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Abstract
Inverse Young inequality asserts that if ν > 1, then

|zw| ≥ ν|z| 1ν + (1 − ν)|w| 1
1−ν ,

for all complex numbers z and w, and equality holds if and
only if |z| 1ν = |w| 1

1−ν . In this paper the complex representation
of quaternion matrices is applied to establish the inverse Young
inequality for matrices of quaternions. Moreover, a necessary
and sufficient condition for equality is given.

c⃝ (2016) Wavelets and Linear Algebra

1. Introduction

Many of the most common inequalities of classic analysis have been extended to more general
C∗-algebras. Since the C∗-algebras of matrices with elements from the complex field or from the
quaternion skew field have applications in physics and mechanics, there is interest extending these
inequalities for operators in these C∗-algebras.
An extension of the triangle inequality to Mn(C) is made by Thompson in [10] and [11]. In
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[12], Thompson showed that a version of triangle inequality could be formulated for quaternion
matrices. Two other important inequalities having generalisations in the matrix setting are the
Young inequality and its special case, the arithmetic-geometric mean inequality. Generalization
of the former to Mn(C) and to Mn(H) with analysing the case of equality, are respectively due to
Ando [1] and to Zeng [13] while of the latter is due to Bhatia and Kittaneh [3]. One may also refer
to [2, 4, 5] for more extensions of the Young inequality to some other C∗-algebras.
Young inequality refers to the following elementary, though fundamental, inequality between the
moduli of any pair of complex numbers z,w:

|zw| ≤ |z|
p

p
+
|w|q
q
, (1.1)

where, p and q denote any positive real numbers with the property that

1
p
+

1
q
= 1 . (1.2)

Furthermore, it is well known that

|zw| = |z|
p

p
+
|w|q
q

if and only if |w|q = |z|p . (1.3)

Young inequality can also be written as

|zw| ≤ ν|z| 1ν + (1 − ν)|w| 1
1−ν , where ν ∈ (0, 1) . (1.4)

A very close inequality to the Young inequality, which may be called the inverse Young inequality
is

|zw| ≥ ν|z| 1ν + (1 − ν)|w| 1
1−ν , (1.5)

in which ν > 1. Comparing (1.4) to (1.5) clarifies why we call (1.5) the inverse Young inequality.
In [9] we established the following extension of (1.5) to complex matrices.

Theorem 1.1. Let A and B be non singular n × n complex matrices and ν ∈ (1,∞). Then there
exists a unitary matrix U such that

U∗|AB∗|U ≥ ν |A| 1ν + (1 − ν)|B| 1
1−ν . (1.6)

In addition, [9] contains the necessary and sufficient condition for equality in (1.6).

Theorem 1.2. Equality holds in Theorem 1.1 if and only if |A| 1ν = |B| 1
1−ν .

Our main purpose in this paper is to extend the inverse Young inequality to quaternion matrices
as a sequel to [9].
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2. Complex representation of quaternion matrices

The vector space over the real number field with a four elements basis {1, i, j, k} satisfying the
multiplication laws

i2 = j2 = k2 = −1 , i jk = −1
i j = − ji = k , jk = −k j = i , ki = −ik = j (2.1)

and with 1 acting as the unity element is known as the real quaternion algebra H. Any element
in H can be written as q = a0 + a1i + a2 j + a3k where a0, a1, a2, and a3 are real numbers. The
conjugate q and the modulus |q| of q are defined to be q = a0 − a1i − a2 j − a3k and |q| =

√
qq. Not

surprisingly, the map ⟨·, ·⟩ : H×H→ H defined by ⟨q1, q2⟩ = q1q2 is an inner product on the right
real vector space H.
The multiplication rules (2.1) allow us to write every quaternion q in the form q = z1 + z2 j where
z1 = a0 + a1i and z2 = a2 + a3i are complex numbers. Therefore, for every n × n quaternion matrix
A, there exsit unique matrices A1 and A2 such that A = A1 + A2 j. The matrix[

A1 A2

−A2 A1

]
∈ M2n(C)

is called the complex representation of A and is denoted by Ψ(A).
Various properties of the complex representations of real quaternion matrices can be proved easily
(See [8] for a slightly different definition of the complex representation and proofs of the following
statements.)

Theorem 2.1. Let A, B,C ∈ Mn(H) and r ∈ R be given then

(a) A = B if and only if Ψ(A) = Ψ(B),
(b) Ψ(A + B) = Ψ(A) + Ψ(B), Ψ(AC) = Ψ(A)Ψ(C), Ψ(rA) = Ψ(Ar) = rΨ(A),
(c) Ψ(A∗) = (Ψ(A))∗,
(d) A is invertible if and only if Ψ(A) is invertible and Ψ(A−1) = (Ψ(A))−1,
(e) A is normal, Hermitian or unitary if and only if Ψ(A) is so.

Thus Ψ is an injective ∗-homomorphism from the real algebra Mn(H) into the real algebra
M2n(C).
A quaternion q is said to be a right eigenvalue of the quaternion matrix A if there exists a non zero
vector ξ ∈ Hn such that Aξ = ξq.
The spectrum of a quaternion matrix A is defined to be the set of all roots of the minimal poly-
nomial annihilating A. [6] is a good reference for a complete discussion of right eigenvalues and
the ways they differ from the spectrum. The following theorem characterizes the complex right
eigenvalues of a quaternion matrix.

Theorem 2.2. The complex right eigenvalues of a quaternion matrix A are exactly the eigenvalues
of its complex representation Ψ(A).
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Proof. Express A as A = A1 + A2 j where A1, A2 ∈ Mn(C). Let λ be a complex number. Then the
equation Aξ = ξλ for a nonzero vector ξ = ξ1 + ξ2 j ∈ Hn, where ξ1, ξ2 ∈ Cn, is equivalent to the
equation

A1ξ1 − A2ξ2 + (A1ξ2 + A2ξ1) j = ξ1λ + ξ2λ j .

This in turn is the same as the system{
A1ξ1 − A2ξ2 = ξ1λ

A1ξ2 + A2ξ1 = ξ2λ .

Taking the complex conjugate of the second equation of the system and multiplying it with −1, we
obtain the equivalent system {

A1ξ1 − A2ξ2 = ξ1λ

−A1 ξ2 − A2ξ1 = −ξ2λ .
which can be written in the matrix form as[

A1 A2

−A2 A1

] [
ξ1
−ξ2

]
=

[
ξ1
−ξ2

]
λ .

Therefore λ is a right eigenvalue of A if and only if λ is an eigenvalue of Ψ(A).

Remark 2.3. As a complementary result to Theorem 2.2, we mention that if r is a real right eigen-
value of A then the geometric multiplicity of r as an eigenvalue of Ψ(A) is twice that for as a right
eigenvalue of A, see [6].

A useful result concerning the spectra of Hermitian quaternion matrices is:

Theorem 2.4. If A ∈ Mn(H) is Hermitian then every right eigenvalue of A is real.

Proof. The complex representation Ψ(A) of A is Hermitian by Theorem 2.1. Now, Theorem 2.2
implies that right eigenvalues of A are all real.

A different proof of Theorem 2.4 using the Spectral Theorem for quaternion matrices can be
found in [6]. If a quaternion matrix A is Hermitian we will always arrange its eigenvalues (which
by Theorem 2.4 are all real numbers) in non increasing order.

3. Main results

A quaternion matrix A is said to be positive semidefinite if, for each ξ ∈ Hn, ⟨Aξ, ξ⟩ ≥ 0 where
the quaternion inner product on Hn is defined for ξ = (ξ1, ξ2, . . . , ξn) and η = (η1, η2, . . . , ηn) as

⟨ξ, η⟩ =
n∑

i=1

ξiηi.

The set Pn(H) of positive semidefinite quaternion matrices is a closed convex cone in the set Hn(H)
of all Hermitian quaternion matrices and therefore the relation

A ≥ B if and only if A − B ∈ Pn(H) .
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defines a partial order on Hn(H).
Two useful equivalent conditions (the same as those for the complex case) for a quaternion matrix
A to be positive semidefinite are listed in the following lemma.

Lemma 3.1. Let A be a quaternion matrix.Then the following statements are equivalent.

(a) A is positive semidefinite,
(b) A is Hermition and σ(A) ⊆ R+0 ,
(c) A = B∗B for some B ∈ Mn(H).

[6] (resp. [7]) contains a proof that (a) and (b) (resp. (a) and (c)) are equivalent.

The following proposition gives another such condition.

Proposition 3.2. A quaternion matrix A is positive semidefinite if and only if its complex repre-
sentation Ψ(A) is positive semidefinite.

Proof. By (e) of Theorem 2.1, A is Hermitian if and only if Ψ(A) is Hermitian and by Theorem
2.2, the spectra of A is contained in R+0 if and only if the spectra of Ψ(A) is contained in R+0 .

A straight consequence of Proposition 3.2 and the linearity property of Ψ is the following.

Corollary 3.3. Let A and B be Hermition quaternion matrices. Then A ≥ B if and only if Ψ(A) ≥
Ψ(B).

For every A ∈ Mn(H), A∗A is positive semidefinite by Lemma 3.1. It therefore, via the Spectral
Theorem for quaternion matrices (see for example [6]), has a unique positive square root (A∗A)1/2

which we denote by |A| and call it the modulus of A.

Lemma 3.4. For each A ∈ Mn(H), Ψ(|A|) = |Ψ(A)|.

Proof. By definition of the matrix modulus and the fact that Ψ is a ∗-homomorphism we have

|Ψ(A)|2 = (Ψ(A))∗Ψ(A) = Ψ(A∗)Ψ(A) = Ψ(A∗A) = Ψ(|A|2) = (Ψ(|A|))2 .

Since both |Ψ(A)| and Ψ(|A|) are positive semidefinite complex matrices, we can take square roots
to obtain Ψ(|A|) = |Ψ(A)|.

The following easy proposition plays an important role in the proof of our main results.

Proposition 3.5. Let A and B be quaternion matrices. Then

(a) Ψ(|A|r) = |Ψ(A)|r for each non negative real number r,
(b) If A is invertible then Ψ(|A|r) = |Ψ(A)|r for each real number r,
(c) Ψ(|AB∗|) = |Ψ(A)(Ψ(B))∗| .
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Proof. Note first that

(Ψ(|A|1/2))2 = Ψ(|A|1/2) · Ψ(|A|1/2) = Ψ(|A|1/2 · |A|1/2) = Ψ(|A|) = |Ψ(A)| ,

where in the last equality we made use of Lemma 3.4. This gives us Ψ(|A|1/2) = |Ψ(A)|1/2. Using
induction on n and the fact that Ψ is a homomorphism shows that for each natural number n,

Ψ(|A| 1
2n ) = |Ψ(A)| 1

2n

and a second induction implies that

Ψ(|A| m2n ) = |Ψ(A)| m2n , (m, n ∈ N) .

Since the set of all m
2n is dense in the set of all nonnegative real numbers, we see that for each

nonnegative real r, Ψ(|A|r) = |Ψ(A)|r, proving (a).
If A is invertible then by Theorem 2.1, Ψ(|A|−1) = |Ψ(A)|−1. Applying (a) then we have for each
r < 0,

Ψ(|A|r) = Ψ((|A|−r)−1) = (Ψ(|A|−r))−1 = (|Ψ(A)|−r)−1 = |Ψ(A)|r

proving (b).
(c) follows as a combination of Ψ being a ∗-homomorphism and Lemma 3.4.

We are now in a position to prove a generalisation of the inverse Young inequality (1.1) for
quaternion matrices.

Theorem 3.6. For each pair of invertible n × n quaternion matrices A and B and each ν > 1, a
unitary n × n quaternion matrix U exists such that

U |AB∗|U∗ ≥ ν |A| 1ν + (1 − ν) |B| 1
1−ν . (3.1)

Proof. By the Spectral Theorem for complex matrices Ψ(A) and Ψ(B), there exist unitary matrices
V,W ∈ M2n(C) such that

V |Ψ(A)Ψ(B)∗|V∗ = ∆ and W
(
ν |Ψ(A)| 1ν + (1 − ν) |Ψ(B)| 1

1−ν
)
W∗ = Γ ,

where ∆ and Γ are diagonal matrices and where the diagonal entries of ∆ (resp. Γ) are the eigen-
values of |Ψ(A)Ψ(B)∗| (resp. ν |Ψ(A)| 1ν + (1 − ν) |Ψ(B)| 1

1−ν ). We mention here that the eigenvalues
of both matrices are arranged in non inceasing order.
Note that by Proposition 3.5,

|Ψ(A)Ψ(B)∗| = Ψ(|AB∗|)
and

ν |Ψ(A)| 1ν + (1 − ν) |Ψ(B)| 1
1−ν = Ψ

(
ν |A| 1ν + (1 − ν) |B| 1

1−ν
)
.

As a consequence of Theorem 2.2 and the remark following it we see that if ∆ = ∆1 ⊕ · · · ⊕∆n and
Γ = Γ1 ⊕ . . . ⊕ Γn, where for each i = 1, 2, . . . , n, ∆i =diag{δi, . . . , δi} and Γi =diag{γi, . . . , γi}, then

σ(|AB∗|) = {δ1, . . . , δn} and σ
(
ν |A| 1ν + (1 − ν) |B| 1

1−ν
)
= {γ1, . . . , γn} (3.2)
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Theorem 1.1 implies that ∆ ≥ Γ, hence for each i = 1, 2, . . . , n, ∆i ≥ Γi and consequently

diag{δ1, . . . , δn} ≥ diag{γ1, . . . , γn} (3.3)

The relation in (3.2) combined with (3.3) finally ensures us of the existence of a unitary U ∈ Mn(H)
such that (3.1) holds.

Theorem 3.7. Let A and B be invertible n × n quaternion matrices and let ν > 1. The following
statements are equivalent

(a) There is a unitary n × n quaternion matrix U such that

U |AB∗|U∗ = ν |A| 1ν + (1 − ν) |B| 1
1−ν .

(b) |A| 1ν = |B| 1
1−ν .

Proof. Suppose first that (a) holds. Then by Theorem 2.1 (a) and Proposition 3.5 we have

Ψ(U)|Ψ(A)Ψ(B)∗|Ψ(U)∗ = ν |Ψ(A)| 1ν + (1 − ν) |Ψ(B)| 1
1−ν .

By Theorem 1.2, it implies that |Ψ(A)| 1ν = |Ψ(B)| 1
1−ν or equivalently thatΨ(|A| 1ν ) = Ψ(|B| 1

1−ν ).Theorem
2.1 (a) then implies that |A| 1ν = |B| 1

1−ν , proving that (a) implies (b).
Assume conversely that |A| 1ν = |B| 1

1−ν . Then Ψ(|A| 1ν ) = Ψ(|B| 1
1−ν ) which, by Proposition 3.5, implies

that |Ψ(A)| 1ν = |Ψ(B)| 1
1−ν . Thus

ν|Ψ(A)| 1ν + (1 − ν)|Ψ(B)| 1
1−ν = |Ψ(A)| 1ν . (3.4)

Let Ψ(A) = V |Ψ(A)| and Ψ(B) = W |Ψ(B)| be the polar decompositions of Ψ(A) and Ψ(B) respec-
tively, where V and W are unitary matrices in M2n(C). Then the proof of Proposition 4.1 in [4]
demonstrates that

|Ψ(A)Ψ(B)∗| = W
∣∣∣|Ψ(A)|.|Ψ(B)|

∣∣∣W∗ = W |Ψ(A)| 1νW∗.

By |Ψ(A)| 1ν = |Ψ(B)| 1
1−ν , we have

|Ψ(A)Ψ(B)∗| = W |Ψ(A)| 1νW∗.

Therefore
W∗|Ψ(A)Ψ(B)∗|W = |Ψ(A)| 1ν . (3.5)

(3.4) combined with (3.5) now implies that

W∗|Ψ(A)Ψ(B)∗|W = ν|Ψ(A)| 1ν + (1 − ν)|Ψ(B)| 1
1−ν .

Using the notation from the proof of Theorem 3.6, we see that ∆ = Γ which in turn implies that
{δ1, · · · , δn} = {γ1, · · · , γn}. In light of (3.2), this implies that (a) holds. Thus (b) also implies
(a).
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