Vali-e-Asr University

Some relations between ε-directional derivative and ε-generalized weak subdifferential

A. Mohebi ${ }^{\text {a, }, *}$, H. Mohebi ${ }^{\text {a }}$
${ }^{a}$ Department of Mathematics, Shahid Bahonar University of Kerman, Kerman, Islamic Republic of Iran, P.O.Box: 76169133

Article Info

Article history:
Received 10 July 2015
Accepted 30 August 2015
Available online September 2015
Communicated by M. A. Dehghan

Keywords:

Non-convex optimization, ε-directional derivative

2000 MSC:
26A24
28B99

Abstract

In this paper, we study ε-generalized weak subdifferential for vector valued functions defined on a real ordered topological vector space X. We give various characterizations of ε-generalized weak subdifferential for this class of functions. It is well known that if the function $f: X \rightarrow \mathbb{R}$ is subdifferentiable at $x_{0} \in X$, then f has a global minimizer at x_{0} if and only if $0 \in \partial f\left(x_{0}\right)$. We show that a similar result can be obtained for ε-generalized weak subdifferential. Finally, we investigate some relations between ε-directional derivative and ε-generalized weak subdifferential. In fact, in the classical subdifferential theory, it is well known that if the function $f: X \rightarrow \mathbb{R}$ is subdifferentiable at $x_{0} \in X$ and it has directional derivative at x_{0} in the direction $u \in X$, then the relation $f^{\prime}\left(x_{0}, u\right) \geq\left\langle u, x^{*}\right\rangle, \forall x^{*} \in \partial f\left(x_{0}\right)$ is satisfied. We prove that a similar result can be obtained for ε generalized weak subdifferential.

© (1) (2015) Wavelets and Linear Algebra

[^0]
1. Introduction

The ε-subgradient which was defined by Zalinescu [9] plays an important role in Optimization Theory. In the literature, Gasimov was the first to suggest an algorithm to solve non-convex optimization problems [4]. Subgradient was also defined by Y. Kücük, L. Atasever and M. Kücük for non-convex functions. Also, generalized weak subgradient and generalized weak subdifferential were defined for non-convex functions with values in an ordered vector space (see [7]). Azimov and Gasimov gave optimality conditions for a non-convex vector optimization problem by using weak subdifferentials that depend on supporting conic surfaces (see [1, 2]). So, weak subdifferentials and conic surfaces have important roles in non-convex optimization. Subgradient was also defined for convex functions with values in an ordered vector space (see [3, 8, 9, 10]). In this paper, we first define ε-generalized weak subdifferential for vector valued functions defined on a real topological vector space X. Next, we give various characterizations for ε-generalized weak subdifferential of this class of functions. Finally, we investigate some relations between ε directional derivative and ε-generalized weak subdifferential. The paper is organized as follows: In Section 2, we recall some basic definitions. In Section 3, we give various characterizations for ε-generalized weak subdifferential of vector valued functions defined on a real ordered topological vector space X. Some properties of ε-generalized weak subdifferential are presented in Section 4. In Section 5, we examine some relations between ε-directional derivative and ε-generalized weak subdifferential.

2. Preliminaries

In this section, we give some basic definitions and results. Let Y be a real vector space and C_{Y} be a closed convex cone and pointed in Y (the later means that $C_{Y} \cap\left(-C_{Y}\right)=\{0\}$). The cone C_{Y} induces a relation $\leq_{C_{Y}}$ on Y which is defined by

$$
x \leq_{C_{Y}} y \Leftrightarrow y-x \in C_{Y}, \quad(x, y \in Y) .
$$

It is clear that $\leq_{C_{Y}}$ is a partial order on Y, and so $\left(Y, \leq_{C_{Y}}\right)$ is an ordered vector space. Moreover, if $\operatorname{int} C_{Y} \neq \emptyset$, then we say that

$$
x \ll y \Longleftrightarrow y-x \in \operatorname{int} C_{Y},(x, y \in Y) .
$$

Definition 2.1. ([5, 6]). Let $\left(Y, \leq_{C_{Y}}\right)$ be a real ordered topological vector space with $\operatorname{int} C_{Y} \neq \emptyset$.
(i) Let C be a subset of Y. A point $\bar{c} \in C$ is called a weakly maximal point of C if there is no $c \in C$ such that $\bar{c} \ll c$. The set of all weakly maximal points of C is called the weakly maximum of C and is denoted by wmax C.
(ii) Let C be a subset of Y. The supremum of C is defined as

$$
S u p C:=\operatorname{waxax}\left[c l\left(C-C_{Y}\right)\right],
$$

where for a subset A of Y the $c l(A)$ is called the closure of A in Y.

Definition 2.2. ($[5,6])$. Let $\left(Y, \leq_{C_{Y}}\right)$ be a real ordered topological vector space and C be a nonempty subset of Y.
(i) An element $x \in Y$ such that $x \leq_{C_{Y}} c$ for all $c \in C$ is called a lower bound of C. An infimum of C, denoted by $\inf C$, is the greatest lower bound of C, that is, a lower bound x of C such that $z \leq_{C_{Y}} x$ for every other lower bound z of C.
(ii) An element $x \in Y$ such that $c \leq_{C_{Y}} x$ for all $c \in C$ is called an upper bound of C. A supremum of C, denoted by $\sup C$, is the least upper bound of C, that is, an upper bound x of C such that $x \leq_{C_{Y}} z$ for every other upper bound z of C.

Definition 2.3. ([7]). Let X be a real vector space and $\left(Y, \leq_{C_{Y}}\right)$ be a real ordered vector space. A function $\left|\left|\left|.\left|| | X \rightarrow C_{Y}\right.\right.\right.\right.$ is called a vectorial norm on X, if for all $x, z \in X$ and all $\lambda \in \mathbb{R}$ the following assertions are satisfied:
(i) $\|x\|=0_{Y} \Leftrightarrow x=0_{X}$.
(ii) $\||x|\|=|\lambda|| ||x| \|$.
(iii) $\left\|\left|x+z\| \| \leq_{C_{Y}}\||x|\|+\right|\right\| z\|\|$.

If $Y:=\mathbb{R}$ and $C_{Y}:=\mathbb{R}_{+}$, then $|||.|| |$is called a norm on X and denoted by $\|$.$\| .$
Let $\left(Y, \leq_{C_{Y}}\right)$ be an ordered locally convex topological vector space. The topology that is induced by vectorial norm on X is the topology induced by the neighborhood base $\{X(a, U): U \in B(0)\}$, where

$$
X(a, U):=\{x \in X:\|\mid x-a\| \| \in U\}
$$

with $B(0)$ is a neighborhood base of the origin in Y and a running over X.
Definition 2.4. ($[5,6]$). Let X be a real vector space and $\left(Y, \leq_{C_{Y}}\right)$ be a real ordered vector space. Let S be a non-empty convex subset of X. A function $f: S \rightarrow Y$ is called C_{Y}-convex (or convex) if for all $x, y \in S$ and all $\lambda \in[0,1]$

$$
\lambda f(x)+(1-\lambda) f(y)-f(\lambda x+(1-\lambda) y) \in C_{Y}
$$

Definition 2.5. ($[5,6]$). Let X be a real vector space and $\left(Y, \leq_{C_{Y}}\right)$ be a real ordered vector space. Let S be a non-empty convex subset of X. Let the function $f: S \rightarrow Y$ be given. The set

$$
e p i(f):=\left\{(x, y) \in X \times Y: x \in S, f(x) \leq_{C_{Y}} y\right\}
$$

is called the epigraph of f.
The set

$$
\text { hypo }(f):=\left\{(x, y) \in X \times Y: x \in S, y \leq_{C_{Y}} f(x)\right\}
$$

is called the hypograph of f.
Definition 2.6. ([6]). Let X and Y be real topological vector spaces. Let S be an open subset of X and $f: S \rightarrow Y$ be a given function. If for $\bar{x} \in S$ and $u \in X$ the limit

$$
f^{\prime}(\bar{x}, u):=\lim _{t \rightarrow 0^{+}} \frac{f(\bar{x}+t u)-f(\bar{x})}{t}
$$

exists, then $f^{\prime}(\bar{x}, u)$ is called the directional derivative of f at \bar{x} in the direction u. If this limit exists for all $u \in X$, then, f is called directionally differentiable at \bar{x}.

Definition 2.7. Let X be a real topological vector space and $\left(Y, \leq_{C_{Y}}\right)$ be a real ordered topological vector space with $\operatorname{int} C_{Y} \neq \emptyset$. Let S be an open subset of $X, f: S \rightarrow Y$ be a given function and $\varepsilon \in \mathbb{R}_{+}$. If for $\bar{x} \in S$ and $u \in X$ the infimum

$$
f_{\varepsilon}^{\prime}(\bar{x}, u):=\inf _{t>0} \frac{f(\bar{x}+t u)-f(\bar{x})+\varepsilon \mathbf{1}}{t}
$$

exists in Y, then $f_{\varepsilon}^{\prime}(\bar{x}, u)$ is called the ε-directional derivative of f at \bar{x} in the direction u. If this infimum exists in Y for each $u \in X$, then, f is called ε-directionally differentiable at \bar{x}. Note that $1 \in \operatorname{int} C_{Y}$. See Definition 2.2.

Definition 2.8. ([5, 6]). Let X and Y be real normed spaces and S be a non-empty open subset of X. Let $f: S \rightarrow Y$ be a given function and $\bar{x} \in X$. If there exists a continuous linear function $T: X \rightarrow Y$ such that

$$
\lim _{\|h\| \rightarrow 0} \frac{\|f(\bar{x}+h)-f(\bar{x})-T(h)\|}{\|h\|}=0
$$

then T is called the Fréchet derivative of f at \bar{x} and denoted by $f^{\prime}(\bar{x}):=T$. In this case, f is called Fréchet differentiable at \bar{x}.

The proof of the following theorem can be found in [5, 6].
Theorem 2.9. Let X be a real normed space, $\left(Y, \leq_{C_{Y}}\right)$ be a real ordered normed space and S be a non-empty open subset of X. Let $f: S \rightarrow Y$ be Fréchet differentiable at every point $x \in S$. Then, f is C_{Y}-convex if and only if

$$
f^{\prime}(y)(x-y) \leq_{C_{Y}} f(x)-f(y), \quad \forall x, y \in S .
$$

3. ε-generalized weak subdifferential

In this section, we give various characterizations for ε-generalized weak subdifferential of a vector valued function f. Also, we present the definition of an ε-generalized lower locally Lipschitz function.

Definition 3.1. ([7]). Let X be a real topological vector space and ($Y, \leq_{C_{Y}}$) be a real ordered topological vector space. Assume that $f: X \rightarrow Y$ is a given function and $\bar{x} \in X$. Then a point $T \in B(X, Y)$ is called a subgradient of f at \bar{x} if

$$
f(x)-f(\bar{x})-T(x-\bar{x}) \in C_{Y}, \quad \forall x \in X .
$$

The set of all subgradients of f at \bar{x} is called the subdifferential of f at \bar{x} and denoted by

$$
\partial f(\bar{x}):=\{T \in B(X, Y): T \text { is a subgradient of } f \text { at } \bar{x}\},
$$

where $B(X, Y)$ is the vector space of all continuous linear functions from X to Y.
Also, if $\partial f(\bar{x}) \neq \emptyset$, then, f is called subdifferentiable at \bar{x}.

Definition 3.2. Let X be a real topological vector space and $\left(Y, \leq_{C_{Y}}\right)$ be a real ordered topological vector space. Assume that $\operatorname{int} C_{Y} \neq \emptyset, f: X \rightarrow Y$ is a function, $\bar{x} \in X$ and $\varepsilon \in \mathbb{R}_{+}$. Then a point $T \in B(X, Y)$ is called an ε-subgradient of f at \bar{x} if

$$
f(x)-f(\bar{x})-T(x-\bar{x})+\varepsilon \mathbf{1} \in C_{Y}, \quad \forall x \in X .
$$

The set of all ε-subgradients of f at \bar{x} is called the ε-subdifferential of f at \bar{x} and denoted by

$$
\partial_{\varepsilon} f(\bar{x}):=\{T \in B(X, Y): T \text { is an } \varepsilon-\text { subgradient of } f \text { at } \bar{x}\},
$$

where $B(X, Y)$ is the vector space of all continuous linear functions from X to Y and $\mathbf{1} \in \operatorname{int} C_{Y}$. Also, if $\partial_{\varepsilon} f(\bar{x}) \neq \emptyset$, then, f is called ε-subdifferentiable at \bar{x}.

Remark 3.3. Let X be a real topological vector space and ($Y, \leq_{C_{Y}}$) be a real ordered topological vector space. Assume that $\operatorname{int}_{Y} \neq \emptyset, f: X \rightarrow Y$ is a function and $\bar{x} \in X$. Suppose that $0 \leq \varepsilon_{1} \leq \varepsilon_{2}$. Then, $\partial f(\bar{x})=\partial_{0} f(\bar{x}) \subseteq \partial_{\varepsilon_{1}} f(\bar{x}) \subseteq \partial_{\varepsilon_{2}} f(\bar{x})$, and for all $\varepsilon \in \mathbb{R}_{+}$one has

$$
\partial_{\varepsilon} f(\bar{x})=\bigcap_{\delta>\varepsilon} \partial_{\delta} f(\bar{x}) .
$$

Definition 3.4. Let $(X,\|\|$.$) be a real normed space, f: X \rightarrow \overline{\mathbb{R}}$ be a proper function, $\bar{x} \in X$ be such that $f(\bar{x}) \in \mathbb{R}$ and $\varepsilon \in \mathbb{R}_{+}$. Then, $\left(x^{*}, c\right) \in X^{*} \times \mathbb{R}_{+}$is called an ε-weak subgradient of f at \bar{x} if

$$
<x^{*}, x-\bar{x}>-c\|x-\bar{x}\| \leq f(x)-f(\bar{x})+\varepsilon, \quad \forall x \in X .
$$

The set of all ε-weak subgradients of f at \bar{x} is called the ε-weak subdifferential of f at \bar{x} and denoted by

$$
\partial_{\varepsilon}^{w} f(\bar{x}):=\left\{\left(x^{*}, c\right) \in X^{*} \times \mathbb{R}_{+}:\left(x^{*}, c\right) \text { is an } \varepsilon-\text { weak subgradient of } f \text { at } \bar{x}\right\} .
$$

Also, if $\partial_{\varepsilon}^{w} f(\bar{x}) \neq \emptyset$, then, f is called ε-weak subdifferentiable at \bar{x}.
Definition 3.5. Let X be a real topological vector space and $\left(Y, \leq_{C_{Y}}\right)$ be a real ordered topological vector space with $\operatorname{int} C_{Y} \neq \emptyset$. Let $f: X \rightarrow Y$ be a function and $\mid\|.\| \|: X \rightarrow C_{Y}$ be a vectorial norm on X and let $\bar{x} \in X$ and $\varepsilon \in \mathbb{R}_{+}$be arbitrary. A point $(T, c) \in B(X, Y) \times \mathbb{R}_{+}$is called an ε-generalized weak subgradient of f at \bar{x} if

$$
f(x)-f(\bar{x})-T(x-\bar{x})+c\|x-\bar{x}\| \|+\varepsilon \mathbf{1} \in C_{Y}, \quad \forall x \in X,
$$

where $\mathbf{1} \in \operatorname{int} C_{Y}$.
The set of all ε-generalized weak subgradients of f at \bar{x} is called the ε-generalized weak subdifferential of f at \bar{x} and denoted by

$$
\partial_{\varepsilon}^{g w} f(\bar{x}):=\left\{(T, c) \in B(X, Y) \times \mathbb{R}_{+}:(T, c) \text { is an } \varepsilon-\text { generalized weak subgradient of } f \text { at } \bar{x}\right\} .
$$

Also, if $\partial_{\varepsilon}^{g \omega} f(\bar{x}) \neq \emptyset$, then, f is called ε-generalized weak subdifferentiable at \bar{x}.

Remark 3.6. In view of Definition 3.2 and Definition 3.4 it is easy to see that

$$
(T, c) \in \partial_{\varepsilon}^{g w} f(\bar{x}) \Leftrightarrow T \in \partial_{\varepsilon}(f+c \mid\|\cdot-\bar{x}\| \|)(\bar{x}),
$$

where $f: X \rightarrow Y$ is a function, $\left\|\|\| \mid.: X \rightarrow C_{Y}\right.$ is a vectorial norm on X and $\bar{x} \in X$.
Lemma 3.7. Let X be a real topological vector space and $\left(Y, \leq_{C_{Y}}\right)$ be a real ordered topological vector space with int $C_{Y} \neq \emptyset$. Let $f: X \rightarrow Y$ be a function, $\|\left|.\left|| |: X \rightarrow C_{Y}\right.\right.$ be a vectorial norm on X and $\varepsilon \in \mathbb{R}_{+}$. If f is ε - subdifferentiable at $\bar{x} \in X$, then, f is ε-generalized weak subdifferentiable at \bar{x}.

Proof. Since $\partial_{\varepsilon} f(\bar{x}) \neq \emptyset$, then there exists $T \in \partial_{\varepsilon} f(\bar{x})$ such that

$$
T(x-\bar{x}) \leq_{C_{Y}} f(x)-f(\bar{x})+\varepsilon \mathbf{1}, \quad \forall x \in X,
$$

where $\mathbf{1} \in \operatorname{int} C_{Y}$. So

$$
f(x)-f(\bar{x})-T(x-\bar{x})+\varepsilon \mathbf{1} \in C_{Y}, \quad \forall x \in X .
$$

Since $c \mid\|x-\bar{x}\| \| \in C_{Y}$ for all $c \in \mathbb{R}_{+}$and C_{Y} is a convex cone, it follows that

$$
f(x)-f(\bar{x})-T(x-\bar{x})+\varepsilon \mathbf{1}+c \mid\|x-\bar{x}\| \| \in C_{Y}, \quad \forall x \in X .
$$

That is

$$
T(x-\bar{x})-c \mid\|x-\bar{x}\| \leq_{C_{Y}} f(x)-f(\bar{x})+\varepsilon \mathbf{1}, \quad \forall x \in X .
$$

Hence, $(T, c) \in \partial_{\varepsilon}^{g w} f(\bar{x})$ for all $c \in \mathbb{R}_{+}$. Therefore, $\partial_{\varepsilon}^{g w} f(\bar{x}) \neq \emptyset$.
The following example shows that the converse statement to Lemma 3.1 is not true.
Example 3.8. Let $X:=\mathbb{R}, Y:=\mathbb{R}^{2}, C_{Y}:=\mathbb{R}_{+}^{2},\left|||\cdot||: \mathbb{R} \rightarrow \mathbb{R}_{+}^{2}\right.$ be defined by $||x|| |=(|x|,|x|)$ for all $x \in \mathbb{R}$, and let $f: \mathbb{R} \rightarrow \mathbb{R}^{\not F}$ be defined by $f(x)=(-|x|,-|x|)$ for all $x \in \mathbb{R}$. Let $\varepsilon \in \mathbb{R}_{+}$. It is easy to see that f is not ε-subdifferentiable at $x=0$, but f is ε-generalized weak subdifferentiable at $x=0$.

Remark 3.9. Let X be a real topological vector space, $\left(Y, \leq_{C_{Y}}\right)$ be a real ordered topological vector space with int $^{\prime} C_{Y} \neq \emptyset$ and $\left|\left|.\left|| |: X \rightarrow C_{Y}\right.\right.\right.$ be a vectorial norm on X. Let $\varepsilon \in \mathbb{R}_{+}$. Then

$$
\partial_{\varepsilon}\|\bar{x}\| \|=\left\{T \in B(X, Y): T(\bar{x})=\|\bar{x}\|, T(x) \leq_{C_{Y}}\|x \mid\|+\varepsilon \mathbf{1}, \forall x \in X, \forall \varepsilon \in \mathbb{R}_{+}\right\},
$$

where $\mathbf{1} \in \operatorname{int} C_{Y}$.
Definition 3.10. Let X be a real topological vector space, $\left(Y, \leq_{C_{Y}}\right)$ be a real ordered topological vector space with int $^{\prime} C_{Y} \neq \emptyset$ and $\|\mid \cdot\| \|: X \rightarrow C_{Y}$ be a vectorial norm on X. Let $\varepsilon \in \mathbb{R}_{+}$. A function $f: X \rightarrow Y$ is called ε-generalized lower locally Lipschitz at $\bar{x} \in X$ if there exists a non-negative real number L (Lipschitz constant) and a neighborhood $N(\bar{x})$ of \bar{x} such that

$$
\begin{equation*}
-L\|\mid x-\bar{x}\| \leq_{C_{Y}} f(x)-f(\bar{x})+\varepsilon \mathbf{1}, \quad \forall x \in N(\bar{x}), \tag{3.1}
\end{equation*}
$$

where $\mathbf{1} \in \operatorname{int} C_{Y}$. If (3.1) holds for all $x \in X$, then, f is called ε-generalized lower Lipschitz at \bar{x}.

Theorem 3.11. Let X be a real topological vector space, $\left(Y, \leq_{C_{Y}}\right)$ be a real ordered topological vector space with int $C_{Y} \neq \emptyset$ and $\|\left|.\left|| |: X \rightarrow C_{Y}\right.\right.$ be a vectorial norm on X. Let $f: X \rightarrow Y$ be a function and let $\bar{x} \in X$ and $\varepsilon \in \mathbb{R}_{+}$. If f is ε-generalized lower Lipschitz at \bar{x}, then, f is ε-generalized weak subdifferentiable at \bar{x}.

Proof. Suppose that f is ε-generalized lower Lipschitz at \bar{x}. Then there exists $L \geq 0$ such that

$$
-L\|\mid x-\bar{x}\| \| \leq_{C_{Y}} f(x)-f(\bar{x})+\varepsilon \mathbf{1}, \quad \forall x \in X,
$$

where $\mathbf{1} \in \operatorname{int} C_{Y}$. So, we have

$$
0(x-\bar{x})-L\| \| x-\bar{x}\| \| \leq_{C_{Y}} f(x)-f(\bar{x})+\varepsilon \mathbf{1}, \quad \forall x \in X .
$$

Hence, $(0, L) \in \partial_{\varepsilon}^{g w} f(\bar{x})$, that is, f is ε-generalized weak subdifferentiable at \bar{x}.
Theorem 3.12. Under the hypotheses of Theorem 3.1 if f is ε - generalized lower Lipschitz at $\bar{x} \in X$, then there exists $p \geq 0$ and $q \in Y$ such that

$$
q-p\|x\| \| \leq_{C_{Y}} f(x)+\varepsilon \mathbf{1} \quad \forall x \in X,
$$

where $\mathbf{1} \in \operatorname{int} C_{Y}$.
Proof. Let f be ε-generalized lower Lipschitz at \bar{x}. Then there exists $L \geq 0$ such that

$$
-L\| \| x-\bar{x} \| \leq_{C_{Y}} f(x)-f(\bar{x})+\varepsilon \mathbf{1}, \quad \forall x \in X
$$

So, one has

$$
\begin{equation*}
-L\|x\|\|-L\| \bar{x}\| \| \leq_{C_{Y}}-L\|x-\bar{x}\| \| \leq_{C_{Y}} f(x)-f(\bar{x})+\varepsilon \mathbf{1}, \quad \forall x \in X . \tag{3.2}
\end{equation*}
$$

Now, put $q:=f(\bar{x})-L\| \| x \| \mid$ and $p:=L$ in (3.2). Thus it is clear that $p \geq 0, q \in Y$ and

$$
q-p\|x\| \leq_{C_{Y}} f(x)+\varepsilon \mathbf{1},
$$

for all $x \in X$.

4. Properties of ε-generalized weak subdifferential

In the classical subdifferential theory, it is well known that if the function $f: X \rightarrow \mathbb{R}$ is subdifferentiable at $x_{0} \in X$, then f has a global minimizer at x_{0} if and only if $0 \in \partial f\left(x_{0}\right)$. In this section, a similar result can be obtained for ε-generalized weak subdifferential (see Theorem 4.1, below).

Proposition 4.1. Let X be a real topological vector space, $\left(Y, \leq_{C_{Y}}\right)$ be a real ordered topological vector space with int $C_{Y} \neq \emptyset$ and $\left|\left|\left|.\left|| |: X \rightarrow C_{Y}\right.\right.\right.\right.$ be a vectorial norm on X. Let $f: X \rightarrow Y$ be a function, $\bar{x} \in X$ and $\varepsilon \in \mathbb{R}_{+}$. Then, $\partial_{\varepsilon}^{g w} f(\bar{x})$ is a convex set.

Proof. Let $\left(T_{1}, c_{1}\right),\left(T_{2}, c_{2}\right) \in \partial_{\varepsilon}^{g w} f(\bar{x})$ be arbitrary and $0 \leq \lambda \leq 1$. Then we have

$$
T_{1}(x-\bar{x})-c_{1}\|\mid x-\bar{x}\| \| \leq_{C_{Y}} f(x)-f(\bar{x})+\varepsilon \mathbf{1}, \quad \forall x \in X,
$$

and

$$
T_{2}(x-\bar{x})-c_{2}\| \| x-\bar{x}\| \| \leq_{C_{Y}} f(x)-f(\bar{x})+\varepsilon \mathbf{1}, \quad \forall x \in X,
$$

where $\mathbf{1} \in \operatorname{int} C_{Y}$. So, since C_{Y} is a cone, we have

$$
\lambda f(x)-\lambda f(\bar{x})+\lambda \varepsilon \mathbf{1}-\lambda T_{1}(x-\bar{x})+\lambda c_{1}\| \| x-\bar{x}\| \| \in C_{Y}, \quad \forall x \in X,
$$

and

$$
(1-\lambda) f(x)-(1-\lambda) f(\bar{x})+(1-\lambda) \varepsilon \mathbf{1}-(1-\lambda) T_{2}(x-\bar{x})+(1-\lambda) c_{2}\| \| x-\bar{x}\| \| \in C_{Y},
$$

for all $x \in X$. Since C_{Y} is a convex cone, it follows that

$$
f(x)-f(\bar{x})+\varepsilon \mathbf{1}-\left(\lambda T_{1}+(1-\lambda) T_{2}\right)(x-\bar{x})+\left(\lambda c_{1}+(1-\lambda) c_{2}\right)\|x-\bar{x}\| \| \in C_{Y},
$$

for all $x \in X$. Hence

$$
\left(\lambda T_{1}+(1-\lambda) T_{2}\right)(x-\bar{x})-\left(\lambda c_{1}+(1-\lambda) c_{2}\right)\|x-\bar{x}\| \leq_{C_{Y}} f(x)-f(\bar{x})+\varepsilon \mathbf{1},
$$

for all $x \in X$. So, one has

$$
\left(\lambda T_{1}+(1-\lambda) T_{2}, \lambda c_{1}+(1-\lambda) c_{2}\right) \in \partial_{\varepsilon}^{g w} f(\bar{x})
$$

That is

$$
\lambda\left(T_{1}, c_{1}\right)+(1-\lambda)\left(T_{2}, c_{2}\right) \in \partial_{\varepsilon}^{g w} f(\bar{x})
$$

Proposition 4.2. Let X be a real normed space space, $\left(Y, \leq_{C_{Y}}\right)$ be a real ordered normed space with int $C_{Y} \neq \emptyset$ and $\left|\left|.\left|| |: X \rightarrow C_{Y}\right.\right.\right.$ be a vectorial norm on X. Let $f: X \rightarrow Y$ be a function, $\bar{x} \in X$ and $\varepsilon \in \mathbb{R}_{+}$. Then, $\partial_{\varepsilon}^{g w} f(\bar{x})$ is a closed set in $B(X, Y) \times \mathbb{R}_{+}$.

Proof. If $\partial_{\varepsilon}^{g w} f(\bar{x})=\emptyset$, then it is closed. Suppose that $\partial_{\varepsilon}^{g w} f(\bar{x}) \neq \emptyset$ and $(T, c) \in \operatorname{cl}\left(\partial_{\varepsilon}^{g w} f(\bar{x})\right)$ is arbitrary. Then there exists a sequence $\left\{\left(T_{n}, c_{n}\right)\right\}_{n \geq 1} \subset \partial_{\varepsilon}^{g w} f(\bar{x})$ such that $\left\|\left(T_{n}, c_{n}\right)-(T, c)\right\| \rightarrow 0$ as $n \rightarrow \infty$, where for an element $(S, c) \in B(X, Y) \times \mathbb{R}_{+}$we define

$$
\|(S, c)\|:=\|S\|+|c| .
$$

Thus we conclude that $\left\|T_{n}-T\right\| \rightarrow 0$ and $\left|c_{n}-c\right| \rightarrow 0$ as $n \rightarrow \infty$. This implies that

$$
\begin{equation*}
\left\|T_{n}(x)-T(x)\right\| \rightarrow 0 \text { for each } x \in X, \text { and }\left|c_{n}-c\right| \rightarrow 0, \text { as } n \rightarrow \infty . \tag{4.1}
\end{equation*}
$$

Now, assume on the contrary that $(T, c) \notin \partial_{\varepsilon}^{g w} f(\bar{x})$. Then there exists $x_{0} \in X$ such that

$$
\begin{equation*}
T\left(x_{0}-\bar{x}\right)-c \mid\left\|x_{0}-\bar{x}\right\| \| \not C_{Y} f\left(x_{0}\right)-f(\bar{x})+\varepsilon \mathbf{1} . \tag{4.2}
\end{equation*}
$$

Since $\left(T_{n}, c_{n}\right) \in \partial_{\varepsilon}^{g w} f(\bar{x})(n=1,2, \cdots)$, in view of Definition 3.4 we have

$$
T_{n}(x-\bar{x})-c_{n}\|x-\bar{x}\| \leq_{C_{Y}} f(x)-f(\bar{x})+\varepsilon \mathbf{1}, \quad \forall x \in X, \forall n \geq 1,
$$

where $\mathbf{1} \in \operatorname{int} C_{Y}$. That is

$$
\begin{equation*}
f(x)-f(\bar{x})+\varepsilon \mathbf{1}-T_{n}(x-\bar{x})+c_{n}\left\|x_{0}-\bar{x}\right\| \in C_{Y}, \quad \forall x \in X, \forall n \geq 1 . \tag{4.3}
\end{equation*}
$$

Put $x:=x_{0}$ in (4.3), therefore one has

$$
\begin{equation*}
f\left(x_{0}\right)-f(\bar{x})+\varepsilon \mathbf{1}-T_{n}\left(x_{0}-\bar{x}\right)+c_{n}\left\|x_{0}-\bar{x}\right\| \in C_{Y}, \quad \forall n \geq 1 . \tag{4.4}
\end{equation*}
$$

But we have

$$
\begin{align*}
& \|\left[f\left(x_{0}\right)-f(\bar{x})+\varepsilon \mathbf{1}-T_{n}\left(x_{0}-\bar{x}\right)+c_{n}\| \| x_{0}-\bar{x}\| \|\right] \\
& -\left[f\left(x_{0}\right)-f(\bar{x})+\varepsilon \mathbf{1}-T\left(x_{0}-\bar{x}\right)+c \mid\left\|x_{0}-\bar{x}\right\|\right]\| \| \\
& =\left\|\left[T_{n}\left(x_{0}-\bar{x}\right)-T\left(x_{0}-\bar{x}\right)\right]+\left(c_{n}-c\right)\right\| x_{0}-\bar{x}\| \| \| \\
& \leq\left\|T_{n}\left(x_{0}-\bar{x}\right)-T\left(x_{0}-\bar{x}\right)\right\|+\left|c_{n}-c\right|\| \| x_{0}-\bar{x}\| \|, \quad \forall n \geq 1 . \tag{4.5}
\end{align*}
$$

In view of (4.1) it follows from (4.5) that
$\left\|\left[f\left(x_{0}\right)-f(\bar{x})+\varepsilon \mathbf{1}-T_{n}\left(x_{0}-\bar{x}\right)+c_{n}\| \| x_{0}-\bar{x}\| \|\right]-\left[f\left(x_{0}\right)-f(\bar{x})+\varepsilon \mathbf{1}-T\left(x_{0}-\bar{x}\right)+c \mid\left\|x_{0}-\bar{x}\right\| \|\right]\right\| \rightarrow 0$,
whenever $n \rightarrow \infty$. Since C_{Y} is closed, so we conclude from (4.4) and (4.6) that

$$
f\left(x_{0}\right)-f(\bar{x})+\varepsilon \mathbf{1}-T\left(x_{0}-\bar{x}\right)+c\| \| x_{0}-\bar{x}\| \| \in C_{Y} .
$$

That is

$$
T\left(x_{0}-\bar{x}\right)-c\| \| x_{0}-\bar{x}\| \| \leq_{C_{Y}} f\left(x_{0}\right)-f(\bar{x})+\varepsilon \mathbf{1},
$$

which contradicts (4.2). Hence $(T, c) \in \partial_{\varepsilon}^{g w} f(\bar{x})$, and the proof is complete.
Proposition 4.3. Let X be a real topological vector space, $\left(Y, \leq_{C_{Y}}\right)$ be a real ordered topological vector space with int $C_{Y} \neq \emptyset$ and $\mid\|.\| \|: X \rightarrow C_{Y}$ be a vectorial norm on X. Let $f: X \rightarrow Y$ be a function, $\bar{x} \in X$ and $\varepsilon \in \mathbb{R}_{+}$be arbitrary. If f is $\frac{\varepsilon}{\lambda}$-generalized weak subdifferentiable at $\bar{x} \in X$, then, $\partial_{\varepsilon}^{g w}(\lambda f)(\bar{x})=\lambda \partial_{\frac{⿺}{\lambda}}^{g w} f(\bar{x})$ for each $\lambda>0$.
Proof. Let $\lambda>0$ be arbitrary. Since C_{Y} is a cone, it follows that $(T, c) \in \partial_{\varepsilon}^{g w}(\lambda f)(\bar{x})$ if and only if

$$
\lambda f(x)-\lambda f(\bar{x})+\varepsilon \mathbf{1}-T(x-\bar{x})+\|x-\bar{x}\| \in C_{Y}, \quad \forall x \in X
$$

if only and if

$$
f(x)-f(\bar{x})+\frac{\varepsilon}{\lambda} \mathbf{1}-\frac{T}{\lambda}(x-\bar{x})+\frac{c}{\lambda}\| \| x-\bar{x} \| \in C_{Y}, \quad \forall x \in X
$$

if and only if $\left(\frac{T}{\lambda}, \frac{c}{\lambda}\right) \in \partial_{\frac{\varepsilon}{\lambda}}^{g w} f(\bar{x})$ if and only if $(T, c) \in \lambda \partial_{\frac{\varepsilon}{\lambda}}^{g w} f(\bar{x})$.

Theorem 4.4. Let X be a real topological vector space, $\left(Y, \leq_{C_{Y}}\right)$ be a real ordered normed space with int $C_{Y} \neq \emptyset$ and $\left|\left|.|\||: X \rightarrow C_{Y}\right.\right.$ be a vectorial norm on X. Let $\varepsilon \in \mathbb{R}_{+}$and $f: X \rightarrow Y$ be a function such that f is ε-generalized weak subdifferentiable at $\bar{x} \in X$. Then, f has a global minimizer at \bar{x} if and only if $(0,0) \in \partial_{\varepsilon}^{g w} f(\bar{x})$ for all $\varepsilon \in \mathbb{R}_{+}$.

Proof. Suppose that f has a global minimizer at \bar{x}. Then one has $f(\bar{x}) \leq_{C_{Y}} f(x)$ for all $x \in X$, and also we have $0_{Y} \leq_{C_{Y}} \varepsilon \mathbf{1}$. So $f(\bar{x}) \leq_{C_{Y}} f(x)+\varepsilon \mathbf{1}$ for all $x \in X$. Therefore

$$
0(x-\bar{x})-0\| \| x-\bar{x}\| \| \leq_{C_{Y}} f(x)-f(\bar{x})+\varepsilon \mathbf{1}, \quad \forall x \in X .
$$

Hence $(0,0) \in \partial_{\varepsilon}^{g \omega} f(\bar{x})$ for all $\varepsilon \in \mathbb{R}_{+}$.
Conversely, assume that $(0,0) \in \partial_{\varepsilon}^{g w} f(\bar{x})$ for all $\varepsilon \in \mathbb{R}_{+}$. Thus

$$
0 \leq_{C_{Y}} f(x)-f(\bar{x})+\varepsilon \mathbf{1}, \quad \forall x \in X, \forall \varepsilon \in \mathbb{R}_{+} .
$$

That is

$$
\begin{equation*}
f(x)-f(\bar{x})+\varepsilon \mathbf{1} \in C_{Y}, \quad \forall x \in X, \forall \varepsilon \in \mathbb{R}_{+} . \tag{4.7}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0^{+}}\|[f(x)-f(\bar{x})+\varepsilon \mathbf{1}]-[f(x)-f(\bar{x})]\|=\lim _{\varepsilon \rightarrow 0^{+}}\|\varepsilon \mathbf{1}\|=\lim _{\varepsilon \rightarrow 0^{+}} \varepsilon=0, \tag{4.8}
\end{equation*}
$$

for each $x \in X$. Note that $\|\mathbf{1}\|=1$. Since C_{Y} is a closed set in Y, it follows from (4.7) and (4.8) that

$$
f(x)-f(\bar{x}) \in C_{Y}, \quad \forall x \in X
$$

So

$$
0 \leq_{C_{Y}} f(x)-f(\bar{x}), \quad \forall x \in X .
$$

That is \bar{x} is a global minimizer of f at \bar{x}.
Theorem 4.5. Let X be a real normed space and $f: X \rightarrow \overline{\mathbb{R}}$ be a proper function. Let $\bar{x} \in \operatorname{domf}$ and $\varepsilon \in \mathbb{R}_{+}$be given. Then

$$
\left(x^{*}, c\right) \in \partial_{\varepsilon}^{w} f(\bar{x}) \Leftrightarrow f(\bar{x})+(f+c\|.-\bar{x}\|)^{*}\left(x^{*}\right) \leq\left\langle x^{*}, \bar{x}\right\rangle+\varepsilon .
$$

Proof. We have

$$
\begin{aligned}
\left(x^{*}, c\right) \in \partial_{\varepsilon}^{w} f(\bar{x}) & \Leftrightarrow\left\langle x^{*}, x-\bar{x}\right\rangle-c\|x-\bar{x}\| \leq f(x)-f(\bar{x})+\varepsilon, \quad \forall x \in X . \\
& \Leftrightarrow\left\langle x^{*}, x\right\rangle-f(x)-c\|x-\bar{x}\| \leq\left\langle x^{*}, \bar{x}\right\rangle-f(\bar{x})+\varepsilon, \quad \forall x \in X . \\
& \Leftrightarrow \sup _{x \in X}\left\{\left\langle x^{*}, x\right\rangle-(f+c\|\cdot-\bar{x}\|)(x)\right\} \leq\left\langle x^{*}, \bar{x}\right\rangle-f(\bar{x})+\varepsilon . \\
& \Leftrightarrow(f+c\|\cdot-\bar{x}\|)^{*}\left(x^{*}\right) \leq\left\langle x^{*}, \bar{x}\right\rangle-f(\bar{x})+\varepsilon . \\
& \Leftrightarrow f(\bar{x})+(f+c\|\cdot-\bar{x}\|)^{*}\left(x^{*}\right) \leq\left\langle x^{*}, \bar{x}\right\rangle+\varepsilon .
\end{aligned}
$$

Proposition 4.6. Let X be a real topological vector space, $\left(Y, \leq_{C_{Y}}\right)$ be a real ordered topological vector space with int $C_{Y} \neq \emptyset$ and $\|||\|:. X \rightarrow C_{Y}$ be a vectorial norm on X. Let $\varepsilon_{1}, \varepsilon_{2} \in \mathbb{R}_{+}$and $\bar{x} \in X$. Suppose that $f, g: X \rightarrow Y$ are functions such that f is ε_{1}-generalized weak subdifferentiable at \bar{x} and g is ε_{2}-generalized weak subdifferentiable at \bar{x}. Then

$$
\partial_{\varepsilon_{1}}^{g w} f(\bar{x})+\partial_{\varepsilon_{2}}^{g w} g(\bar{x}) \subseteq \partial_{\varepsilon_{1}+\varepsilon_{2}}^{g w}(f+g)(\bar{x}) .
$$

Proof. Let $\left(T_{1}, c_{1}\right)+\left(T_{2}, c_{2}\right) \in \partial_{\varepsilon_{1}}^{g w} f(\bar{x})+\partial_{\varepsilon_{2}}^{g w} g(\bar{x})$, where $\left(T_{1}, c_{1}\right) \in \partial_{\varepsilon_{1}}^{g w} f(\bar{x})$ and $\left(T_{2}, c_{2}\right) \in \partial_{\varepsilon_{2}}^{g w} g(\bar{x})$. Then we have

$$
f(x)-f(\bar{x})+\varepsilon_{1} \mathbf{1}-T_{1}(x-\bar{x})+c_{1}\|\mid x-\bar{x}\| \| \in C_{Y}, \quad \forall x \in X,
$$

and

$$
g(x)-g(\bar{x})+\varepsilon_{2} \mathbf{1}-T_{2}(x-\bar{x})+c_{2}\| \| x-\bar{x}\| \| \in C_{Y}, \quad \forall x \in X .
$$

Since C_{Y} is a convex cone, it follows that

$$
(f+g)(x)-(f+g)(\bar{x})+\left(\varepsilon_{1}+\varepsilon_{2}\right) \mathbf{1}-\left(T_{1}+T_{2}\right)(x-\bar{x})+\left(c_{1}+c_{2}\right)\|x-\bar{x}\| \in C_{Y},
$$

for all $x \in X$. That is

$$
\left(T_{1}+T_{2}\right)(x-\bar{x})-\left(c_{1}+c_{2}\right)\| \| x-\bar{x}\| \| \leq_{C_{Y}}(f+g)(x)-(f+g)(\bar{x})+\left(\varepsilon_{1}+\varepsilon_{2}\right) \mathbf{1},
$$

for all $x \in X$. So, one has $\left(T_{1}+T_{2}, c_{1}+c_{2}\right) \in \partial_{\varepsilon_{1}+\varepsilon_{2}}^{g w}(f+g)(\bar{x})$. Hence $\left(T_{1}, c_{1}\right)+\left(T_{2}, c_{2}\right) \in \partial_{\varepsilon_{1}+\varepsilon_{2}}^{g w}(f+$ $g)(\bar{x})$.

5. Some relations between ε-directional derivative and ε-generalized weak subdifferential

In the classical subdifferential theory, it is well known that if the function $f: X \rightarrow \mathbb{R}$ is subdifferentiable at $x_{0} \in X$ and it has directional derivative at x_{0} in the direction $u \in X$, then the relation

$$
f^{\prime}\left(x_{0}, u\right) \geq\left\langle u, x^{*}\right\rangle, \quad \forall x^{*} \in \partial f\left(x_{0}\right)
$$

is satisfied. In this section, a similar result can be obtained for ε-generalized weak subdifferential (see Theorem 5.2, below).

In the sequel, we give the following Definition (see [7]).
Definition 5.1. Let X be a real topological vector space and $\left(Y, \leq_{C_{Y}}\right)$ be a real ordered topological vector space. Let $f: X \rightarrow Y$ be a function and $\left|\mid .\| \|: X \rightarrow C_{Y}\right.$ be a vectorial norm on X and let $\bar{x} \in X$ be arbitrary. A point $(T, c) \in B(X, Y) \times \mathbb{R}_{+}$is called a generalized weak subgradient of f at \bar{x} if

$$
T(x-\bar{x})-c \mid\|x-\bar{x}\| \leq_{C_{Y}} f(x)-f(\bar{x}), \quad \forall x \in X .
$$

The set of all generalized weak subgradients of f at \bar{x} is called the generalized weak subdifferential of f at \bar{x} and denoted by

$$
\partial^{g w} f(\bar{x}):=\left\{(T, c) \in B(X, Y) \times \mathbb{R}_{+}:(T, c) \text { is a generalized weak subgradient of } f \text { at } \bar{x}\right\} .
$$

Also, if $\partial^{g w} f(\bar{x}) \neq \emptyset$, then, f is called generalized weak subdifferentiable at \bar{x}.

Theorem 5.2. Let X be a real topological vector space, $\left(Y, \leq_{C_{Y}}\right)$ be a real ordered normed space with int $C_{Y} \neq \emptyset,\||\cdot|\|: X \rightarrow C_{Y}$ be a vectorial norm on $X, \bar{x} \in X$ and $\varepsilon \in \mathbb{R}_{+}$be arbitrary. Let $f: X \rightarrow Y$ be a function such that f is generalized weak subdifferentiable and ε-directionally differentiable at \bar{x}. Then

$$
\partial_{\varepsilon}^{g w} f(\bar{x})=\partial^{g w} f_{\varepsilon}^{\prime}(\bar{x}, .)(0)
$$

Proof. Let $(T, c) \in \partial_{\varepsilon}^{g w} f(\bar{x})$ be arbitrary. Then in view of Definition 3.4 one has

$$
\begin{equation*}
T(x-\bar{x})-c \mid\|x-\bar{x}\| \| \leq_{C_{Y}} f(x)-f(\bar{x})+\varepsilon \mathbf{1}, \quad \forall x \in X, \tag{5.1}
\end{equation*}
$$

where $1 \in \operatorname{int} C_{Y}$. Let $u \in X$ and $t>0$ be arbitrary. Put $x:=\bar{x}+t u$ in (5.1), thus we have

$$
t T(u)-t c\| \| u \| \leq_{C_{Y}} f(\bar{x}+t u)-f(\bar{x})+\varepsilon \mathbf{1}
$$

So

$$
\begin{equation*}
T(u)-c\| \| u\| \| \leq_{C_{Y}} \frac{f(\bar{x}+t u)-f(\bar{x})+\varepsilon \mathbf{1}}{t}, \quad \forall u \in X, \forall t>0 \tag{5.2}
\end{equation*}
$$

Therefore, by Definition 2.7 and (5.2) we obtain

$$
\begin{equation*}
T(u)-c\| \| u \| \leq_{C_{Y}} \inf _{t>0} \frac{f(\bar{x}+t u)-f(\bar{x})+\varepsilon \mathbf{1}}{t}=f_{\varepsilon}^{\prime}(\bar{x}, u) \tag{5.3}
\end{equation*}
$$

for all $u \in X$. Since $f_{\varepsilon}^{\prime}(\bar{x}, 0)=0$, it follows that

$$
T(u)-c\| \| u\| \| \leq_{C_{Y}} f_{\varepsilon}^{\prime}(\bar{x}, u)-f_{\varepsilon}^{\prime}(\bar{x}, 0), \quad \forall u \in X
$$

That is, $(T, c) \in \partial^{g w} f_{\varepsilon}^{\prime}(\bar{x}, \cdot)(0)$. Conversely, let $(T, c) \in \partial^{g w} f_{\varepsilon}^{\prime}(\bar{x}, \cdot)(0)$ be arbitrary. Then by Definition 5.1 and Definition 2.7 we have

$$
\begin{aligned}
T(u-0)-c|\|u-0 \mid\| & \leq_{C_{Y}} f_{\varepsilon}^{\prime}(\bar{x}, u)-f_{\varepsilon}^{\prime}(\bar{x}, 0) \\
& =f_{\varepsilon}^{\prime}(\bar{x}, u)=\inf _{t>0} \frac{f(\bar{x}+t u)-f(\bar{x})+\varepsilon \mathbf{1}}{t} \\
& \leq_{C_{Y}} \frac{f(\bar{x}+t u)-f(\bar{x})+\varepsilon \mathbf{1}}{t}, \quad \forall u \in X, \forall t>0
\end{aligned}
$$

So one has

$$
\begin{equation*}
T(t u)-c\| \| t u\| \| \leq_{C_{Y}} f(\bar{x}+t u)-f(\bar{x})+\varepsilon \mathbf{1}, \quad \forall u \in X, \forall t>0 \tag{5.4}
\end{equation*}
$$

Let $x \in X$ be arbitrary. Then by putting $u:=\frac{x-\bar{x}}{t}$ in (5.4), we conclude that

$$
T(x-\bar{x})-c\| \| x-\bar{x}\| \| \leq_{C_{Y}} f(x)-f(\bar{x})+\varepsilon \mathbf{1}, \quad \forall x \in X
$$

Hence $(T, c) \in \partial_{\varepsilon}^{g w} f(\bar{x})$, and the proof is complete.

Theorem 5.3. Let X be a real topological vector space, $\left(Y, \leq_{C_{Y}}\right)$ be a real ordered normed space with int $C_{Y} \neq \emptyset$ and $||\cdot| \||: X \rightarrow C_{Y}$ be a vectorial norm on X. Let $\varepsilon \in \mathbb{R}_{+}$and $f: X \rightarrow Y$ be a function such that f is ε-generalized weak subdifferentiable at $\bar{x} \in X$ and ε-directionally differentiable at \bar{x} in the direction $u \in X$. Then

$$
v \leq_{C_{Y}} f_{\varepsilon}^{\prime}(\bar{x}, u), \quad \forall v \in D
$$

where

$$
D:=\operatorname{Sup}\left\{T(u)-c\|u\| \|:(T, c) \in \partial_{\varepsilon}^{g w} f(\bar{x})\right\}
$$

Also, see Definition 2.1.
Proof. We claim that

$$
\begin{equation*}
T(u)-c\|u\| \| \leq_{C_{Y}} f_{\varepsilon}^{\prime}(\bar{x}, u), \quad \forall(T, c) \in \partial_{\varepsilon}^{g w} f(\bar{x}) \tag{5.5}
\end{equation*}
$$

Since by the hypothesis $f_{\varepsilon}^{\prime}(\bar{x}, u)$ exists in Y, then in view of Definition 2.7 there exists a sequence $\left\{t_{n}\right\}_{n \geq 1}$ of positive real numbers such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|\frac{f\left(\bar{x}+t_{n} u\right)-f(\bar{x})+\varepsilon \mathbf{1}}{t_{n}}-f_{\varepsilon}^{\prime}(\bar{x}, u)\right\|=0 \tag{5.6}
\end{equation*}
$$

Now, let $(T, c) \in \partial_{\varepsilon}^{g w} f(\bar{x})$ be arbitrary. Then one has

$$
\begin{equation*}
T(x-\bar{x})-c\| \| x-\bar{x}\| \| \leq_{C_{Y}} f(x)-f(\bar{x})+\varepsilon \mathbf{1}, \quad \forall x \in X . \tag{5.7}
\end{equation*}
$$

Put $x:=\bar{x}+t_{n} u(n=1,2, \cdots)$ in (5.7), it follows that

$$
\begin{equation*}
t_{n} T(u)-c t_{n}\|u\| \| \leq_{C_{Y}} f\left(\bar{x}+t_{n} u\right)-f(\bar{x})+\varepsilon \mathbf{1}, \quad n=1,2, \cdots . \tag{5.8}
\end{equation*}
$$

Since C_{Y} is a cone, we conclude from (5.8) that

$$
\begin{equation*}
\frac{f\left(\bar{x}+t_{n} u\right)-f(\bar{x})+\varepsilon \mathbf{1}}{t_{n}}-(T(u)-c\|u\| \|) \in C_{Y}, \quad n=1,2, \cdots \tag{5.9}
\end{equation*}
$$

But it follows from (5.6) that

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left\|\left[\frac{f\left(\bar{x}+t_{n} u\right)-f(\bar{x})+\varepsilon 1}{t_{n}}-(T(u)-c\| \| u \|)\right]-\left[f_{\varepsilon}^{\prime}(\bar{x}, u)-(T(u)-c\| \| u \|)\right]\right\| \\
&=\lim _{n \rightarrow \infty}\left\|\frac{f\left(\bar{x}+t_{n} u\right)-f(\bar{x})+\varepsilon 1}{t_{n}}-f_{\varepsilon}^{\prime}(\bar{x}, u)\right\| \\
&=0
\end{aligned}
$$

Because of C_{Y} is closed, in view of (5.9) and (5.10) one has

$$
f_{\varepsilon}^{\prime}(\bar{x}, u)-(T(u)-c\| \| u \|) \in C_{Y} .
$$

Hence (5.5) holds. Now, we show that

$$
v \leq_{C_{Y}} f_{\varepsilon}^{\prime}(\bar{x}, u), \quad \forall v \in \operatorname{cl}\left(D_{0}-C_{Y}\right),
$$

where $D_{0}:=\left\{T(u)-c\|u\| \|:(T, c) \in \partial_{\varepsilon}^{g w} f(\bar{x})\right\}$.
For this end, let $v \in \operatorname{cl}\left(D_{0}-C_{Y}\right)$ be arbitrary. Then there exist sequences $\left\{v_{n}\right\}_{n \geq 1} \subset D_{0}$ and $\left\{d_{n}\right\}_{n \geq 1} \subset C_{Y}$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|\left(v_{n}-d_{n}\right)-v\right\|=0 \tag{5.10}
\end{equation*}
$$

Since $v_{n} \in D_{0}(n=1,2, \cdots)$, it follows that there exists a sequence $\left\{\left(T_{n}, c_{n}\right)\right\}_{n \geq 1} \subset \partial_{\varepsilon}^{g w} f(\bar{x})$ such that $v_{n}=T_{n}(u)-c_{n}\|u\| \|, n=1,2, \cdots$. Let $w_{n}:=v_{n}-d_{n}=T_{n}(u)-c_{n}\|u\| \|-d_{n}, n=1,2, \cdots$. This implies that $T_{n}(u)-c_{n}\|u\|-w_{n}=d_{n} \in C_{Y}$ for all $n=1,2, \cdots$. Thus we deduce that

$$
\begin{equation*}
w_{n} \leq_{C_{Y}} T_{n}(u)-c_{n}\|u\| \|, \quad \forall n \geq 1 \tag{5.11}
\end{equation*}
$$

Since $\left(T_{n}, c_{n}\right) \in \partial_{\varepsilon}^{g w} f(\bar{x}), n=1,2, \cdots$, it follows from (5.5) and (5.12) that

$$
w_{n} \leq_{C_{Y}} f_{\varepsilon}^{\prime}(\bar{x}, u), \quad \forall n \geq 1
$$

That is

$$
\begin{equation*}
f_{\varepsilon}^{\prime}(\bar{x}, u)-w_{n} \in C_{Y}, \quad \forall n \geq 1 . \tag{5.12}
\end{equation*}
$$

But by (5.11) we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|\left[f_{\varepsilon}^{\prime}(\bar{x}, u)-w_{n}\right]-\left[f_{\varepsilon}^{\prime}(\bar{x}, u)-v\right]\right\|=\lim _{n \rightarrow \infty}\left\|w_{n}-v\right\|=0 . \tag{5.13}
\end{equation*}
$$

Because of C_{Y} is closed, we conclude from (5.13) and (5.14) that $f_{\varepsilon}^{\prime}(\bar{x}, u)-v \in C_{Y}$. That is

$$
\begin{equation*}
v \leq_{C_{Y}} f_{\varepsilon}^{\prime}(\bar{x}, u), \quad \forall v \in \operatorname{cl}\left(D_{0}-C_{Y}\right) . \tag{5.14}
\end{equation*}
$$

But in view of Definition 2.1 one has

$$
\begin{aligned}
D & =\operatorname{Sup}\left\{T(u)-c\| \| u\| \|:(T, c) \in \partial_{\varepsilon}^{g w} f(\bar{x})\right\} \\
& =\operatorname{wmax}\left[c l\left(\left\{T(u)-c \mid\|u\| \|:(T, c) \in \partial_{\varepsilon}^{g w} f(\bar{x})\right\}-C_{Y}\right)\right] \\
& \subseteq c l\left(D_{0}-C_{Y}\right) .
\end{aligned}
$$

Therefore in view of (5.15) and (5.16) we obtain

$$
v \leq_{C_{Y}} f_{\varepsilon}^{\prime}(\bar{x}, u), \quad \forall v \in D
$$

which completes the proof.
The following theorem gives a convexity characterization of a vector valued function which is Fréchet differentiable on its domain by using ε-generalized weak subdifferential.

Theorem 5.4. Let X be a real normed space and $\left(Y, \leq_{C_{Y}}\right)$ be a real ordered normed space with int $C_{Y} \neq \emptyset$. Let $\|\mid.\| \|: X \rightarrow C_{Y}$ be a vectorial norm on X and $f: X \rightarrow Y$ be Fréchet differentiable and ε-generalized weak subdifferentiable at every point $x \in X$. Then, f is C_{Y}-convex if and only if $\left(f^{\prime}(\bar{x}), 0\right) \in \partial_{\varepsilon}^{g w} f(\bar{x})$ for all $\bar{x} \in X$ and all $\varepsilon \in \mathbb{R}_{+}$.

Proof. Suppose that f is C_{Y}-convex. Let $\bar{x} \in X$ and $\varepsilon \in \mathbb{R}_{+}$be arbitrary. Then in view of Theorem 2.1 we have

$$
f^{\prime}(\bar{x})(x-\bar{x}) \leq_{C_{Y}} f(x)-f(\bar{x}), \quad \forall x \in X .
$$

This implies that

$$
\begin{equation*}
f(x)-f(\bar{x})-f^{\prime}(\bar{x})(x-\bar{x}) \in C_{Y}, \quad \forall x \in X . \tag{5.15}
\end{equation*}
$$

Since $\varepsilon \mathbf{1} \in C_{Y}$ for all $\varepsilon \in \mathbb{R}$ and C_{Y} is a convex cone, it follows from (5.17) that

$$
\begin{equation*}
f^{\prime}(\bar{x})(x-\bar{x})-0\| \| x-\bar{x}\| \| \leq_{C_{Y}} f(x)-f(\bar{x})+\varepsilon \mathbf{1}, \quad \forall x \in X . \tag{5.16}
\end{equation*}
$$

Since f is Fréchet differentiable on X, in view of Definitioc 2.8 one has $f^{\prime}(\bar{x}) \in B(X, Y)$. So we conclude from (5.18) that $\left(f^{\prime}(\bar{x}), 0\right) \in \partial_{\varepsilon}^{g W} f(\bar{x})$.
Conversely, assume that $\left(f^{\prime}(\bar{x}), 0\right) \in \partial_{\varepsilon}^{g w} f(\bar{x})$ for all $\bar{x} \in X$ and all $\varepsilon \in \mathbb{R}_{+}$. Thus

$$
f^{\prime}(\bar{x})(x-\bar{x})-0\| \| x-\bar{x}\| \| \leq_{C_{Y}} f(x)-f(\bar{x})+\varepsilon \mathbf{1}, \quad \forall x \in X, \forall \varepsilon \in \mathbb{R}_{+},
$$

where $\mathbf{1} \in$ int C_{Y}. That is

$$
\begin{equation*}
f(x)-f(\bar{x})+\varepsilon \mathbf{1}-f^{\prime}(\bar{x})(x-\bar{x}) \in C_{Y}, \quad \forall x \in X, \forall \varepsilon \in \mathbb{R}_{+} . \tag{5.17}
\end{equation*}
$$

Since $\|\mathbf{1}\|=1$, it follows that

$$
\begin{aligned}
& \lim _{\varepsilon \rightarrow 0^{+}}\left\|\left[f(x)-f(\bar{x})+\varepsilon \mathbf{1}-f^{\prime}(\bar{x})(x-\bar{x})\right]-\left[f(x)-f(\bar{x})-f^{\prime}(\bar{x})(x-\bar{x})\right]\right\| \\
& \quad=\lim _{\varepsilon \rightarrow 0^{+}}\|\varepsilon \mathbf{1}\| \\
& \quad=\lim _{\varepsilon \rightarrow 0^{+}} \varepsilon=0, \quad \forall x \in X .
\end{aligned}
$$

Since C_{Y} is closed, it follows from (5.19) and (5.20) that

$$
f(x)-f(\bar{x})-f^{\prime}(\bar{x})(x-\bar{x}) \in C_{Y}, \quad \forall x \in X .
$$

That is

$$
f^{\prime}(\bar{x})(x-\bar{x}) \leq_{C_{Y}} f(x)-f(\bar{x}), \quad \forall x \in X .
$$

Therefore in view of Theorem 2.1 one has f is C_{Y}-convex.

References

[1] A.Y. Azimov and R.N. Gasmiov, On weak conjugacy, weak subdifferentials and duality with zero gap in nonconvex optimization, Int. J. Appl. Math., 1(1999), 171-192.
[2] A.Y. Azimov and R.N. Gasmiov, Stability and duality of nonconvex problems via augmented Lagrangian, Cybernet. Syst. Anal., 38(2002), 412-421.
[3] J.M. Borwein, Continuity and differentiability properties of convex operators, Proc. London Math. Soc., 44(1982), 420-444.
[4] R.N. Gasimov, Augmented Lagrangian duality and nondifferentiable optimization methods in nonconvex programing, J. Global Optim., 24(2002), 187-203.
[5] Guang-ya Chen, Xuexiang Huang and Xiaogi Yang, Vector optimization: Set-Valued and Variational Analysis, Springer, Berlin, 2005.
[6] J. Jahn, Vector optimization, Springer, Berlin, 2004.
[7] Y. Kücük, L. Ataserer and M. Kücük, Generalized weak subdifferentials, Optimization, 60(5)(2011), 537-552.
[8] R.T. Rockafellar, The theory of subgradients and its application to problems of optimization-convex and nonconvex functions, Heldermann, Berlin, 1981.
[9] C. Zalinescu, Convex analysis in general vector spaces, World Scientific Publishing, Singapore, 2002.
[10] J. Zowe, Subdifferentiability of convex functions with values in an ordered vector space, Math. Scand., 34(1974), 69-83.

[^0]: *Corresponding author
 Email addresses: at.mohebi@gmail.com (A. Mohebi), hmohebi@uk.ac.ir (H. Mohebi)

