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1. Introduction

In [5], M. Eshahgi, H. R. Reisi and A. R. Moazzen introduced two new notions in functional
analysis. By defining functionally convex (briefly, F—convex) and functionally closed (briefly, F—
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closed) sets, they improved some basic theorems in functional analysis. Among other things, the
Krein-Milman theorem has been generalized on finite dimensional Banach spaces. Hence, they
have proved that, the set of extreme points of every bounded, F-convex and F-closed subset of a
finite dimensional space is nonempty. Additionally, they partially proved the famous Chebyshev
open problem (which asks whether or not every Chebyshev set in a Hilbert space is convex?).
Hence, they have shown that, if A is a Chebyshev subset of a Hilbert space and the metric projec-
tion P4 is continuous, then A is F-convex
From now on, we suppose that all normed spaces and Banach spaces are real.

Definition 1.1. [5] In a normed space X, we say that K(C X) is functionally convex (briefly, F—
convex) if for every bounded linear transformation 7 € B(X, R), the subset T(K) of R is convex.

Proposition 1.2. [5] If T is a bounded linear mapping from a normed space X into a normed
space Y, and K is F—convex in X, then T(K) is F—convex in Y.

Corollary 1.3. [5] Let A, B be two F—convex subsets of a normed space X and A be a real number,
then

A+B={la+b:acAbeB}, and AA={la:a€A}
are F—convex.

Proposition 1.4. /5] Let A and B be F—convex subsets of a linear space X, which have nonempty
intersection. Then A U B is F—convex.

Definition 1.5. [5] Let X be a normed space and let A € X. A is functionally closed (briefly,
F—closed), if f(A) is closed for all f € X*.

Note that every compact set is F—closed. Also, every closed subset of real numbers R is F—
closed. In X = R?, the set A = {(x,y) : x,y > 0} is (non-compact) F—closed whereas, the set
A = Z X7 is closed but it is not F—closed (by taking f(x,y) = x+ \/Ey, the set f(A) is not closed in
R). By taking A = {(x,y) : 1 < x> + y* < 4} a nonconvex F—closed and F- convex set is obtained.
Also, the set B = {(x,y) : x € [0,%),y > tan(x)} is a closed convex set which is not F—closed. On
the other hand, A = {(x,y) : 1 < x*> +y?> < 4} is a non-compact and F—closed set. The two last

examples show that weakly closed( weakly compact) and F—closed sets are different.

Remark 1.6. Note that we can not reduce definition of F-convexity to a basis of X*, in the sence
that a set in X is F—convex whenever its image under elements of a basis is convex. For instance,
by taking the Euclidean space R? and the set

A:{(O,a):aeR—Qﬂ[—\@,l]}U{(ﬁ,l):ﬁeR—Qn[O, \/5]}
U{(r,-V2): reQn[0, V2 U{(V2,5): s € QN {[- V2, 1]}
U{(0,1),(0, V2),(V2,-V2),(V2,1)}

px(x,y) = x and p,(x,y) = y, projections on axis, is a base for X = R? and P.(A) = [0, 1] also,
Dy(A) = [- V2,1] but f(x,y) = x + y is an element of X* and f(A) is not convex.
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In [5], we prove the following theorem, which help us to find a big class of F—convex sets.
Theorem 1.7. Every arcwise connected subset of a normed space X is F—convex.

Remark 1.8. The converse of the above theorem is not valid. Hence, by taking S = {(x, sin(i) :

0 < x < 1}, the set S which is called the sine’s curve of topologist is connected and so for any
linear functional f € (R x R)*, the set f(S) is an interval. Thus, S is an F—convex set which is not
arcwise connected.

2. Main Results
In this section, we show, how construct new subset F—convex one of given ones.

Proposition 2.1. Let A, B be subsets of Banach space X. If A is F—convex and A C B C A then, B
is F—convex.

Proof. For every f € X*, we have f(A) C f(B) C f(A) C f(A). Hence, by assumption, f(A) is an
interval. This completes the proof. L

Remark 2.2. In contrary the case of convex sets, interior of an F—convex set, necessarily is not
F—convex. For instance, take X = Rx R and let B = {(x,y) : x> +y* < 1}. Then if A is all elements
surrounded by B and B + % is F—convex, but the interior of A is not F—convex. Since, by taking f

as projection on x-axis we have f(A°) = (—%, %) U (%, %), which is not convex.

Theorem 2.3. Let {A,}acs be collection of F—convex subsets in Banach space X. If (o1 Ao # ¢
then, | e Aq is F—convex.

Proof. For each f € X* and a@ € I, we know, f(A,) is an interval and () ,¢; f(Ay) # ¢. Thus,
Jf(Uaer Aa) = Uaer f(Aq) is convex. O

We know that, if {A,}.c; be a collection of connected subsets in X, A is connected and
ANA, #¢forall @ €I, then AJ (U, Ae) is connected. Now, we have the following theorem:;

Theorem 2.4. Let {A,}.c; be a collection of F—convex subsets in Banach space X. If A is F—convex
and A A, # ¢ for evrey a € I, then A J (U, e; Ae) is F—convex.

Proof. Forevrey f € X" and all @ € I, f(A,) and f(A) are intervals such that f(A) N f(A,) # ¢.

Therefore, f(A U (Uae[ Aa)) = Uael f(Aoz) U f(A) is interval for eviey f € X" SO7 A U (Uae[ Aa)
is F—convex. u

We know that, if {A, },cn be a collection of connected subsets in X such that A, N A,,; # ¢ for
all n € N, then |,y A, 1s connected. Now, we have the following theorem;

Theorem 2.5. Let {A,},cn be a collection of F—convex subsets in Banach space X. If A,NA,+1 # ¢
forevreyn € N, then | J,en A, is F—convex.

Proof. Forevrey f € X" and all n € N, f(A,) is interval and f(A,) N f(A,+1) # ¢. Therefore,
S(Unen An) = Unen f(A,) 1s interval for evrey f € X*. So, |,y A 1S F—convex. O]
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Let A be a subset of linear space X. We define an equivalence relation on A as: x ~ y if and
only if both lie in a F—convex subset of A. The relation ~ actually is an equivalence relation. For
transitivity, note that if x ~ y and y ~ z then there are weakly convex subsets A and B such that
x,y € A and y, z € B. Proposition 1.4 asserts that A U B is F—convex subset of X and so x ~ z.

Theorem 2.6. Let (X, ||.|;) be norm linear spaces, then A; C X; are F—convex if and only if, [, A;
is F—convex in [}, X; equepted by the norm

n
2
10, x2, =+ el = { ) I}
i=1

=

Proof. We Know that
([ [x =X
i=1

So, for every g € ([T, X;)* there are uniqe f; € X’,i = 1,2,--- ,nsuch that, g = ", fi. Now we

have . .
(| a0 =D fa.
i=1 i=1

Since, every A; is F—convex so, fj(A;) and their sum is an interval. Conversly, for every f; € X,
takingg =0+0+---+ fi+---+ 0, we have f(A;) = g([]iL; Ai) so, A; is F—convex. O

Theorem 2.7. Let Y be a subspace of the norm linear space X. If A C Y is F—convex then, A is
F-convex in X.

Proof. Let Y be a subspace of X. There exists subspace Y+ of X such that X = Y @ Y*. Thus, for
evrey f € X* we have, f|y € Y*. Now, if A is F—convex in Y, Therefore, f(A) = fly(A) + f(Y*).
By assumption, f|y(A) is F-convex also, since Y* is a subspace, so Y+ is F-convex in X. Thus, By
using 1.3 f(A) is F—convex in X. O]

A
Definition 2.8. Let A be a subset of linear space X. Let — = {A,},; be the set of all equivalence
classes. For each a € I, A, is called F—convex component of A.

Theorem 2.9. Let A be a subset of linear space X. The F—convex components of A are disjoint
F—convex subsets of A whose their union is A, such that any non empty F—convex subset of A
contains only one of them.

Proof. Being equivalence classes, the F—convex component of A are disjoint and their union is A.
Each F—convex subset of A contains only one of them. For if, A intersects the components A, A,
of A say, in points x, x, respectively, then x; ~ x,. this means A; = A,. To show the F—convex
component B is F—convex, choose a point x of B. For each y € B, we know that x; ~ x,, so there is
a F—convex subset A, containing x,y. By the result just proved A, C A. thus, B = [J,e4 A,. Since
subsets A, are F—convex and the point x is in their intersection, by 2.3 B is F—convex. U
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Remark 2.10. Let A be a subset of linear space X. A is F—convex if and only if it has one F—convex
component.

In the following theorem, for a subset A of a Banach space X, a necessary and sufficient
condition for F—convexity is proved.

Theorem 2.11. Let X be a Banach space, A C X is F—convex if and only if

co(A) C ﬂ A+ Ker(f).

feX*

Proof. The set A C X is F—convex iff for all f € X*, the element ), A;f(a;) belongs to f(A)
which, 4; > 0, a; € A and }}_; 4; = 1. This is equivalent that for all f € X*, there is @ € A such
thata — Y, L;a; € Ker(f). O

Remark 2.12. Note that in special case X = R, since every nonzero functional is one to one so we
have (jex+ A + Ker(f) = A. Thus A C R is F-convex iff co(A) C A. Also, we have A C co(A).
Then we obtain A C R is F—convex iff A is convex.

Let X be a vector space. A hyperplane in X (through xy € X) is a set of the form H =
xo + Ker(f) C X, where f is a non-zero linear functional on X. Equivalently, H = f~!(y), where
v = f(xp). So, we have

(NA+Ker(H = Ja+Ker(H)=()rfA).
fex* feX* acA fex*
Hence, A C X is F—convex if and only if

co(d) < () £ (Fa.

fex*

Proposition 2.13. Let A be a subset of Banach space X. The set U = (\per (fex- FYf(B) is
F—convex, wherel' ={B: A CB, BisF-convex}.

Proof. By discussion ago, we have co(B) C () ex- Y (f(B)). Intersecting on all B € I, implies
that

co() = (JeoB U c (] f(flco(A))

Bel' fex*

On the other hand, for every g € X7,

g(co(A)) € g(U) < g(g'(g(co(A)))) € g(co(A))
Hence, for every g € X*, g(U) = g(co(A)). So U is F—convex. L]

Theorem 2.14. [3] If K| and K, are disjoint closed convex subsets of a locally convex linear
topological space X, and if K, is compact, then there exist constants ¢ and € > 0, and a continuous
linear functional f on X, such that

f(Ky)) <c—€e<c< f(K)).
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Lemma 2.15. [5] If A is a subset of a Banach space X, then

() £ () c co(a)

feX*
Corollary 2.16. [5] Let A be an F—closed subset of a Banach space X. Then A is F—convex if and
only if

co(A) = () £ (f(A).

fex*

Corollary 2.17. A compact subset A in a Banach space X is convex if and only if A is F—convex
and X* separates A and every element of X — A.

Proof. If A 1s a compact convex subset of X, then by Theorem 2.14, the assertion holds. Con-
versely, assume that A is a compact F— convex subset of X. Hence, co(A) = () fex- 1 (f(A)). On
the other hand, there is f € X* such that for every x € X — A, we have f(A) < f(x). This implies
that x is outside of f~'(f(A)). Thus f~'(f(A)) = A and co(A) = A. O

Remark 2.18. 1f X is a Hilbert space, then by Riesz representation theorem for every f € X*, there
exists a unique z € X such that for all x € X, f(x) =< x, z >, the inner product of x and z. Then

Ker(f)={xe X :<x,z>=0} =z".
In this case, we have

(@) =()A+Ker(H)=()A+z" 2.1)

fex* fex* z€X

Thus, in a Hilbert space X, every F—closed subset A of X is F—convex iff

Co(A) = ﬂA + 7t

zeX

Corollary 2.19. Let A and B be F—closed and F—convex subsets of a Banach space X which have
nonempty intersection. Then

To(A U B) = co(A) U co(B).

Proof. By Proposition 1.4, A U B is F—convex. Then we have

cAUB) =) (fAUB)

fex*
= (' d@n) () £ ray)
fex* fex*
= co(A) U co(B).
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Corollary 2.20. Let A and B be F—closed and F—convex subsets of a Banach space X. Then
co(A + B) = co(A) + co(B).

Proof. Obviously, we have
co(A + B) C co(A) + co(B).

Let x be an arbitrary element of co(A) + co(B). Then there are x; € co(A) and x, € co(B) such that
x = x1 + x,. Then for every f € X*, we have f(x;) € f(A) and f(x,) € f(B). This implies that
f(x1 + x2) € f(A + B) and hence, x € f~'(f(A + B)). It follows that

co(A) +2o(B) C () £ (f(A + B)) =Co(A + B).
fexx

Note that if A and B are F—convex and F—closed then, A + B is F—closed. ]

References

[1] D. Aliprantis and C. Border, Infinite Dimensional Analysis, 2th. edition. Springer, 1999.

[2] J.B. Conway. A Course in Functionall Analysis, Springer-verlag, 1985.

[3] N. Dunford and J. T. Schwartz, Linear operators. Part 1, Interscience, New York 1958.

[4] E. Zeidler. Nonlinear Functional Analysis and its Applications I: Fixed Point Theorems, Springer-Verlog New
York, 1986.

[5] M. Eshaghi, H. Reisi Dezaki and A. Moazzen, Functionally convex sets and functionally closed sets in real
Banach spaces, Int. J. Nonlinear Anal. Appl., 7(1)(2016), 289-294.



	Introduction
	Main Results

