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Abstract
K-frames which are generalization of frames on Hilbert spaces,
were introduced to study atomic systems with respect to a bounded
linear operator. In this paper, ∗-K-frames on Hilbert C∗-modules,
as a generalization of K-frames, are introduced and some of
their properties are obtained. Then some relations between ∗-K-
frames and ∗-atomic systems with respect to an adjointable op-
erator are considered and some characterizations of ∗-K-frames
are given. Finally perturbations of ∗-K-frames are discussed.
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1. Introduction and Preliminaries

In 1952, frames in Hilbert spaces were introduced by Duffin and Schaffer [7] to deal with some
problems in nonharmonic Fourier analysis. Now frames play an important role not only in the
theoretics but also in many kinds of applications, and have been widely applied in signal process-
ing [13, 24], sampling [9, 10], coding and communications [25], filter bank theory [8], system
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modelling [4], and so on.
In contrast to frames, there exist systems of functions generating proper subspaces even though
they do not belong to them. These families were considered by H.G. Feichtinger and T. Werther
in [12] and called families of local atoms. In 2012, K-frames were introduced by Găvruţa [16]
to study the atomic systems with respect to a bounded linear operator K in Hilbert spaces. K-
frames are more general than ordinary frames in the sense that the lower frame bound only holds
for the elements in the range of K, where K is a bounded linear operator in a separable Hilbert
space. This generalization of frames allows to reconstruct elements from the range of a linear and
bounded operator in a Hilbert space. In general, range is not a closed subspace (see [3, 5, 27, 28]).
In other hand, the notion of frames for Hilbert spaces had been extended by Frank and Larson
[15] to the Hilbert C∗-modules and some properties of these frames were also investigated in
[14, 17, 18]. Next, Alijani and Dehghan [2] introduced the ∗-frames, as a generalization of frames
in Hilbert C∗-modules. Hilbert C∗-modules are generalizations of Hilbert spaces by allowing the
inner product to take values in a C∗-algebra rather than in the field of complex numbers. They
appear naturally in a number of situations. Many useful techniques in Hilbert spaces are either
not available or not known in Hilbert C∗-modules. For example, it is well-known that the Riesz
representation theorem for bounded A-linear mapping on Hilbert A-module H is not valid but
this is true for self-dual Hilbert modules [23]. Note that a HilbertA-moduleH is called self-dual
if H � H ′

, where H ′
is the set of all bounded A-linear maps from H to A. Moreover, there

exist closed subspaces in Hilbert C∗-modules that have no orthogonal complement [20] and there
are bounded operators on Hilbert C∗-modules which do not have any adjoint [21]. Problems about
frames and ∗-frames for Hilbert C∗-modules are more complicated than those for Hilbert spaces.
This makes the study of the ∗-frames for Hilbert C∗-modules important and interesting. The paper
is organized as follows. Section 2 introduces families of local ∗-atoms. Then ∗-atomic systems
for an adjointable operator on a Hilbert C∗-module are presented and it is proved that a family of
local ∗-atoms is a special case of a ∗-atomic systems for an appropriate adjointable operator. One
of the main results of the paper is included in Section 3, where ∗-K-frames in modular spaces are
studied. Some relations between ∗-K-frames and ∗-atomic systems with respect to an adjointable
operator are obtained in this section. Some more properties of ∗-K-frames are given in Section 4.
In particular, we construct some new ∗-K-frames by given ∗-K-frames. The final section discuss
the perturbations of ∗-K-frames. In the following, we review some definitions and notions which
will appear in the rest of the paper. A sequence {xn}n∈N in a Hilbert space H is called an atomic
system for a bounded linear operator K onH if the following statements hold
(i) the series

∑
n∈N cnxn converges for all c = (cn) ∈ l2;

(ii) there exists a positive real number ν > 0 such that for every x ∈ H there exists ax = (an) ∈ l2

such that ∥ax∥l2 ≤ ν∥x∥ and Kx =
∑

n∈N anxn.
Also a sequence {xn}n∈N inH is said to be a K-frame forH if there exist positive real numbers λ, µ
such that

λ∥K∗x∥2 ≤
∑
n∈N
|⟨x, xn⟩|2 ≤ µ∥x∥2, (x ∈ H).

Frames are a special case of K-frames when K is the identity operator. It has been proved that a
sequence {xn}n∈N is an atomic system for K if and only if it is a K-frame [16]. K-frames and their
properties have recently been studied in [3, 5, 27, 28]. A nonzero element A in a unital C∗-algebra
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A is called strictly nonzero if zero does not belong to σ(A), where σ(A) is the spectrum of the
element A.
Suppose that A and B are two C∗-algebras. Let A ⊗ B be the completion of A ⊗alg B with the
spatial norm and the following operation and involution,

(A ⊗ B)(C ⊗ D) = AC ⊗ BD , (A ⊗ B)∗ = A∗ ⊗ B∗, A ⊗ B,C ⊗ D ∈ A ⊗ B.

Then A ⊗ B is a C∗-algebra such that ∥A ⊗ B∥ = ∥A∥∥B∥, for A ⊗ B ∈ A ⊗ B. We note that if
A ∈ A+ and B ∈ B+, then A ⊗ B ∈ (A ⊗ B)+. If A, B are hermitian elements of A and A ≤ B,
then for every positive element C of B, we have A ⊗ C ≤ B ⊗ C. For basic notations and theory
of C*-algebras one can see [22]. Let A be a C∗-algebra and H be an algebraic (left) A-module.
H is called a pre-HilbertA-module if there exists anA-valued inner product ⟨., .⟩ : H ×H → A
that possesses the following properties:
(i) ⟨ f , f ⟩ ≥ 0, for all f ∈ H and ⟨ f , f ⟩ = 0 if and only if f = 0;
(ii) ⟨A f + Bg, h⟩ = A⟨ f , h⟩ + B⟨g, h⟩, for all A, B ∈ A and f , g, h ∈ H ;
(iii) ⟨ f , g⟩ = ⟨g, f ⟩∗, for all f , g ∈ H ;
(iv) ⟨µ f , g⟩ = µ⟨ f , g⟩, for all µ ∈ C and f , g ∈ H ;
The mapping f 7→ ∥ f ∥ = ∥⟨ f , f ⟩∥ 1

2 defines a norm on H . If a pre-Hilbert C*-module H is
complete with respect to this norm, then (H ,A, ⟨., .⟩) is called a Hilbert C*-module over A or,
simply, a HilbertA-module. We writeH or (H , ⟨., .⟩) instead of (H ,A, ⟨., .⟩) when theA-valued
inner product and the C*-algebra are well known.
The C∗-algebraA itself can be recognized as a HilbertA-module with the inner product ⟨A, B⟩ =
AB∗, for any A, B ∈ A. Also for a C∗-algebra A the standard Hilbert A-module ℓ2(A) is defined
by

ℓ2(A) = {{A j} j∈N :
∑
j∈N

A jA∗j norm-converges in A}

with A-inner product ⟨{A j} j∈N, {B j} j∈N⟩ =
∑

j∈N A jB∗j. Let H and K be two Hilbert A-modules.
A mapping T : H → K is called adjointable if there exists a mapping S : K → H such
that ⟨T f , g⟩ = ⟨ f , S g⟩ for all f ∈ H , g ∈ K . The unique mapping S is denoted by T ∗ and
is called the adjoint of T . It is well-known that T and T ∗ must be bounded linear A-module
mappings. The set of all adjointable operators from H to K is denoted by Hom∗A(H ,K). The
algebra Hom∗A(H) = Hom∗A(H ,H) is indeed a C∗-algebra. For any T ∈ Hom∗A(H), the inequality

⟨T ( f ), T ( f )⟩ ≤ ∥T∥2⟨ f , f ⟩,

holds inA, for every f ∈ H [19, 26].
Let H be a Hilbert C∗-module andM ⊆ H be a closed submodule of a Hilbert module H . The
orthogonal complementM⊥ ofM is defined by

M⊥ = {g ∈ H : ⟨ f , g⟩ = 0, ∀ f ∈ M}.

M⊥ is also a closed submodule of the Hilbert moduleH . However, the equalityH =M⊕M⊥ is
not fulfilled in general [20]. The closed submodule M ofH is called orthogonally complemented
ifH =M⊕M⊥. The following generalizations of the so-called Douglas’s theorem [6] for Hilbert
modules are frequently used in this paper.
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Theorem 1.1. [11] Suppose that H , H1 and H2 are Hilbert modules over a C∗-algebra A. Let
T ∈ Hom∗A(H1,H) and S ∈ Hom∗A(H2,H). If Rang(S ∗) is orthogonally complemented, then the
following are equivalent:
(i) Rang(T ) ⊆ Rang(S );
(ii) µTT ∗ ≤ S S ∗, for some positive real number µ > 0;
(iii) There exists positive real number λ > 0 such that λ∥T ∗ f ∥2 ≤ ∥S ∗ f ∥2, for all f ∈ H;
(iv) There exists an adjointable operator Q : H1 → H2 such that T = S Q.

Theorem 1.2. [29] Suppose that H and H1 are Hilbert module over a C*-algebra A. Let T ∈
Hom∗A(H) and S : H1 → H is adjointable operator. If Rang(S ) is closed, then the following are
equivalent:
(i) Rang(T ) ⊆ Rang(S );
(ii) λTT ∗ f ≤ S S ∗ f , f ∈ H , for some λ > 0;
(iii) There exists an adjointable operator Q : H → H1 such that T = S Q.

One can easily verify that each of the above conditions is also equivalent to the following
condition,
(iv) There exists a positive real number µ > 0 such that ∥T ∗ f ∥2 ≤ ∥S ∗ f ∥2, for every f ∈ H . Let
(H ,A, ⟨., .⟩A) and (K ,B, ⟨., .⟩B) be two Hilbert C∗-modules. We denote byH ⊗K the completion
ofH ⊗alg K with the module action

(A ⊗ B)( f ⊗ g) = A f ⊗ Bg (A ∈ A, B ∈ B, f ∈ H , g ∈ K),

and the followingA⊗ B-valued inner product

⟨ f1 ⊗ g1, f2 ⊗ g2⟩ = ⟨ f1, f2⟩ ⊗ ⟨g1, g2⟩ ( f1, f2 ∈ H and g1, g2 ∈ K).

It is well-known thatH ⊗alg K with these operations is a HilbertA⊗ B-module (see [19]).
If T1 and T2 are two adjointable operator on (H ,A, ⟨., .⟩A) and (K ,B, ⟨., .⟩B), respectively, then
the tensor product T1 and T2 onH ⊗K defined by (T1 ⊗ T2)( f ⊗ g) = T1 f ⊗ T2g, f ⊗ g ∈ H ⊗K ,
is adjointable and its adjoint is T ∗1 ⊗ T ∗2 . For more details one can see [19, 26].
LetA be a unital C∗-algebra and J be a finite or countable index set. A sequence { f j} j∈J of elements
in a Hilbert A-module H is said to be a (standard) ∗-frame for H if there exist strictly nonzero
elements A and B ofA such that

A⟨ f , f ⟩A∗ ≤
∑
j∈J

⟨ f , f j⟩⟨ f j, f ⟩ ≤ B⟨ f , f ⟩B∗, f ∈ H ,

where the sum in the middle of the inequality is convergent in norm (see [2]). The elements A
and B are called lower and upper ∗-frame bound, respectively. If the right side of this inequality
holds then we say that { f j} j∈J is a ∗-Bessel sequence. Trivially every frame for a Hilbert module
is a ∗-frame. If A = C then the ∗-frame { f j} j∈J is indeed a frame for the Hilbert space H . The
following result was obtained independently by Arambašić [1] and Jing [17].

Lemma 1.3. { f j} j∈J is a frame of a finitely or countably generated Hilbert A-module H over a
unital C∗-algebraA with the frame bounds A, B, respectively, if and only if

A∥ f ∥2 ≤ ∥
∑
j∈J

⟨ f , f j⟩⟨ f j, f ⟩∥ ≤ B∥ f ∥2, ( f ∈ H).
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Throughout the paper, we assume that H is a finitely or countably generated Hilbert C∗-
modules over a unital C*-algebra A with the unit element 1A. By Z(A) we denote the center
of the C*-algebraA and J is applied for a finite or countably infinite index set.

2. Local ∗-Atoms and ∗-Atomic Systems

LetH be a finitely or countably generated Hilbert C∗-modules over a unital C*-algebraA. In
this section first a family of local ∗-atoms for H is introduced and then a generalization of local
∗-atoms, namely ∗-atomic system for an adjointable operator overH , is studied.

Definition 2.1. Suppose that { f j} j∈J ⊆ H is a ∗-Bessel sequence andH0 is a closed submodule of
H . The sequence { f j} j∈J is called a family of local ∗-atoms forH0 if there exists a sequence {c j} j∈J

of linear operators c j : H0 → A such that for every f ∈ H0

(i) there exists strictly nonzero element C ∈ A with
∑

j∈J(c j( f ))(c j( f ))∗ ≤ C⟨ f , f ⟩C∗,
(ii) f =

∑
j∈J c j( f ) f j.

Trivially every ∗-frame for a Hilbert moduleH is a family of local ∗-atoms forH0 = H .

Proposition 2.2. LetH0 be an orthogonally complemented submodule ofH . Suppose that { f j} j∈J ⊆
H is a family of local ∗-atoms for H0 then {PH0 f j} j∈J is a ∗-frame for H0, where PH0 is the or-
thogonal projection ofH ontoH0.

Proof. Since { f j} j∈J is a ∗-Bessel sequence, it is enough to show that {PH0 f j} j∈J has a lower ∗-frame
bound. Let {c j} j∈J and C be as in Definition 2.1. For every f ∈ H0 we have

|| f ||4 = ||⟨
∑
j∈J

c j( f ) f j, f ⟩||2

= ||
∑
j∈J

c j( f )⟨ f j, f ⟩||2

≤ ||
∑
j∈J

(c j( f ))(c j( f ))∗|| ||
∑
j∈J

⟨ f , f j⟩⟨ f j, f ⟩||

≤ ∥C∥2|| f ||2||
∑
j∈J

⟨ f , f j⟩⟨ f j, f ⟩||

= ∥C∥2∥ f ∥2∥
∑
j∈J

⟨PH0 f , f j⟩⟨ f j, PH0 f ⟩∥

= ∥C∥2∥ f ∥2∥
∑
j∈J

⟨ f , PH0 f j⟩⟨PH0 f j, f ⟩∥.

Hence by Lemma 1.3
1A
∥C∥⟨ f , f ⟩( 1A

∥C∥ )
∗ ≤

∑
j∈J

⟨ f , PH0 f j⟩⟨PH0 f j, f ⟩.

So {PH0 f j} j∈J is a ∗-frame for H0 with the lower frame bound 1A
∥C∥ . Note that PH0 f = f , since

f ∈ H0.
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Here ∗-atomic system for an adjointable operator is introduced. It will be proved that a fam-
ily of local ∗-atomes for a submodule H0 is indeed ∗-atomic system for the operator PH0 , the
orthogonal projection ofH intoH0.

Definition 2.3. Let K ∈ Hom∗A(H). We say that { f j}ȷ∈J ⊆ H is a ∗-atomic system for K if { f j}ȷ∈J

is a ∗-Bessel sequence and there exists a strictly nonzero C ∈ A such that for all f ∈ H there is
a f = {A j} j∈J ∈ ℓ2(A) such that K( f ) =

∑
j∈J A j f j and ⟨a f , a f ⟩ ≤ C⟨ f , f ⟩C∗.

Example 2.4. (See [2]) Let ℓ∞ be the unital C∗-algebra of all bounded complex-valued sequences.
Let c0 be the set of all sequences converging to zero. Then c0 is a Hilbert ℓ∞-module with ℓ∞-
valued inner product ⟨u, v⟩ = {uivi}i∈N, for u, v ∈ c0. For any j ∈ N, let f j = { f j

i }i∈N ∈ c0 be defined
by

f j
i =

{ 1
3 +

1
i i = j

0 i , j , j ∈ N

and define K : c0 → c0 by K(u) = {∑ j∈N ui| f j
i |2}i∈N, u = {ui}i∈N ∈ c0. Then K ∈ Hom∗ℓ∞(c0).

So { f j} j∈N is a ∗-atomic system for c0. Note that in this case a f = {u f j} j∈N ∈ ℓ2(ℓ∞) and C =
{ 13 +

1
i }i∈N ∈ ℓ∞. Indeed

K(u) = {
∑
j∈N

ui| f j
i |

2}i∈N =
∑
j∈N
{ui| f j

i |
2}i∈N =

∑
j∈J

{ui f j
i }i∈N f j =

∑
j∈J

u f j f j

and
⟨a f , a f ⟩ =

∑
j∈J

u f j f ju = {|ui|2(
1
3
+

1
i
)2}i∈N = {

1
3
+

1
i
}i∈N⟨u, u⟩{

1
3
+

1
i
}i∈N.

The following proposition shows that a family of local ∗-atomes is a special case of ∗-atomic
system . The proof is straightforward.

Proposition 2.5. LetH0 be an orthogonally complemented submodule ofH and { f j} j∈J ⊆ H be a
∗-Bessel sequence then the following are equivalent.
(i) { f j} j∈J is a family of local ∗-atoms forH0.
(ii) { f j} j∈J is a ∗-atomic system for PH0 , where PH0 is the orthogonal projection fromH ontoH0.

3. ∗-Atomic Systems and ∗-K-Frames

LetH be a finitely or countably generated Hilbert C∗-modules over a unital C*-algebraA and
K ∈ Hom∗A(H). In this section a ∗-K-frame for H is introduced and its relations with ∗-atomic
system for the operator K is discussed. Next some characterizations of ∗-K-frames are obtained.

Definition 3.1. Let K ∈ Hom∗A(H). A sequence { f j} j∈J ⊆ H is called a ∗-K-frame (or ∗-frame for
the operator K) if there exist strictly nonzero A, B ∈ A such that

A⟨K∗ f ,K∗ f ⟩A∗ ≤
∑
j∈J

⟨ f , f j⟩⟨ f j, f ⟩ ≤ B⟨ f , f ⟩B∗, (3.1)

for every f ∈ H , where the sum in the middle of the inequality is convergent in norm.
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The elements A and B are called the lower and the upper ∗-K-frame, respectively. Suppose that
{ f j} j∈J is a ∗-K-frame of H . The operator T : ℓ2(A) → H defined by T ({A j} j∈J) =

∑
j∈J A j f j is

called the synthesis operator. T is adjointable and T ∗ : H → ℓ2(A) is given by T ∗( f ) = {⟨ f , f j⟩} j∈J.
T ∗ is called the analysis operator. The operator S : H → H defined by S ( f ) = TT ∗( f ) =∑

j∈J⟨ f , f j⟩ f j is called the ∗-K-frame operator of { f j} j∈J. The operator S is not invertible in general
even on Hilbert spaces (see [16]). Although, with K = I, S is invertible and {S −1 f j} j∈J is a ∗-frame
(see [2]).

Note that every ∗-frame is a ∗-K-frame, for any K ∈ Hom∗A(H). Indeed for any K ∈ Hom∗A(H)
the inequality

⟨K∗ f ,K∗ f ⟩ ≤ ∥K∥2⟨ f , f ⟩, f ∈ H (3.2)

holds. Now if { f j} j∈J is a ∗-frame with bounds A and B then by (3.2) and the fact that for A, B ∈ A
the inequality A ≤ B implies that CAC∗ ≤ CBC∗, for any C ∈ A, we have

(A∥K∥−1)⟨K∗ f ,K∗ f ⟩(A∥K∥−1)∗ ≤ A⟨ f , f ⟩A∗ ≤
∑
j∈J

⟨ f , f j⟩⟨ f j, f ⟩ ≤ B⟨ f , f ⟩B∗.

Therefore { f j} j∈J is a ∗-K-frame with ∗-frame bounds A∥K∥−1 and B.

Lemma 3.2. If { f j} j∈J is a ∗-K-frame with ∗-frame bounds A and B then

∥AK∗ f ∥2 ≤ ∥
∑
j∈J

⟨ f , f j⟩⟨ f j, f ⟩∥ ≤ ∥B f ∥2, ( f ∈ H). (3.3)

Conversely, if (3.3) holds, for some A, B ∈ Z(A) and Rang(U) of the operator U : H → ℓ2(A)
defined by U f = {⟨ f , f j⟩} j∈J, is orthogonally complemented, then { f j} j∈J is a ∗-K-frame.

Proof. ⇒) It is obvious.
⇐) For every f ∈ H ,

∥U f ∥2 = ∥⟨U f ,U f ⟩∥ = ∥
∑
j∈J

⟨ f , f j⟩⟨ f j, f ⟩∥ ≤ ∥B f ∥2 ≤ ∥B∥2∥ f ∥2,

so ∥U f ∥ ≤ ∥B∥∥ f ∥. Therefore U is bounded. Also it is not hard to see that U is adjointable and
its adjoint is U∗({A j} j∈J) =

∑
j∈J A j f j, for every {A j} j∈J ∈ ℓ2(A). For B ∈ Z(A), the mapping

QB : H → H defined by QB f = B f has the adjoint QB∗ , since

⟨QB f , g⟩ = ⟨B f , g⟩ = B⟨ f , g⟩ = ⟨ f , g⟩B = ⟨ f , B∗g⟩ = ⟨ f ,QB∗g⟩, ( f , g ∈ H).

Therefore (3.3) is equivalent to

∥AK∗ f ∥2 ≤ ∥U f ∥2 ≤ ∥QB f ∥2 ( f ∈ H).

By Theorem 1.1, there exist λ, µ > 0 such that for every f ∈ H ,
√
λA⟨K∗ f ,K∗ f ⟩(

√
λA)∗ ≤

∑
j∈J

⟨ f , f j⟩⟨ f j, f ⟩ ≤ √µB⟨ f , f ⟩(√µB)∗.

which completes the proof.
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By a similar argument to the proof of Lemma 3.2 one may prove the following lemma by
applying Theorem 1.2.

Lemma 3.3. If { f j} j∈J is a ∗-K-frame with ∗-frame bounds A and B then

∥AK∗ f ∥2 ≤ ∥
∑
j∈J

⟨ f , f j⟩⟨ f j, f ⟩∥ ≤ ∥B f ∥2, ( f ∈ H). (3.4)

Conversely, if (3.4) holds for some A, B ∈ Z(A) and the rang of the operator U : H → ℓ2(A),
defined by U f = {⟨ f , f j⟩} j∈J, is closed then { f j} j∈J is a ∗-K-frame.

In the following theorem we show that under some conditions an ∗-atomic system for an oper-
ator K is indeed a ∗-K-frame and vice versa.

Theorem 3.4. Let K ∈ Hom∗A(H) and { f j} j∈J ⊆ H be a ∗-Bessel sequence. Suppose that T :
ℓ2(A) → H is defined by T ({A j} j∈J) =

∑
j∈J A j f j and Rang(T ∗) is orthogonally complemented.

Then { f j} j∈J is a ∗-atomic system for K if and only if { f j} j∈J is a ∗-K-frame. Moreover, in this
case ifA is finite dimensional then there exists another ∗-Bessel sequence {h j} j∈J such that for all
f ∈ H ,

K( f ) =
∑
j∈J

⟨ f , h j⟩ f j.

Proof. Suppose that { f j} j∈J is a ∗-atomic system for K. For any f ∈ H we have

∥K∗ f ∥2 = sup
∥g∥=1
∥⟨g,K∗ f ⟩∥2 = sup

∥g∥=1
∥⟨Kg, f ⟩∥2.

By definition of ∗-atomic system, there is bg = {B j} j∈J ∈ ℓ2(A) such that K(g) =
∑

j∈J B j f j and
⟨bg, bg⟩ ≤ C⟨g, g⟩C∗, for some strictly nonzero C ∈ A. Thus

∥K∗ f ∥2 = sup
∥g∥=1
∥⟨
∑
j∈J

B j f j, f ⟩∥2

= sup
∥g∥=1
∥
∑
j∈J

B j⟨ f j, f ⟩∥2

≤ sup
∥g∥=1
∥
∑
j∈J

B jB∗j∥∥
∑
j∈J

⟨ f , f j⟩⟨ f j, f ⟩∥

≤ ∥C∥2∥
∑
j∈J

⟨ f , f j⟩⟨ f j, f ⟩∥.

Note that the last inequality holds by the fact that in a C∗-algebra A, if A, B ∈ A and 0 ≤ A ≤ B
then ∥A∥ ≤ ∥B∥. Hence

1
∥C∥2 ∥K

∗ f ∥2 ≤ ∥
∑
j∈J

⟨ f , f j⟩⟨ f j, f ⟩∥, ( f ∈ H).



B. Dastourian and M. Janfada/Wavelets and Linear Algebra 3 (2016) 27 - 43 35

So by Theorem 1.1 there exists a positive real number µ > 0 such that µKK∗ ≤ TT ∗. Therefore

(
√
µ1A)⟨K∗ f ,K∗ f ⟩(√µ1A)∗ ≤

∑
j∈J

⟨ f , f j⟩⟨ f j, f ⟩( f ∈ H).

For the converse, suppose that there exist strictly nonzero A, B ∈ A such that (3.1) holds. So for
each f ∈ H , ∥A−1∥−2∥K∗ f ∥2 ≤ ∥T ∗ f ∥2. Thus by Theorem 1.1, there exists an adjointable operator
Q : H → ℓ2(A) such that K = T Q. For any f ∈ H let a f := Q f = {A j} j∈J. Thus K( f ) = T (Q( f )).
But by adjointability of Q we have

⟨a f , a f ⟩ = ⟨Q f ,Q f ⟩ ≤ ∥Q∥2⟨ f , f ⟩ = (∥Q∥1A)⟨ f , f ⟩(∥Q∥1A)∗

which implies that ⟨a f , a f ⟩ ≤ C⟨ f , f ⟩C∗ with C = ∥Q∥1A.
Now let A be finite dimensional. We know for each f ∈ H , ∥A−1∥−2∥K∗ f ∥2 ≤ ∥T ∗ f ∥2. Thus by
Theorem 1.1, there exists an adjointable operator Q : H → ℓ2(A) such that K = T Q. In this case
ℓ2(A) is self dual so there exists {h j} j∈J for which Q( f ) = {⟨ f , h j⟩} j∈J. Thus

K( f ) = T (Q( f )) = T ({⟨ f , h j⟩} j∈J) =
∑
j∈J

⟨ f , h j⟩ f j.

and ∑
j∈J

⟨ f , h j⟩⟨h j, f ⟩ = ⟨Q f ,Q f ⟩ ≤ ∥Q∥2⟨ f , f ⟩ = (∥Q∥1A)⟨ f , f ⟩(∥Q∥1A)∗.

Hence {h j} j∈J is a ∗-Bessel sequence.

Corollary 3.5. Let K ∈ Hom∗A(H) and { f j} j∈J ⊆ H be a ∗-Bessel sequence with bound B. Suppose
that T : ℓ2(A) → H is defined by T ({A j} j∈J) =

∑
j∈J A j f j and Rang(T ∗) is orthogonally comple-

mented. Then the following are equivalent.
(i) { f j} j∈J is a ∗-atomic system for K such that the strictly nonzero C in the definition of ∗-atomic
system is inZ(A);
(ii) There exists positive real numbers µ > 0 such that for any f ∈ H ,

(
µ

C
)⟨K∗ f ,K∗ f ⟩( µ

C
)∗ ≤

∑
j∈J

⟨ f , f j⟩⟨ f j, f ⟩ ≤ B⟨ f , f ⟩B∗.

Proof. The proof obtains by Lemma 3.2 and Theorem 3.4.

The following characterization of ∗-atomic systems can be proved by applying Theorem 1.1.

Proposition 3.6. Let K ∈ Hom∗A(H) and { f j} j∈J ⊆ H be a ∗-Bessel sequence. Suppose that
T : ℓ2(A)→ H is defined by T ({A j} j∈J) =

∑
j∈J A j f j and Rang(T ∗) is orthogonally complemented.

Then { f j} j∈J is a ∗-atomic system if and only if Rang(K) ⊆ Rang(T ).
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4. Some more Properties of ∗-K-frames

LetH be a finitely or countably generated Hilbert C∗-modules over a unital C*-algebraA and
K ∈ Hom∗A(H). In this section first by using a ∗-K-frame and some elements of Hom∗A(H), new ∗-
frames for some adjointable operators are constructed. Next the tensor product of two ∗-K-frames
and ∗-L-frames are considered.

Proposition 4.1. Let K, L ∈ Hom∗A(H) and { f j} j∈J be a ∗-K-frame with the ∗-K-frame bounds
A, B, then
(i) If V : H → H is a co-isometry such that KV = VK then {V f j} j∈J is a ∗-K-frame with the same
∗-K-frame bounds.
(ii) {L f j} j∈J is a ∗-LK-frame with the ∗-frame bounds A and B||L||, respectively.
(iii) For any n ∈ N, {Ln f j} j∈J is a ∗-LnK-frame.
(iv) If Rang(L) ⊆ Rang(K) and K has closed range then { f j} j∈J is also a ∗-L-frame.

Proof. Form
A⟨K∗ f ,K∗ f ⟩A∗ ≤

∑
j∈J

⟨ f , f j⟩⟨ f j, f ⟩ ≤ B⟨ f , f ⟩B∗, ( f ∈ H).

we get ∑
j∈J

⟨ f ,V f j⟩⟨V f j, f ⟩ ≤ B⟨V∗ f ,V∗ f ⟩B∗ = B⟨ f , f ⟩B∗, ( f ∈ H).

On the other hand V is a co-isometry so for any f ∈ H ,∑
j∈J

⟨ f ,V f j⟩⟨V f j, f ⟩ ≥ A⟨K∗V∗ f ,K∗V∗ f ⟩A∗

= A⟨V∗K∗ f ,V∗K∗ f ⟩A∗

= A⟨K∗ f ,K∗ f ⟩A∗,

which proves (i).
For proving (ii), one may see that for any f ∈ H ,

A⟨(LK)∗ f , (LK)∗ f ⟩A∗ = A⟨K∗L∗ f ,K∗L∗ f ⟩A∗ ≤
∑
j∈J

⟨ f , L f j⟩⟨L f j, f ⟩

≤ B⟨L∗ f , L∗ f ⟩B∗

≤ (B∥L∥)⟨ f , f ⟩(B∥L∥)∗.

(iii) Is trivial by applying (ii).
For proving (iv), if A and B are the ∗-K-frame bounds of { f j} j∈J then by the facts that Rang(K)
is closed and Rang(L) ⊆ Rang(K) and applying Theorem 1.2, there exists a positive real number
λ > 0 such that for all f ∈ H , λLL∗ f ≤ KK∗ f . Thus for any f ∈ H,

(
√
λA)⟨L∗ f , L∗ f ⟩(

√
λA)∗ ≤ A⟨K∗ f ,K∗ f ⟩A∗ ≤

∑
j∈J

⟨ f , f j⟩⟨ f j, f ⟩ ≤ B⟨ f , f ⟩B∗.
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Proposition 4.2. Let K ∈ Hom∗A(H) and { f j} j∈J be a ∗-frame with the ∗-frame bounds A, B, then
{K f j} j∈J is a ∗-K-frame with the ∗-K-frame bounds A, B||K||. The ∗-K-frame operator of {K f j} j∈J

is S
′
= KS K∗, where S is the ∗-K-frame operator of { f j} j∈J.

Proof. The first part is obvious by Proposition 4.1 ii), since every ∗-frame is a ∗-I-frame.
But by definition of S , S K∗ f =

∑
j∈J⟨ f ,K f j⟩ f j. Thus

KS K∗ f = K
∑
j∈J

⟨ f ,K f j⟩ f j =
∑
j∈J

⟨ f ,K f j⟩K f j. (4.1)

Hence S
′
= KS K∗.

Corollary 4.3. Suppose that K ∈ Hom∗A(H) and { f j} j∈J is a ∗-frame, then {KS −1 f j} is a ∗-K-frame,
when S is the ∗-frame operator of { f j} j∈J.

Proof. If S is the ∗-frame operator of { f j} j∈J then we know {S −1 f j} j∈J is also a ∗-frame. Now
applying Proposition 4.2, one may complete the proof.

Proposition 4.4. Let { f j} j∈J be a ∗-frame with ∗-frame bounds A, B and the ∗-frame operator S .
If K, L ∈ Hom∗A(H) and Rang(L∗) is orthogonally complemented and Rang(K) ⊆ Rang(L) then
{L f j} j∈J is a ∗-K-frame with the ∗-K-frame operator S

′
= L∗S L.

Proof. Since Rang(K) ⊆ Rang(L) so by Theorem 1.1 there exists a positive real number λ > 0
such that λKK∗ ≤ LL∗ therefore λ⟨K∗ f ,K∗ f ⟩ ≤ ⟨L∗ f , L∗ f ⟩ hence (A

√
λ)⟨K∗ f ,K∗ f ⟩(A

√
λ)∗ ≤

A⟨L∗ f , L∗ f ⟩A∗, thus by the fact that { f j} j∈J is a ∗-frame we have

(A
√
λ)⟨K∗ f ,K∗ f ⟩(A

√
λ)∗ ≤ A⟨L∗ f , L∗ f ⟩A∗ ≤

∑
j∈J

⟨ f , L f j⟩⟨L f j, f ⟩

≤ B⟨L∗ f , L∗ f ⟩B∗

≤ (B∥L∥)⟨ f , f ⟩(B∥L∥)∗.

So {L f j} j∈J is a ∗-K-frame with ∗-K-frame bounds A
√
λ and B∥L∥. The proof of S

′
= L∗S L is

obvious.

In [2], the authors have shown that a tensor product of ∗-frames in C∗-Hilbert modules is also
a ∗frame. We study the subject for ∗-frames for operators in Hilbert C∗-modules. In the rest of this
section,H and K stand for Hilbert C∗-modules over C∗-algebrasA and B, respectively.
The following theorem is a generalization of [2, Theorem 2.2] and [18, Lemma 3.1].

Theorem 4.5. Let K ∈ Hom∗A(H) and L ∈ Hom∗B(K). Let { f j} j∈J ⊆ H be a ∗-K-frame with ∗-
K-frame bounds A and B and frame operator S f and {h j} j∈J ⊆ K be a ∗-L-frame with ∗-K-frame
bounds C and D and ∗-L-frame operator S h. Then { f j ⊗ h j} j∈J is a ∗-K ⊗ L-frame for Hilbert
A⊗B-moduleH⊗K with ∗-K⊗L-frame operator S f ⊗S h and the lower and upper bounds A⊗C
and B ⊗ D, respectively.
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Proof. Since { f j} j∈J and {h j} j∈J are ∗-K-frame and ∗-L-frame, respectively, so for any f ∈ H and
h ∈ K we have∑

j∈J

∑
i∈I
⟨ f ⊗ h, f j ⊗ hi⟩⟨ f j ⊗ hi, f ⊗ h⟩ =

∑
j∈J

⟨ f , f j⟩⟨ f j, f ⟩ ⊗
∑
i∈I
⟨h, hi⟩⟨hi, h⟩

≥ A⟨K∗ f ,K∗ f ⟩A∗ ⊗C⟨L∗h, L∗h⟩C∗

= (A ⊗C)(⟨K∗ f ,K∗ f ⟩ ⊗ ⟨L∗h, L∗h⟩)(A ⊗C)∗

= (A ⊗C)⟨(K∗ ⊗ L∗)( f ⊗ h), (K∗ ⊗ L∗)( f ⊗ h)⟩(A ⊗C)∗

= (A ⊗C)⟨(K ⊗ L)∗( f ⊗ h), (K ⊗ L)∗( f ⊗ h)⟩(A ⊗C)∗

The rest of the proof is similar to the proof of [2, Theorem 2.2].

5. Perturbations of ∗-K-frames

In this section, we will show that, under some conditions, some perturbation theorem for
frames in Hilbert spaces remains valid for ∗-frames for operators on Hilbert C∗-modules.
The following theorem is a generalization of [17, Theorem 7.1].

Theorem 5.1. Assume that K, L ∈ Hom∗A(H) with Rang(L) ⊆ Rang(K) and K has closed range.
Let { f j} j∈J be a ∗-K-frame with ∗-K-frame bounds A and B. If there exists a constant M > 0, such
that for all f inH

∥
∑
j∈J

⟨ f , f j − h j⟩⟨ f j − h j, f ⟩∥ ≤ M min{∥
∑
j∈J

⟨ f , f j⟩⟨ f j, f ⟩∥, ∥
∑
j∈J

⟨ f , h j⟩⟨h j, f ⟩∥}. (5.1)

Then {h j} j∈J is a ∗-L-frame. If K is a co-isometry, Rang(K) ⊆ Rang(L) and Rang(L) is closed then
the converse is valid.

Proof. Suppose that f ∈ H , so we have

∥
∑
j∈J

⟨ f , h j⟩⟨h j, f ⟩∥ 1
2 = ∥{ f , h j}∥ ≤ ∥{ f , f j − h j}∥ + ∥{ f , f j}∥

= ∥
∑
j∈J

⟨ f , f j − h j⟩⟨ f j − h j, f ⟩∥ 1
2 + ∥

∑
j∈J

⟨ f , f j⟩⟨ f j, f ⟩∥ 1
2

≤
√

M∥
∑
j∈J

⟨ f , f j⟩⟨ f j, f ⟩∥ 1
2 + ∥

∑
j∈J

⟨ f , f j⟩⟨ f j, f ⟩∥ 1
2

= (
√

M + 1)∥
∑
j∈J

⟨ f , f j⟩⟨ f j, f ⟩∥ 1
2 ≤ ∥B∥(1 +

√
M)∥ f ∥. (5.2)

So by (5.2) and Lemma 1.3, {h j} j∈J is a ∗-Bessel sequence with ∗-Bessel bound 1 +
√

M∥B∥1A.
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On the other hand we have

∥
∑
j∈J

⟨ f , f j⟩⟨ f j, f ⟩∥ 1
2 ≤ ∥

∑
j∈J

⟨ f , f j − h j⟩⟨ f j − h j, f ⟩∥ 1
2 + ∥

∑
j∈J

⟨ f , h j⟩⟨h j, f ⟩∥ 1
2

≤
√

M∥
∑
j∈J

⟨ f , h j⟩⟨h j, f ⟩∥ 1
2 + ∥

∑
j∈J

⟨ f , h j⟩⟨h j, f ⟩∥ 1
2

= (
√

M + 1)∥
∑
j∈J

⟨ f , h j⟩⟨h j, f ⟩∥ 1
2 .

The operator U : H → ℓ2(A) given by U f = {⟨ f , h j⟩} j∈J is well-defined since {h j} j∈J is a ∗-Bessel
sequence. Thus

∥U f ∥2 = ∥
∑
j∈J

⟨ f , h j⟩⟨h j, f ⟩∥ ≥ 1

(
√

M + 1)2
∥
∑
j∈J

⟨ f , f j⟩⟨ f j, f ⟩∥

≥ ∥A∥2

(
√

M + 1)2
∥K∗ f ∥2.

This means that ∥U f ∥2 ≥ ∥A∥2
(
√

M+1)2 ∥K∗ f ∥2, so by Theorem 1.2 there exists λ > 0 such that
∑

j∈J⟨ f , h j⟩⟨h j, f ⟩ ≥
√
λ1A⟨K∗ f ,K∗ f ⟩

√
λ1A. Thus by part (iv) of Proposition 4.1, {h j} j∈J is a ∗-L-frame. For the con-

verse suppose that {h j} j∈J is a ∗-L-frame with the ∗-L-frame bounds C and D, respectively and K
is a co-isometry operator onH , i.e., ∥K∗ f ∥ = ∥ f ∥, for any f ∈ H . We obtain

∥
∑
j∈J

⟨ f , f j − h j⟩⟨ f j − h j, f ⟩∥ 1
2 ≤ ∥

∑
j∈J

⟨ f , f j⟩⟨ f j, f ⟩∥ 1
2 + ∥

∑
j∈J

⟨ f , h j⟩⟨h j, f ⟩∥ 1
2

≤ ∥
∑
j∈J

⟨ f , f j⟩⟨ f j, f ⟩∥ 1
2 + ∥D∥∥ f ∥

= ∥
∑
j∈J

⟨ f , f j⟩⟨ f j, f ⟩∥ 1
2 + ∥D∥∥K∗ f ∥

≤ ∥
∑
j∈J

⟨ f , f j⟩⟨ f j, f ⟩∥ 1
2 +
∥D∥
∥A∥ ∥

∑
j∈J

⟨ f , f j⟩⟨ f j, f ⟩∥ 1
2

=

(
1 +
∥D∥
∥A∥

)
∥
∑
j∈J

⟨ f , f j⟩⟨ f j, f ⟩∥ 1
2 .

On the other hand

∥
∑
j∈J

⟨ f , f j − h j⟩⟨ f j − h j, f ⟩∥ 1
2 ≤ ∥

∑
j∈J

⟨ f , f j⟩⟨ f j, f ⟩∥ 1
2 + ∥

∑
j∈J

⟨ f , h j⟩⟨h j, f ⟩∥ 1
2

≤ ∥
∑
j∈J

⟨ f , h j⟩⟨h j, f ⟩∥ 1
2 + ∥B∥∥ f ∥

= ∥
∑
j∈J

⟨ f , h j⟩⟨h j, f ⟩∥ 1
2 + ∥B∥∥K∗ f ∥,
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By Theorem 1.2, there exists λ > 0 such that ∥K∗ f ∥2 ≤ λ∥L∗ f ∥2, f ∈ H , since Rang(K) ⊆ Rang(L)
and Rang(L) is closed. Hence

∥
∑
j∈J

⟨ f , f j − h j⟩⟨ f j − h j, f ⟩∥ 1
2 ≤ ∥

∑
j∈J

⟨ f , h j⟩⟨h j, f ⟩∥ 1
2 + ∥B∥∥K∗ f ∥

≤ ∥
∑
j∈J

⟨ f , h j⟩⟨h j, f ⟩∥ 1
2 +
√
λ∥B∥∥L∗ f ∥

≤ ∥
∑
j∈J

⟨ f , h j⟩⟨h j, f ⟩∥ 1
2 +

√
λ∥B∥
∥C∥ ∥

∑
j∈J

⟨ f , h j⟩⟨h j, f ⟩∥ 1
2

=

1 + √λ∥B∥∥C∥

 ∥∑
j∈J

⟨ f , h j⟩⟨h j, f ⟩∥ 1
2 .

So with M = min{(1 + ∥D∥∥A∥ )2, (1 +
√
λ∥B∥
∥C∥ )2}, (5.3) holds.

Corollary 5.2. Assume that K, L ∈ Hom∗A(H) with Rang(L) ⊆ Rang(K) and K has closed range.
Let { f j} j∈J be a ∗-K-frame with ∗-K-frame bounds A, B ∈ Z(A). If there exists a constant M > 0,
such that for any f ∈ H ,

∥
∑
j∈J

⟨ f , f j − h j⟩⟨ f j − h j, f ⟩∥ ≤ M min{∥
∑
j∈J

⟨ f , f j⟩⟨ f j, f ⟩∥, ∥
∑
j∈J

⟨ f , h j⟩⟨h j, f ⟩∥}, (5.3)

then {h j} j∈J is a ∗-L-frame.

Proof. The proof is obvious by Theorem 5.1 and Lemma 3.3.

Corollary 5.3. Assume that K ∈ Hom∗A(H) such that K has closed range. Let { f j} j∈J be a ∗-
K-frame with ∗-K-frame bounds A and B, respectively. If there exists a constant M > 0, such
that

∥
∑
j∈J

⟨ f , f j − h j⟩⟨ f j − h j, f ⟩∥ ≤ M min{∥
∑
j∈J

⟨ f , f j⟩⟨ f j, f ⟩∥, ∥
∑
j∈J

⟨ f , h j⟩⟨h j, f ⟩∥}, ( f ∈ H),

then {h j} j∈J is a ∗-K-frame. The converse is valid for any co-isometry operator K.

In the following theorem another perturbation of ∗-K-frames is given that is a generalization
of [17, Theorem 7.3].

Theorem 5.4. Assume that K, L ∈ Hom∗A(H) with Rang(L) ⊆ Rang(K) and K has closed range.
Let { f j} j∈J be a ∗-K-frame, with ∗-K-frame bounds A, B. If there exist α, β, γ ≥ 0 such that max{α+
γ

∥A∥ , β} < 1 and

∥
∑
j∈J

⟨ f , f j − h j⟩⟨ f j − h j, f ⟩∥ 1
2 ≤ α∥

∑
j∈J

⟨ f , f j⟩⟨ f j, f ⟩∥ 1
2 + β∥

∑
j∈J

⟨ f , h j⟩⟨h j, f ⟩∥ 1
2 + γ∥K∗ f ∥, (5.4)

then {h j} j∈J is a ∗-L-frame.
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Proof. For any f ∈ H we have

∥
∑
j∈J

⟨ f , h j⟩⟨h j, f ⟩∥ 1
2 = ∥{ f , h j}∥ ≤ ∥{ f , f j − h j}∥ + ∥{ f , f j}∥

= ∥
∑
j∈J

⟨ f , f j − h j⟩⟨ f j − h j, f ⟩∥ 1
2 + ∥

∑
j∈J

⟨ f , f j⟩⟨ f j, f ⟩∥ 1
2

≤ (1 + α)∥
∑
j∈J

⟨ f , f j⟩⟨ f j, f ⟩∥ 1
2 + β∥

∑
j∈J

⟨ f , h j⟩⟨h j, f ⟩∥ 1
2 + γ∥K∗ f ∥.

So

(1 − β)∥
∑
j∈J

⟨ f , h j⟩⟨h j, f ⟩∥ 1
2 ≤ (1 + α)∥

∑
j∈J

⟨ f , f j⟩⟨ f j, f ⟩∥ 1
2 + γ∥K∗ f ∥

≤ ((1 + α) +
γ

∥A∥ )∥
∑
j∈J

⟨ f , f j⟩⟨ f j, f ⟩∥ 1
2 .

Hence

∥
∑
j∈J

⟨ f , h j⟩⟨h j, f ⟩∥ 1
2 ≤ ∥B∥(1 +

α + β + γ

∥A∥

1 − β )∥ f ∥. (5.5)

Similarly

∥
∑
j∈J

⟨ f , h j⟩⟨h j, f ⟩∥ 1
2 ≥ (1 − α − γ∥A∥)∥

∑
j∈J

⟨ f , f j⟩⟨ f j, f ⟩∥ 1
2 − β∥

∑
j∈J

⟨ f , h j⟩⟨h j, f ⟩∥ 1
2 .

Also {h j} j∈J is a ∗-Bessel sequence which implies that the operator T : H → ℓ2(A) defined by
T f = {⟨ f , h j⟩} j∈J is well-defined. Thus Rang(L) ⊆ Rang(K) and Theorem 1.2 imply that there
exists µ > 0 such that µ∥K∗ f ∥2 ≥ ∥L∗ f ∥2, for every f ∈ H . So for any f ∈ H

∥T f ∥ = ∥
∑
j∈J

⟨ f , h j⟩⟨h j, f ⟩∥ 1
2 ≥ (1 −

α + β + γ

∥A∥

1 + β
)∥

∑
j∈J

⟨ f , f j⟩⟨ f j, f ⟩∥ 1
2

≥ ∥A∥(1 −
α + β + γ

∥A∥

1 + β
)∥K∗ f ∥, f ∈ H . (5.6)

So by (5.5), (5.6), Theorem 1.2, Lemma 1.3 and part (iv) of Proposition 4.1, {h j} j∈J is a ∗-L-
frame.

Corollary 5.5. Assume that K, L ∈ Hom∗A(H) with Rang(L) ⊆ Rang(K) and K has closed range.
Let { f j} j∈J be a ∗-K-frame with ∗-K-frame bounds A, B ∈ Z(A). If there exist α, β, γ ≥ 0 such that
max{α + γ

∥A∥ , β} < 1 and

∥
∑
j∈J

⟨ f , f j − h j⟩⟨ f j − h j, f ⟩∥ 1
2 ≤ α∥

∑
j∈J

⟨ f , f j⟩⟨ f j, f ⟩∥ 1
2 + β∥

∑
j∈J

⟨ f , h j⟩⟨h j, f ⟩∥ 1
2 + γ∥K∗ f ∥, (5.7)

then {h j} j∈J is a ∗-L-frame.



B. Dastourian and M. Janfada/Wavelets and Linear Algebra 3 (2016) 27 - 43 42

Proof. It can be proved by using Theorem 5.4 and Lemma 3.3.

Corollary 5.6. Assume that K ∈ Hom∗A(H) has closed range. Let { f j} j∈J be a ∗-K-frame, with
∗-K-frame bounds A, B. If there exist α, β, γ ≥ 0 such that max{α + γ

∥A∥ , β} < 1 and

∥
∑
j∈J

⟨ f , f j − h j⟩⟨ f j − h j, f ⟩∥ 1
2 ≤ α∥

∑
j∈J

⟨ f , f j⟩⟨ f j, f ⟩∥ 1
2 + ∥

∑
j∈J

⟨ f , h j⟩⟨h j, f ⟩∥ 1
2 + γ∥K∗ f ∥, (5.8)

then {h j} j∈J is a ∗-K-frame.

Corollary 5.7. Let { f j} j∈J be a ∗-frame, with ∗-frame bounds A, B. If there exists α, β, γ ≥ 0 such
that max{α + γ

∥A∥ , β} < 1 and

∥
∑
j∈J

⟨ f , f j − h j⟩⟨ f j − h j, f ⟩∥ 1
2 ≤ α∥

∑
j∈J

⟨ f , f j⟩⟨ f j, f ⟩∥ 1
2 + ∥

∑
j∈J

⟨ f , h j⟩⟨h j, f ⟩∥ 1
2 + γ∥K∗ f ∥, (5.9)

then {h j} j∈J is a ∗-frame.
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