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Abstract
In this paper we generalize the max plus algebra system of real
matrices to the class of real tensors and derive its fundamen-
tal properties. Also we give some basic properties for the left
(right) inverse, under the new system. The existence of order 2
left (right) inverses of tensors is characterized.

c⃝ (2016) Wavelets and Linear Algebra

1. Introduction

In max plus algebra we work with the max plus semi-ring which is the set ℜmax = ℜ ∪ {−∞}
together with operations a⊕b = max (a, b) and a⊗b = a+b. The additive and multiplicative iden-
tities are taken to be ε = −∞ and e = 0 respectively. Max plus algebra is one of many idempotent
semirings which have been considered in various fields of mathematics. It has many applications
in many areas such as optimization, mathematical physics, algebraic geometry, control theory, ma-
chine scheduling, manufacturing systems, parallel processing systems and traffic control, see [6],
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[7], [8] and [10]. Many equations that are used to describe the behavior of these applications are
nonlinear in conventional algebra but become linear in max-plus algebra. This is a primary reason
for its utility in various areas [7].

A tensor can be regarded as a higher order generalization of a matrix, which takes the form

A =
(
ai1,...,im

)
, ai1,...,im ∈ ℜ, 1 ≤ i1, ..., im ≤ n,

whereℜ is a real field. Such a multi-array A is said to be an mth order n-dimensional square real
tensor with nm entries ai1,...,im . In this regard, a vector is a first order tensor and a matrix is a second
order tensor. Tensors of order more than two are called higher order tensors.

These are some basic knowledge of max plus algebra on matrices. Is it possible to extend
them to higher orders tensors? In this paper we show the answer is affirmative.

The paper is organized as follows. In Section 2, the fundamental concepts of max plus
algebra system and tensors are given briefly for readers. In Section 3, we generalize the max plus
algebra system to tensors and we obtain some properties. In section 4, the inverse of tensor under
the new system is defined. The left (right) inverse of diagonal tensors of any order are obtained
and some basic properties for order 2 left (right) inverse of tensors are given.

We first add a comment on the notation that is used. Vectors are written as (x, y, ...), ma-
trices correspond to (A, B, ...) and tensors are written as (A,B, ...). The entry with row index i
and column index j in a matrix A, i.e. (A)i j is symbolized by ai j (also (A)i1i2...im = ai1i2...im). ℜ
and C represents the real and complex field, respectively. For each nonnegative integer n, denote
[n] = {1, 2, ..., n}. We denoteℜmax = ℜ∪ {−∞} and ℜ̄max = ℜ∪ {±∞}.

2. Preliminaries

2.1. Max plus algebra system
In this subsection we give the basic definition of the max plus algebra. For the proofs and more

information about max plus algebra the reader is referred to [2, 3, 4, 9, 11]. If a, b ∈ ℜmax, then
we set

a ⊕ b = max (a, b) ,

and
a ⊗ b = a + b.

For example,
(−1) ⊕ 2 = max (−1, 2) = 2 = max (2,−1) = 2 ⊕ (−1) ,

7 ⊗ 3 = 7 + 3 = 10 = 3 + 7 = 3 ⊗ 7.

By max plus algebra we understand the analogue of linear algebra developed for the pair of opera-
tions (⊕,⊗), extended to matrices and vectors as in conventional linear algebra. That is, for vectors
x = (xi), y = (yi) in ℜn

max and c ∈ ℜ̄max the vectors x ⊕ y = (max {xi, yi}) and c ⊗ x = (c ⊗ xi) are
defined entrywise. The sum A⊕B of two matrices is defined analogously. If A, B,C are matrices of
compatible sizes with entries fromℜmax, we write C = A⊕ B if ci j = max(ai j, bi j) for all i, j ∈ [n].
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If A = (aik) ∈ Mn
(ℜmax

)
, then the map

x ∈ ℜmax ⇒ A ⊗ x ∈ ℜmax,

where (A ⊗ x)i = max
k

(aik + xk), i ∈ [n], is linear in the sense given above, namely for all x, y ∈
ℜn

max, c ∈ ℜ̄max

A ⊗ (x ⊕ y) = (A ⊗ x) ⊕ (A ⊗ y) , A ⊗ (c ⊗ x) = c ⊗ (A ⊗ x) .

Also we write C = (cil) = A⊗B, if cil = max
k

(aik + bkl), for all i, l ∈ [n] and c⊗A = A⊗c =
(
c ⊗ ai j

)
for c ∈ ℜ̄max.

2.2. Basic definition of tensor
In this subsection, we will cover some fundamental notions and properties on tensors. We

denote the set of all mth order n-dimensional tensors byℜ[m,n]
max such that all entries belong toℜmax.

For a vector x = (x1, ..., xn)T ∈ ℜn, let Axm−1 be a vector inℜn whose ith component is defined as
the following [13]: (

Axm−1
)

i
=

n∑
i2,...,im=1

aii2...im xi2 ... xim , (2.1)

and let x[m] =
(
xm

1 , ..., x
m
n

)T
.

Definition 2.1. [14] Let A (and B) be an order m ≥ 2 (and order k ≥ 1), dimension n tensor,
respectively. The product AB is defined to be the following tensor C of order (m − 1) (k − 1) + 1
and dimension n:

ciα1...αm−1 =

n∑
i2,...,im=1

aii2...imbi2α1 ...bimαm−1 ,

where (i ∈ [n] , α1, ..., αm−1 ∈ [n]k−1).

It is easy to check from the definition that InA = A = AIn, where In is the identity matrix of
order n. When k = 1 and B = x ∈ Cn is a vector of dimension n, then (m − 1) (k − 1)+ 1 = 1. Thus
AB = Ax is still a vector of dimension n, and we have

(Ax)i = (AB)i = ci =

n∑
i2...im=1

aii2...im xi2 ...xim =
(
Axm−1

)
i
,

Thus we have Axm−1 = Ax. So the first application of the tensor product defined above is that now
Axm−1 can be simply written as Ax.

Definition 2.2. [12] A tensor A ∈ ℜ[m,n] is reducible, if there exists a nonempty proper index
subset I ⊂ {1, ..., n} such that

ai1,...,im = 0, ∀i1 ∈ I, ∀i2, ..., im < I,

If A is not reducible, then we call A irreducible.
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3. Max plus algebra on tensors: Basic definitions and properties

In this section we define the max plus algebra system on tensors and we investigate their basic
properties.

Definition 3.1. The max plus algebraic addition (⊕) and multiplication (⊗) are defined as follows:
(i) Suppose that A,B are mth order n dimensional tensors with entries from ℜmax then we have
A ⊕ B is mth order n dimensional tensor and

(A ⊕ B)i1...im = ai1...im ⊕ bi1...im = max
(
ai1...im , bi1...im

)
. (3.1)

(ii) Suppose that A ∈ ℜ[m,n]
max and B ∈ ℜ[k,n]

max where m ≥ 2 , k ≥ 1 then we have A ⊗ B ∈
ℜ[(m−1)(k−1)+1,n]

max and

(A ⊗ B)iα1...αm−1 =
n
⊕

i2,...,im=1
aii2...im ⊗ bi2α1 ⊗ ... ⊗ bim⊗αm−1

= max
1≤i2,...,im≤n

{
aii2...im + bi2α1 + ... + bimαm−1

}
,

(3.2)

where i ∈ {1, ..., n}, α1, ..., αm−1 ∈ [n]k−1. In particular for x ∈ ℜn
max we have

(A ⊗ x)i = max
1≤i2...im≤n

{
aii2...im + xi2 + ... + xim

}
.

Example 3.2. Let A and B be third-order two-dimensional tensors of the following form:

a111 = 1 a121 = 2 a112 = 1 a122 = 2
a211 = 2 a221 = 1 a212 = −2 a222 = −8,

b111 = 2 b121 = 0 b112 = 4 b122 = −1
b211 = 10 b221 = −3 b212 = 1 b222 = 0,

if C = A ⊗ B, then for example c12112 = 5.

If x =
(
−3
1

)
then (A ⊗ x) =

(
4
−1

)
.

The max plus algebraic addition (⊕) and multiplication (⊗) have the following properties:

Theorem 3.3. Let A,B,C ∈ ℜ[m,n]
max , then

(i) A ⊕ B = B ⊕ A.
(ii) A ⊕ (B ⊕ C) = (A ⊕ B) ⊕ C.
(iii) A ⊕ E = A = E ⊕ A where E is an mth order n dimensional tensor whose all entries are ε.
(iv) A ⊕ B ≥ A.
(v) A ⊕ B = A if and only if A ≥ B.

Theorem 3.4. Let A,B,C ∈ ℜ[m,n]
max and α ∈ ℜ̄max, then

(i) (α ⊗ A)i1i2...im = (A ⊗ α)i1i2...im = α + ai1i2...im .
(ii) A ⊗ E = E = E ⊗ A, where E is an n × n matrix whose all entries are ε.
(iii) α ⊗ (B ⊕ C) = (α ⊗ B) ⊕ (α ⊗ C).
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(iv) B ⊗ (α ⊗ C) = ((m − 1)α) ⊗ (B ⊗ C) and (α ⊗ B) ⊗ C = α ⊗ (B ⊗ C).
(v) Let A1, A2 ∈ ℜ[m,n]

max and B ∈ ℜ[k,n]
max then (A1 ⊕ A2) ⊗ B = (A1 ⊗ B) ⊕ (A2 ⊗ B).

(vi) Let A be an n × n matrix and B1,B2 ∈ ℜ[k,n]
max then A ⊗ (B1 ⊕ B2) = (A ⊗ B1) ⊕ (A ⊗ B2). (Note

that in general when A is not a matrix, then the right distributivity doesn’t hold.)
(vii) Let T, S are both matrices. Then

T ⊗ (A ⊕ B) ⊗ S = (T ⊗ A ⊗ S ) ⊕ (T ⊗ B ⊗ S ) .

Proof. The proof of (i), (ii), (iii) and (iv) is trivial. Also we have

((A1 ⊕ A2) ⊗ B)iα1...αm−1 = max
1≤i2,...,im≤n

(
(A1 ⊕ A2)ii2...im + bi2α1 + ... + bimαm−1

)
= max

1≤i2,...,im≤n

(
max

(
(A1)ii2...im , (A2)ii2...im

)
+ bi2α1 + ... + bimαm−1

)
= max

1≤i2,...,im≤n

(
max

(
(A1)ii2...im + bi2α1 + ... + bimαm−1 , (A2)ii2...im + bi2α1 + ... + bimαm−1

))
= max

(
max

1≤i2,...,im≤n

(
(A1)ii2...im + bi2α1 + ... + bimαm−1 , (A2)ii2...im + bi2α1 + ... + bimαm−1

))
= max

(
max

1≤i2,...,im≤n
(A1)ii2...im + bi2α1 + ... + bimαm−1 , max

1≤i2,...,im≤n
(A2)ii2...im + bi2α1 + ... + bimαm−1

)
= ((A1 ⊗ B) ⊕ (A2 ⊗ B))iα1...αm−1 .

Thus the proof of (v) is complete. The proof of (vi) is similar. By the left distributive law and right
distributive, the proof of part (vii) is complete.

Now we use a method similar with the proof of Theorem 3.4 in [1] to show the associative law.

Theorem 3.5. Let A (and B, C) be an order m + 1 (and order k + 1, order r + 1), dimension n
tensor, respectively. Then we have

A ⊗ (B ⊗ C) = (A ⊗ B) ⊗ C.

Proof. For β1, ..., βm ∈ ([n]r)k, we write:

β1 = θ11...θ1k, ..., βm = θm1...θmk

(
θi j ∈ [n]r, i = 1, ...,m ; j = 1, ..., k

)
.

Then we have:

(A ⊗ (B ⊗ C))iβ1...βm
= max

1≤i1,...,im≤n

{
aii1...im +

(
m∑

j=1
(B ⊗ C)i jβ j

)}
= max

1≤i1,...,im≤n

{
aii1...im +

(
m∑

j=1
(B ⊗ C)i jθ j1...θ jk

)}
= max

1≤i1,...,im≤n

{
aii1...im +

(
m∑

j=1
max

1≤t j1,...,t jk≤n
bi jt j1...t jk +

(
ct j1θ j1 + ... + ct jkθ jk

))}
= max

1≤i1,...,im≤n

{
aii1...im + max

1≤t jh≤n(1≤ j≤m;1≤h≤k)

(
m∑

j=1
bi jt j1...t jk +

(
ct j1θ j1 + ... + ct jkθ jk

))}
.
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On the other hand, for α1, ..., αm ∈ [n]k, we write:

α1 = t11...t1k, ..., αm = tm1...tmk

(
ti j ∈ [n] , i = 1, ...,m; j = 1..., k

)
.

Then we also have:

((A ⊗ B) ⊗ C)iβ1...βm
= max
α1,...,αm∈[n]k

{
(A ⊗ B)iα1...αm

+

(
n∑

j=1

(
ct j1θ j1 + ... + ct jkθ jk

))}

= max
1≤t jh≤n(1≤ j≤m;1≤h≤k)

{
max

1≤i1,...,im≤n

{
aii1...im +

(
m∑

j=1
bi jα j

)
+

(
m∑

j=1
ct j1θ j1 + ... + ct jkθ jk

)}}

= max
1≤i1,...,im≤n

{
aii1...im + max

1≤t jh≤n(1≤ j≤m;1≤h≤k)

(
m∑

j=1
bi jt j1...t jk +

(
ct j1θ j1 + ... + ct jkθ jk

))}
.

Thus the proof is complete.

Theorem 3.6. Let A,B and C be tensors overℜmax of compatible sizes and α ∈ ℜ̄max, then

(i) A ≥ B ⇒ (A ⊕ C) ≥ (B ⊕ C).
(ii) A ≥ B ⇒ (A ⊗ C) ≥ (B ⊗ C).
(iii) A ≥ B ⇒ (C ⊗ A) ≥ (C ⊗ B).
(iv) A ≥ B ⇒ (α ⊗ A) ≥ (α ⊗ B).

Proof. The proof is clear.

Definition 3.7. A square matrix is called diagonal if all its diagonal entries are real numbers and
off-diagonal entries are ε. A diagonal with all diagonal entries equal to 0 is called the unit matrix
and denoted I.

Obviously, A ⊗ I = I ⊗ A = A whenever A and I are of compatible sizes.

Theorem 3.8. Let A ∈ ℜ[m,n]
max .Then

A ⊗ I = A = I ⊗ A,

whenever I is of a suitable dimension.

Definition 3.9. A permutation matrix is a matrix in which each row and each column contains
exactly one entry equal to 0 and all other entries are equal to ε. If σ : {1, 2, ..., n} → {1, 2, ..., n} is
a permutation we define the max plus permutation matrix Pσ =

(
pi j

)
where

pi j =

{
0 i = σ ( j)
ε i , σ ( j)

So that the jth column of Pσ has 0 in the σ( j)th row.
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Notice that a permutation matrix obtain from a unit matrix by permuting the rows or columns.
Also we have P−1 = PT .

Definition 3.10. Two mth order n dimensional tensor A =
(
ai1,...,im

)
and B =

(
bi1,...,im

)
, are said to

have the same ε-pattern if ai1,...,im = ε whenever bi1,...,im = ε, and vice versa.

Definition 3.11. A matrix that has the same ε-pattern as a permutation matrix is called a general-
ized permutation matrix.

Definition 3.12. An mth order n dimensional tensor A is called diagonal if all its diagonal entries
are real numbers and off-diagonal entries are ε. A diagonal tensor with all diagonal entries equal
to 0 is called the unit tensor and denoted by I.

Theorem 3.13. Let A, I ∈ ℜ[m,n]
max , and E be a tensor whose all entries are ε.

(i) If A ⊗ I = E, then A = E.
(ii) If I ⊗ A = E, then A = E.
(iii) If A ⊗ I = 0, then A = 0.
(iv) If I ⊗ A = 0, then A = 0.

Proof. (i):
By Definition 3.1, we have

(A ⊗ I)iα1...αm−1 =

{
aii2...im α j = i j+1, j = 1, 2, ...,m − 1
ε otherwise

Hence A ⊗ I = E implies that A = E.
(ii):
Suppose that A has a non-ε entry ai1i2...im , By Definition 3.1, we have I ⊗ A has a non-ε entry
(I ⊗ A)i1α = ai1α, for α = i2...im, which is a contradiction.
The proof of (iii) and (iv) are similar.

Definition 3.14. A tensor A ∈ ℜ[m,n]
max is called reducible, if there exists a nonempty proper index

subset I ⊂ {1, ..., n} such that

ai1,...,im = ε, ∀i1 ∈ I, ∀i2, ..., im < I,

If A is not reducible, then we call A irreducible.

Theorem 3.15. If A ∈ ℜ[m,n]
max is irreducible, then A has no ε-face, that is

max
1≤i2,...,im≤n

{
aii2...im

}
> ε, ∀ 1 ≤ i ≤ n.

Proof. Suppose not, then there exists i0 so that max
1≤i2,...,im≤n

{
ai0i2...im

}
= ε. Thus ai0i2...im = ε, for all

i2, ..., im. In particular, if we let I = {i0}, then ai1i2...im = ε for all i1 ∈ I and i2, ..., im < I. this
contradicts irreducibility.
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Lemma 3.16. Let A ∈ ℜ[m,n]
max and P,Q be two matrices. then

(P ⊗ A ⊗ Q)i1...im = max
1≤ j1,..., jm≤n

{
a j1... jm + pi1 j1 + q j2i2 + ... + q jmim

}
.

Proof. By Definition 3.1 we have

(P ⊗ A ⊗ Q)i1...im = max
1≤ j2,..., jm≤n

{
max

1≤ j1≤n

(
a j1... jm + pi1 j1

)
+ q j2i2 + ... + q jmim

}
= max

1≤ j1,..., jm≤n

{
a j1... jm + pi1 j1 + q j2i2 + ... + q jmim

}
.

Theorem 3.17. Let σ ∈ S n be a permutation on the set {1, ..., n}, P = Pσ =
(
pi j

)
be the cor-

responding permutation matrix of σ (where pi j = 0 ⇔ j = σ (i)). Let A,B ∈ ℜ[m,n]
max such that

B = P ⊗ A ⊗ PT , Then we have:
(i) bi1...im = aσ(i1)...σ(im).
(ii) P ⊗ I ⊗ PT = I.
(iii) Let D = diag(d11, ..., dnn) be an invertible diagonal matrix. Then

D−(m−1) ⊗ I ⊗ D = I.

Proof. By using Lemma 3.16 we have

bi1...im =
(
P ⊗ A ⊗ PT

)
i1...im
= max

1≤ j1,..., jm≤n

{
a j1... jm + pi1 j1 +

(
PT

)
j2i2
+ ... +

(
PT

)
jmim

}
= max

1≤ j1,..., jm≤n

{
a j1... jm + pi1 j1 + pi2 j2 + ... + pim jm

}
= aσ(i1)...σ(im).

The proofs of (ii) and (iii) are trivial by using part (i).

Theorem 3.18. Let A ∈ ℜ[m,n]
max be a reducible tensor and P be an n × n permutation matrix. Then

P ⊗ A ⊗ PT is a reducible tensor.

Proof. By using the previous theorem and Definition 3.14 the assertion is clear.

4. Inverse tensor under the new system

Since the operation ⊕ in max plus algebra is not invertible, inverse matrices are almost non-
existent and thus some tools used in linear algebra are unavailable. It is known that in max plus
algebra, generalized permutation matrices are the only type of invertible matrices [6, 4]:

Theorem 4.1. Let A ∈ Mn
(ℜmax

)
. Then a matrix B =

(
bi j

)
such that

A ⊗ B = I = B ⊗ A,

exists if and only if A is a generalized permutation matrix.
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Proof. See [4].

Recently in [5] the left and right inverse of tensors under the general product, are defined. In
conventional multilinear algebra we know that, not all tensors have inverses. We will see that in
max plus algebra the invertible tensors are even more limited.

Definition 4.2. Let A be a tensor of order m and dimension n, and let B be a tensor of order k and
dimension n. If A ⊗ B = I, then A is called an order m left inverse of B in the max-plus sense, and
B is called an order k right inverse of A in the max-plus sense.

Theorem 4.3. Let A ∈ ℜ[m,n]
max be a diagonal tensor. Then the following statements hold:

(i). A has an order k left inverse if and only if aii...i , ε, i = 1, 2, ..., n.
Moreover, an order k diagonal tensor L with diagonal entry lii...i = − (k − 1) aii...i is the unique
order k left inverse of A.
(ii). A has an order k right inverse if and only if aii...i , ε, i = 1, 2, ..., n. In this case, an order k
diagonal tensor R with diagonal entry rii...i =

−aii...i
(m−1) is the unique order k right inverse of A.

Proof. Let A has an order k left inverse, then there exists an order k dimension n tensor L such
that L ⊗ A = I. Since A is diagonal, by Definition 3.1, A has an order k left inverse if and only if
aii...i , ε, i = 1, 2, ..., n. By L ⊗ A = I and Definition 3.1 we have lii...i = − (k − 1) aii...i. Hence part
(i) holds.
If A has an order k right inverse, then there exists an order k dimension n tensor R such that
A ⊗ R = I. Since A is diagonal, by Definition 3.1, A has an order k right inverse if and only if
aii...i , ε, i = 1, 2, ..., n. Also we have (m − 1) rii...i = −aii...i. Hence part (ii) holds.

Now we characterize all left (right) inverse of order 2 of an arbitrary tensor. In addition, we
characterize those tensors which have left (right) inverse of order 2. For this purpose we need the
following two lemmas which is given without proofs.

Lemma 4.4. If A ∈ ℜ[m,n]
max and A has an order 2 left inverse L, then

(i) L does not have a real row and column.
(ii) L does not have an ε-row and ε-column.
(iii) A does not have an ε-face and real-face.

Lemma 4.5. If A ∈ ℜ[m,n]
max and A has an order 2 right inverse R, then

(i) R does not have a real row and column.
(ii) R does not have an ε-row and ε-column.
(iii) A does not have an ε-face and real-face.

Theorem 4.6. If A ∈ ℜ[m,n]
max , and A has an order 2 left (right) inverse G, then G must be a

generalised permutation matrix.

Proof. Let A has an order 2 left (right) inverse G. We know that G does not have an ε-row (ε-
column), so there will be at least one real entry in each row (column). Notice that if there exists
one column of G such that has two real entries then A has an ε-face. Therefore there exists exactly
one real entry in each column and row.



H. R. Afshin, A. R. Shojaeifard/Wavelets and Linear Algebra 3 (2016) 1 - 11 10

Theorem 4.7. If A ∈ ℜ[m,n]
max , then A has an order 2 left inverse if and only if there exists a

generalised permutation matrix G such that A = G ⊗ I. Moreover, G−1 is the unique order 2 left
inverse of A.

Proof. If A = G ⊗ I, for a generalised permutation matrix G, then A has an order 2 left inverse
G−1. Assume C is an order 2 left inverse of A, then C ⊗A = I, this equation conclude that C must
be a generalised permutation matrix ( by Theorem 4.6), thus A = C−1 ⊗ I. Suppose that B is also
an order 2 left inverse of A, we can also get A = B−1 ⊗ I. Hence

(
C−1 − B−1

)
⊗ I = 0, By Theorem

3.13, we have C−1 = B−1. By the fact that a nonsingular matrix has a unique inverse matrix, it
follows that B = C and the desired results hold.

Theorem 4.8. If A ∈ ℜ[m,n]
max , then A has an order 2 right inverse if and only if there exists a

generalised permutation matrix Q such that A = I ⊗ Q. In this case, Q−1 is the unique order 2
right inverse of A.

Proof. If A = I⊗Q for a generalised permutation matrix Q, then A has an order 2 left inverse Q−1.
If T is an order 2 right inverse of A, then A ⊗ T = I, imply that T is a generalised permutation
matrix ( by Theorem 4.6). So A = I ⊗ T−1. Hence if A has an order 2 right inverse, then there
exists a generalised permutation matrix T such that A = I ⊗ T .
If R is any order 2 right inverse of A, then A ⊗ R = I ⊗ Q ⊗ R = I. Set D = Q ⊗ R, then I = I ⊗ D.
By Definition 3.1, D must be the identity matrix of dimension n. Hence the proof is complete.

Notice that for m = 2 (when A is a matrix), we have the right inverse is equal to left inverse,
(refer to max algebra theory).

Theorem 4.9. Let A and B be tensors such that A ⊗ B = 0. Then the following hold:
(i) If the order 2 left inverse of a tensor A (resp. B) exists, then B = 0 (resp. A = 0).
(ii) If the order 2 right inverse of a tensor A (resp. B) exists, then B = 0 (resp. A = 0).

Proof. If the order 2 left inverse of a tensor A exists, then by Theorem 4.7, there exists a gener-
alised permutation matrix G such that G ⊗ I ⊗ B = 0. Thus I ⊗ B = 0. By Theorem 3.13 we get
B = 0. Similarly if the order 2 left inverse of a tensor B exists, then Theorems 4.7 and 3.13 imply
that A = 0. Hence part (i) holds. The proof of (ii) follows in a manner similar to the proof of (i),
using the Theorems 4.8 and 3.13.

Definition 4.10. We define a new class for tensors as follows:

Γ =
{
A ∈ ℜ[m,n]

max : A = G ⊗ I = I ⊗G, where G is a generalized permutation matrix
}
.

For example the unit tensor is belong to this class.

The following theorem is an interesting and fundamental extension of Theorem 4.1 for ten-
sors, in which we charactrize the invertible tensors completely.

Theorem 4.11. Let A ∈ ℜ[m,n]
max .Then a matrix B such that

A ⊗ B = I = B ⊗ A,

exists if and only if A is belong to Γ.
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Proof. Let A ∈ Γ, thus there exists a generalised permutation matrix G such that A = G⊗I = I⊗G.
By puting B = G−1, we will have A ⊗ B = I = B ⊗ A. On the other hand, if A ⊗ B = I = B ⊗ A,
Theorems 4.7 and 4.8 conclude that A is belong to Γ.

References

[1] H.R. Afshin, A.R. Shojaeifard, A max version of Perron Frobenuos theorem for nonnegative tensor, Ann. Funct.
Anal., 6 (2015).

[2] M. Akian, R. Bapat, and S. Gaubert, Max-plus algebras, in Handbook of Linear Algebra, Discrete Mathematics
and Its Applications 39, L. Hogben, ed., Chapman and Hall/CRC, Boca Raton, FL, 2006.

[3] F. Baccelli, G. Cohen. G. Olsder. J. Quadrat, Synchronization and Linearity: An Algebra for Discrete Event
Systems, Wiley, Chichester. 1992.

[4] P. Butkovic, Max-linear Systems: Theory and Algorithms, Springer Monogr. Math., SpringerVerlag, London,
2010.

[5] C. Bu, X. Zhang, J. Zhou, W. Wang, Y. Wei, The inverse, rank and product of tensors, Linear Algebra Appl.,
446 (2014) 269-280.

[6] R.A. Cuninghame-Green, Minimax Algbera, Lecture notes in Economics and Mathematical Systems, 166
Springer, 1979.

[7] B.D. Shutter, On the ultimate behavior of the sequence of consecutive powers of a matrix in the max-plus
algebra, Linear Algebra Appl., 30 (2000), 103-117.

[8] S. Gaubert, Methods and applications of (max,+) linear algebra, Lecure Notes in Computer Science 500,
Springer Verlag, Berlin, 1997, 261-282.

[9] N. Ghasemizadeh and Gh. Aghamollaei, Some results on matrix polynomials in the max algebra, Banach J.
Math. Anal., 40 (2015), 17-26.

[10] R.G. Halburd, N.J. Southall, Tropical nevanlinna theory and ultradisctete equations, Loughborough University,
2007.

[11] B. Heidergott, G. Olsder and J. Van Der Woude, Max Plus at Work: Modeling and Analysis of Synchronized
Systems, Princeton University Press, 2005.

[12] L.H. Lim, Singular values and eigenvalues of tensors: a variational approach, Proceedings 1st IEEE Interna-
tional Workshop on Computational Advances of Multitensor Adaptive Processing, (2005), 129-132.

[13] L. Qi, Eigenvalues of a real supersymmetric tensor. J. Symbolic Comput., 40 (2005), 1302-1324.
[14] J.Y. Shao, A general product of tensors with applications, Linear Algebra Appl., 439 (2013), 2350-2366.


	Introduction
	Preliminaries
	Max plus algebra system
	Basic definition of tensor

	Max plus algebra on tensors: Basic definitions and properties
	Inverse tensor under the new system

