but the interior of A is not F–convex. Since, by taking f
as projection on x-axis we have f (A◦) = (−1

2 ,
1
2 ) ∪ (1

2 ,
3
2 ), which is not convex.

Theorem 2.3. Let {Aα}α∈I be collection of F–convex subsets in Banach space X. If
∩
α∈I Aα , ϕ

then,
∪
α∈I Aα is F–convex.

Proof. For each f ∈ X∗ and α ∈ I, we know, f (Aα) is an interval and
∩
α∈I f (Aα) , ϕ. Thus,

f (
∪
α∈I Aα) =

∪
α∈I f (Aα) is convex.

We know that, if {Aα}α∈I be a collection of connected subsets in X, A is connected and
A
∩

Aα , ϕ for all α ∈ I, then A
∪(∪

α∈I Aα
)

is connected. Now, we have the following theorem;

Theorem 2.4. Let {Aα}α∈I be a collection of F–convex subsets in Banach space X. If A is F–convex
and A

∩
Aα , ϕ for evrey α ∈ I, then A

∪(∪
α∈I Aα

)
is F–convex.

Proof. For evrey f ∈ X∗ and all α ∈ I, f (Aα) and f (A) are intervals such that f (A) ∩ f (Aα) , ϕ.
Therefore, f (A

∪(∪
α∈I Aα

)
) =
∪
α∈I f (Aα)

∪
f (A) is interval for evrey f ∈ X∗. So, A

∪(∪
α∈I Aα

)
is F–convex.

We know that, if {An}n∈N be a collection of connected subsets in X such that An ∩ An+1 , ϕ for
all n ∈ N, then

∪
n∈N An is connected. Now, we have the following theorem;

Theorem 2.5. Let {An}n∈N be a collection of F–convex subsets in Banach space X. If An∩An+1 , ϕ
for evrey n ∈ N, then

∪
n∈N An is F–convex.

Proof. For evrey f ∈ X∗ and all n ∈ N, f (An) is interval and f (An) ∩ f (An+1) , ϕ. Therefore,
f (
∪

n∈N An) =
∪

n∈N f (An) is interval for evrey f ∈ X∗. So,
∪

n∈N An is F–convex.
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Let A be a subset of linear space X. We define an equivalence relation on A as: x ∼ y if and
only if both lie in a F–convex subset of A. The relation ∼ actually is an equivalence relation. For
transitivity, note that if x ∼ y and y ∼ z then there are weakly convex subsets A and B such that
x, y ∈ A and y, z ∈ B. Proposition 1.4 asserts that A ∪ B is F–convex subset of X and so x ∼ z.

Theorem 2.6. Let (Xi, ∥.∥i) be norm linear spaces, then Ai ⊂ Xi are F–convex if and only if,
∏n

i=1 Ai

is F–convex in
∏n

i=1 Xi equepted by the norm

∥(x1, x2, · · · , xn)∥ =
{ n∑

i=1

∥xi∥2i
} 1

2
.

Proof. We Know that

(
n∏

i=1

Xi)∗ = ⊕n
i=1X∗i .

So, for every g ∈ (
∏n

i=1 Xi)∗ there are uniqe fi ∈ X∗i , i = 1, 2, · · · , n such that, g =
∑n

i=1 fi. Now we
have

g(
n∏

i=1

Ai) =
n∑

i=1

fi(Ai).

Since, every Ai is F–convex so, fi(Ai) and their sum is an interval. Conversly, for every fi ∈ X∗i ,
taking g = 0 + 0 + · · · + fi + · · · + 0, we have f (Ai) = g(

∏n
i=1 Ai) so, Ai is F–convex.

Theorem 2.7. Let Y be a subspace of the norm linear space X. If A ⊂ Y is F–convex then, A is
F–convex in X.

Proof. Let Y be a subspace of X. There exists subspace Y⊥ of X such that X = Y ⊕ Y⊥. Thus, for
evrey f ∈ X∗ we have, f |Y ∈ Y∗. Now, if A is F–convex in Y , Therefore, f (A) = f |Y(A) + f (Y⊥).
By assumption, f |Y(A) is F–convex also, since Y⊥ is a subspace, so Y⊥ is F–convex in X. Thus, By
using 1.3 f (A) is F–convex in X.

Definition 2.8. Let A be a subset of linear space X. Let
A
∼ = {Aα}α∈I be the set of all equivalence

classes. For each α ∈ I, Aα is called F–convex component of A.

Theorem 2.9. Let A be a subset of linear space X. The F–convex components of A are disjoint
F–convex subsets of A whose their union is A, such that any non empty F–convex subset of A
contains only one of them.

Proof. Being equivalence classes, the F–convex component of A are disjoint and their union is A.
Each F–convex subset of A contains only one of them. For if, A intersects the components A1, A2

of A say, in points x1, x2 respectively, then x1 ∼ x2. this means A1 = A2. To show the F–convex
component B is F–convex, choose a point x of B. For each y ∈ B, we know that x1 ∼ x2, so there is
a F–convex subset Ay containing x, y. By the result just proved Ay ⊂ A. thus, B =

∪
y∈A Ay. Since

subsets Ay are F–convex and the point x is in their intersection, by 2.3 B is F–convex.
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Remark 2.10. Let A be a subset of linear space X. A is F–convex if and only if it has one F–convex
component.

In the following theorem, for a subset A of a Banach space X, a necessary and sufficient
condition for F–convexity is proved.

Theorem 2.11. Let X be a Banach space, A ⊆ X is F–convex if and only if

co(A) ⊆
∩
f∈X∗

A + Ker( f ).

Proof. The set A ⊆ X is F–convex iff for all f ∈ X∗, the element
∑n

i=1 λi f (ai) belongs to f (A)
which, λi ≥ 0, ai ∈ A and

∑n
i=1 λi = 1. This is equivalent that for all f ∈ X∗, there is a ∈ A such

that a −∑n
i=1 λiai ∈ Ker( f ).

Remark 2.12. Note that in special case X = R, since every nonzero functional is one to one so we
have

∩
f∈X∗ A + Ker( f ) = A. Thus A ⊆ R is F–convex iff co(A) ⊆ A. Also, we have A ⊆ co(A).

Then we obtain A ⊆ R is F–convex iff A is convex.

Let X be a vector space. A hyperplane in X (through x0 ∈ X) is a set of the form H =
x0 + Ker( f ) ⊆ X, where f is a non-zero linear functional on X. Equivalently, H = f −1(γ), where
γ = f (x0). So, we have∩

f∈X∗
A + Ker( f ) =

∩
f∈X∗

∪
a∈A

a + Ker( f ) =
∩
f∈X∗

f −1( f (A)).

Hence, A ⊆ X is F–convex if and only if

co(A) ⊆
∩
f∈X∗

f −1( f (A)).

Proposition 2.13. Let A be a subset of Banach space X. The set U =
∩

B∈Γ
∩

f∈X∗ f −1( f (B)) is
F–convex, where Γ = {B : A ⊆ B, B is F–convex}.

Proof. By discussion ago, we have co(B) ⊆ ∩ f∈X∗ f −1( f (B)). Intersecting on all B ∈ Γ, implies
that

co(A) =
∩
B∈Γ

co(B) ⊆ U ⊆
∩
f∈X∗

f −1( f (co(A)))

On the other hand, for every g ∈ X∗,

g(co(A)) ⊆ g(U) ⊆ g(g−1(g(co(A)))) ⊆ g(co(A))

Hence, for every g ∈ X∗, g(U) = g(co(A)). So U is F−convex.

Theorem 2.14. [3] If K1 and K2 are disjoint closed convex subsets of a locally convex linear
topological space X, and if K1 is compact, then there exist constants c and ϵ > 0, and a continuous
linear functional f on X, such that

f (K2) ≤ c − ϵ < c ≤ f (K1).
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Lemma 2.15. [5] If A is a subset of a Banach space X, then∩
f∈X∗

f −1( f (A)) ⊆ co(A)

Corollary 2.16. [5] Let A be an F–closed subset of a Banach space X. Then A is F–convex if and
only if

co(A) =
∩
f∈X∗

f −1( f (A)).

Corollary 2.17. A compact subset A in a Banach space X is convex if and only if A is F–convex
and X∗ separates A and every element of X − A.

Proof. If A is a compact convex subset of X, then by Theorem 2.14, the assertion holds. Con-
versely, assume that A is a compact F– convex subset of X. Hence, co(A) =

∩
f∈X∗ f −1( f (A)). On

the other hand, there is f ∈ X∗ such that for every x ∈ X − A, we have f (A) < f (x). This implies
that x is outside of f −1( f (A)). Thus f −1( f (A)) = A and co(A) = A.

Remark 2.18. If X is a Hilbert space, then by Riesz representation theorem for every f ∈ X∗, there
exists a unique z ∈ X such that for all x ∈ X, f (x) =< x, z >, the inner product of x and z. Then

Ker( f ) = {x ∈ X :< x, z >= 0} .= z⊥.

In this case, we have ∩
f∈X∗

f −1( f (A)) =
∩
f∈X∗

A + Ker( f ) =
∩
z∈X

A + z⊥. (2.1)

Thus, in a Hilbert space X, every F–closed subset A of X is F–convex iff

co(A) =
∩
z∈X

A + z⊥.

Corollary 2.19. Let A and B be F–closed and F–convex subsets of a Banach space X which have
nonempty intersection. Then

co(A ∪ B) = co(A) ∪ co(B).

Proof. By Proposition 1.4, A ∪ B is F–convex. Then we have

co(A ∪ B) =
∩
f∈X∗

f −1( f (A ∪ B))

=
( ∩

f∈X∗
f −1( f (A))

)∪(∩
f∈X∗

f −1( f (A))
)

= co(A) ∪ co(B).
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Corollary 2.20. Let A and B be F–closed and F–convex subsets of a Banach space X. Then

co(A + B) = co(A) + co(B).

Proof. Obviously, we have

co(A + B) ⊆ co(A) + co(B).

Let x be an arbitrary element of co(A)+ co(B). Then there are x1 ∈ co(A) and x2 ∈ co(B) such that
x = x1 + x2. Then for every f ∈ X∗, we have f (x1) ∈ f (A) and f (x2) ∈ f (B). This implies that
f (x1 + x2) ∈ f (A + B) and hence, x ∈ f −1( f (A + B)). It follows that

co(A) + co(B) ⊆
∩
f∈X∗

f −1( f (A + B)) = co(A + B).

Note that if A and B are F–convex and F–closed then, A + B is F–closed.
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