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Abstract
In this paper, we study ε-generalized weak subdifferential for
vector valued functions defined on a real ordered topological
vector space X.We give various characterizations of ε-generalized
weak subdifferential for this class of functions. It is well known
that if the function f : X → R is subdifferentiable at x0 ∈ X,
then f has a global minimizer at x0 if and only if 0 ∈ ∂ f (x0).
We show that a similar result can be obtained for ε-generalized
weak subdifferential. Finally, we investigate some relations be-
tween ε-directional derivative and ε-generalized weak subdif-
ferential. In fact, in the classical subdifferential theory, it is well
known that if the function f : X → R is subdifferentiable at
x0 ∈ X and it has directional derivative at x0 in the direction
u ∈ X, then the relation f ′(x0, u) ≥ ⟨u, x∗⟩,∀ x∗ ∈ ∂ f (x0) is
satisfied. We prove that a similar result can be obtained for ε-
generalized weak subdifferential.
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1. Introduction

The ε-subgradient which was defined by Zalinescu [9] plays an important role in Optimization
Theory. In the literature, Gasimov was the first to suggest an algorithm to solve non-convex op-
timization problems [4]. Subgradient was also defined by Y. Kücük, L. Atasever and M. Kücük
for non-convex functions. Also, generalized weak subgradient and generalized weak subdiffer-
ential were defined for non-convex functions with values in an ordered vector space (see [7]).
Azimov and Gasimov gave optimality conditions for a non-convex vector optimization problem
by using weak subdifferentials that depend on supporting conic surfaces (see [1, 2]). So, weak
subdifferentials and conic surfaces have important roles in non-convex optimization. Subgradient
was also defined for convex functions with values in an ordered vector space (see [3, 8, 9, 10]). In
this paper, we first define ε-generalized weak subdifferential for vector valued functions defined
on a real topological vector space X. Next, we give various characterizations for ε-generalized
weak subdifferential of this class of functions. Finally, we investigate some relations between ε-
directional derivative and ε-generalized weak subdifferential. The paper is organized as follows:
In Section 2, we recall some basic definitions. In Section 3, we give various characterizations for
ε-generalized weak subdifferential of vector valued functions defined on a real ordered topological
vector space X. Some properties of ε-generalized weak subdifferential are presented in Section 4.
In Section 5, we examine some relations between ε-directional derivative and ε-generalized weak
subdifferential.

2. Preliminaries

In this section, we give some basic definitions and results. Let Y be a real vector space and CY

be a closed convex cone and pointed in Y (the later means that CY ∩ (−CY) = {0}). The cone CY

induces a relation ≤CY on Y which is defined by

x ≤CY y⇔ y − x ∈ CY , (x, y ∈ Y).

It is clear that ≤CY is a partial order on Y, and so (Y,≤CY ) is an ordered vector space. Moreover, if
intCY , ∅, then we say that

x ≪ y⇐⇒ y − x ∈ intCY , (x, y ∈ Y).

Definition 2.1. ([5, 6]). Let (Y,≤CY ) be a real ordered topological vector space with intCY , ∅.
(i) Let C be a subset of Y. A point c̄ ∈ C is called a weakly maximal point of C if there is no c ∈ C
such that c̄ ≪ c. The set of all weakly maximal points of C is called the weakly maximum of C
and is denoted by wmax C.
(ii) Let C be a subset of Y. The supremum of C is defined as

S upC := wmax[cl(C −CY)],

where for a subset A of Y the cl(A) is called the closure of A in Y.
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Definition 2.2. ([5, 6]). Let (Y,≤CY ) be a real ordered topological vector space and C be a non-
empty subset of Y.
(i) An element x ∈ Y such that x ≤CY c for all c ∈ C is called a lower bound of C. An infimum of C,
denoted by inf C, is the greatest lower bound of C, that is, a lower bound x of C such that z ≤CY x
for every other lower bound z of C.
(ii) An element x ∈ Y such that c ≤CY x for all c ∈ C is called an upper bound of C. A supremum of
C, denoted by sup C, is the least upper bound of C, that is, an upper bound x of C such that x ≤CY z
for every other upper bound z of C.

Definition 2.3. ([7]). Let X be a real vector space and (Y,≤CY ) be a real ordered vector space.
A function |||.||| : X → CY is called a vectorial norm on X, if for all x, z ∈ X and all λ ∈ R the
following assertions are satisfied:
(i) |||x||| = 0Y ⇔ x = 0X.
(ii) |||x||| = |λ| |||x|||.
(iii) |||x + z||| ≤CY |||x||| + |||z|||.

If Y := R and CY := R+, then |||.||| is called a norm on X and denoted by ||.||.
Let (Y,≤CY ) be an ordered locally convex topological vector space. The topology that is induced

by vectorial norm on X is the topology induced by the neighborhood base {X(a,U) : U ∈ B(0)},
where

X(a,U) := {x ∈ X : |||x − a||| ∈ U},
with B(0) is a neighborhood base of the origin in Y and a running over X.

Definition 2.4. ([5, 6]). Let X be a real vector space and (Y,≤CY ) be a real ordered vector space.
Let S be a non-empty convex subset of X. A function f : S → Y is called CY-convex (or convex)
if for all x, y ∈ S and all λ ∈ [0, 1]

λ f (x) + (1 − λ) f (y) − f (λx + (1 − λ)y) ∈ CY .

Definition 2.5. ([5, 6]). Let X be a real vector space and (Y,≤CY ) be a real ordered vector space.
Let S be a non-empty convex subset of X. Let the function f : S → Y be given. The set

epi( f ) := {(x, y) ∈ X × Y : x ∈ S , f (x) ≤CY y}

is called the epigraph of f .
The set

hypo( f ) := {(x, y) ∈ X × Y : x ∈ S , y ≤CY f (x)}
is called the hypograph of f .

Definition 2.6. ([6]). Let X and Y be real topological vector spaces. Let S be an open subset of X
and f : S → Y be a given function. If for x̄ ∈ S and u ∈ X the limit

f ′(x̄, u) := lim
t→0+

f (x̄ + tu) − f (x̄)
t

exists, then f ′(x̄, u) is called the directional derivative of f at x̄ in the direction u. If this limit exists
for all u ∈ X, then, f is called directionally differentiable at x̄.



A. Mohebi and H. Mohebi/Wavelets and Linear Algebra 2 (1) (2015) 65 - 80 68

Definition 2.7. Let X be a real topological vector space and (Y,≤CY ) be a real ordered topological
vector space with intCY , ∅. Let S be an open subset of X, f : S → Y be a given function and
ε ∈ R+. If for x̄ ∈ S and u ∈ X the infimum

f ′ε(x̄, u) := inf
t>0

f (x̄ + tu) − f (x̄) + ε1
t

exists in Y, then f ′ε(x̄, u) is called the ε-directional derivative of f at x̄ in the direction u. If this
infimum exists in Y for each u ∈ X, then, f is called ε-directionally differentiable at x̄. Note that
1 ∈ intCY . See Definition 2.2.

Definition 2.8. ([5, 6]). Let X and Y be real normed spaces and S be a non-empty open subset
of X. Let f : S → Y be a given function and x̄ ∈ X. If there exists a continuous linear function
T : X → Y such that

lim
∥h∥→0

∥ f (x̄ + h) − f (x̄) − T (h)∥
∥h∥ = 0,

then T is called the Fréchet derivative of f at x̄ and denoted by f ′(x̄) := T. In this case, f is called
Fréchet differentiable at x̄.

The proof of the following theorem can be found in [5, 6].

Theorem 2.9. Let X be a real normed space, (Y,≤CY ) be a real ordered normed space and S be a
non-empty open subset of X. Let f : S → Y be Fréchet differentiable at every point x ∈ S . Then, f
is CY-convex if and only if

f ′(y)(x − y) ≤CY f (x) − f (y), ∀x, y ∈ S .

3. ε-generalized weak subdifferential

In this section, we give various characterizations for ε-generalized weak subdifferential of a
vector valued function f . Also, we present the definition of an ε-generalized lower locally Lips-
chitz function.

Definition 3.1. ([7]). Let X be a real topological vector space and (Y,≤CY ) be a real ordered
topological vector space. Assume that f : X → Y is a given function and x̄ ∈ X. Then a point
T ∈ B(X,Y) is called a subgradient of f at x̄ if

f (x) − f (x̄) − T (x − x̄) ∈ CY , ∀ x ∈ X.

The set of all subgradients of f at x̄ is called the subdifferential of f at x̄ and denoted by

∂ f (x̄) := {T ∈ B(X,Y) : T is a subgradient o f f at x̄},

where B(X, Y) is the vector space of all continuous linear functions from X to Y.
Also, if ∂ f (x̄) , ∅, then, f is called subdifferentiable at x̄.
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Definition 3.2. Let X be a real topological vector space and (Y,≤CY ) be a real ordered topological
vector space. Assume that intCY , ∅, f : X → Y is a function, x̄ ∈ X and ε ∈ R+. Then a point
T ∈ B(X,Y) is called an ε-subgradient of f at x̄ if

f (x) − f (x̄) − T (x − x̄) + ε1 ∈ CY , ∀ x ∈ X.

The set of all ε-subgradients of f at x̄ is called the ε-subdifferential of f at x̄ and denoted by

∂ε f (x̄) := {T ∈ B(X,Y) : T is an ε − subgradient o f f at x̄},

where B(X, Y) is the vector space of all continuous linear functions from X to Y and 1 ∈ intCY .
Also, if ∂ε f (x̄) , ∅, then, f is called ε-subdifferentiable at x̄.

Remark 3.3. Let X be a real topological vector space and (Y,≤CY ) be a real ordered topological
vector space. Assume that intCY , ∅, f : X → Y is a function and x̄ ∈ X. Suppose that 0 ≤ ε1 ≤ ε2.
Then, ∂ f (x̄) = ∂0 f (x̄) ⊆ ∂ε1 f (x̄) ⊆ ∂ε2 f (x̄), and for all ε ∈ R+ one has

∂ε f (x̄) =
∩
δ>ε

∂δ f (x̄).

Definition 3.4. Let (X, ||.||) be a real normed space, f : X → R̄ be a proper function, x̄ ∈ X be such
that f (x̄) ∈ R and ε ∈ R+. Then, (x∗, c) ∈ X∗ × R+ is called an ε-weak subgradient of f at x̄ if

< x∗, x − x̄ > −c||x − x̄|| ≤ f (x) − f (x̄) + ε, ∀ x ∈ X.

The set of all ε-weak subgradients of f at x̄ is called the ε-weak subdifferential of f at x̄ and
denoted by

∂w
ε f (x̄) := {(x∗, c) ∈ X∗ × R+ : (x∗, c) is an ε − weak subgradient o f f at x̄}.

Also, if ∂w
ε f (x̄) , ∅, then, f is called ε-weak subdifferentiable at x̄.

Definition 3.5. Let X be a real topological vector space and (Y,≤CY ) be a real ordered topological
vector space with intCY , ∅. Let f : X → Y be a function and |||.||| : X → CY be a vectorial
norm on X and let x̄ ∈ X and ε ∈ R+ be arbitrary. A point (T, c) ∈ B(X,Y) × R+ is called an
ε-generalized weak subgradient of f at x̄ if

f (x) − f (x̄) − T (x − x̄) + c|||x − x̄||| + ε1 ∈ CY , ∀ x ∈ X,

where 1 ∈ intCY .
The set of all ε-generalized weak subgradients of f at x̄ is called the ε-generalized weak sub-

differential of f at x̄ and denoted by

∂gw
ε f (x̄) := {(T, c) ∈ B(X,Y) × R+ : (T, c) is an ε − generalized weak subgradient o f f at x̄}.

Also, if ∂gw
ε f (x̄) , ∅, then, f is called ε-generalized weak subdifferentiable at x̄.
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Remark 3.6. In view of Definition 3.2 and Definition 3.4 it is easy to see that

(T, c) ∈ ∂gw
ε f (x̄)⇔ T ∈ ∂ε( f + c||| · −x̄|||)(x̄),

where f : X → Y is a function, |||.||| : X → CY is a vectorial norm on X and x̄ ∈ X.

Lemma 3.7. Let X be a real topological vector space and (Y,≤CY ) be a real ordered topological
vector space with intCY , ∅. Let f : X → Y be a function, |||.||| : X → CY be a vectorial norm on
X and ε ∈ R+. If f is ε- subdifferentiable at x̄ ∈ X, then, f is ε-generalized weak subdifferentiable
at x̄.

Proof. Since ∂ε f (x̄) , ∅, then there exists T ∈ ∂ε f (x̄) such that

T (x − x̄)≤CY f (x) − f (x̄) + ε1, ∀ x ∈ X,

where 1 ∈ intCY . So
f (x) − f (x̄) − T (x − x̄) + ε1 ∈ CY , ∀ x ∈ X.

Since c|||x − x̄||| ∈ CY for all c ∈ R+ and CY is a convex cone, it follows that

f (x) − f (x̄) − T (x − x̄) + ε1 + c|||x − x̄||| ∈ CY , ∀ x ∈ X.

That is
T (x − x̄) − c|||x − x̄|||≤CY f (x) − f (x̄) + ε1, ∀ x ∈ X.

Hence, (T, c) ∈ ∂gw
ε f (x̄) for all c ∈ R+. Therefore, ∂gw

ε f (x̄) , ∅.

The following example shows that the converse statement to Lemma 3.1 is not true.

Example 3.8. Let X := R, Y := R2, CY := R2
+, |||.||| : R→ R2

+ be defined by |||x||| = (|x|, |x|) for all
x ∈ R, and let f : R → R⊭ be defined by f (x) = (−|x|,−|x|) for all x ∈ R. Let ε ∈ R+. It is easy
to see that f is not ε-subdifferentiable at x = 0, but f is ε-generalized weak subdifferentiable at
x = 0.

Remark 3.9. Let X be a real topological vector space, (Y,≤CY ) be a real ordered topological vector
space with intCY , ∅ and |||.||| : X → CY be a vectorial norm on X. Let ε ∈ R+. Then

∂ε|||x̄||| = {T ∈ B(X,Y) : T (x̄) = |||x̄|||, T (x) ≤CY |||x||| + ε1, ∀ x ∈ X, ∀ ε ∈ R+},

where 1 ∈ intCY .

Definition 3.10. Let X be a real topological vector space, (Y,≤CY ) be a real ordered topological
vector space with intCY , ∅ and |||.||| : X → CY be a vectorial norm on X. Let ε ∈ R+. A function
f : X → Y is called ε-generalized lower locally Lipschitz at x̄ ∈ X if there exists a non-negative
real number L (Lipschitz constant) and a neighborhood N(x̄) of x̄ such that

− L|||x − x̄||| ≤CY f (x) − f (x̄) + ε1, ∀ x ∈ N(x̄), (3.1)

where 1 ∈ intCY . If (3.1) holds for all x ∈ X, then, f is called ε-generalized lower Lipschitz at x̄.
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Theorem 3.11. Let X be a real topological vector space, (Y,≤CY ) be a real ordered topological
vector space with intCY , ∅ and |||.||| : X → CY be a vectorial norm on X. Let f : X → Y
be a function and let x̄ ∈ X and ε ∈ R+. If f is ε-generalized lower Lipschitz at x̄, then, f is
ε-generalized weak subdifferentiable at x̄.

Proof. Suppose that f is ε-generalized lower Lipschitz at x̄. Then there exists L ≥ 0 such that

−L|||x − x̄||| ≤CY f (x) − f (x̄) + ε1, ∀ x ∈ X,

where 1 ∈ intCY . So, we have

0(x − x̄) − L|||x − x̄||| ≤CY f (x) − f (x̄) + ε1, ∀ x ∈ X.

Hence, (0, L) ∈ ∂gw
ε f (x̄), that is, f is ε-generalized weak subdifferentiable at x̄.

Theorem 3.12. Under the hypotheses of Theorem 3.1 if f is ε- generalized lower Lipschitz at
x̄ ∈ X, then there exists p ≥ 0 and q ∈ Y such that

q − p|||x||| ≤CY f (x) + ε1 ∀ x ∈ X,

where 1 ∈ intCY .

Proof. Let f be ε-generalized lower Lipschitz at x̄. Then there exists L ≥ 0 such that

−L|||x − x̄||| ≤CY f (x) − f (x̄) + ε1, ∀ x ∈ X.

So, one has

−L|||x||| − L|||x̄||| ≤CY −L|||x − x̄||| ≤CY f (x) − f (x̄) + ε1, ∀ x ∈ X. (3.2)

Now, put q := f (x̄) − L|||x||| and p := L in (3.2). Thus it is clear that p ≥ 0, q ∈ Y and

q − p|||x||| ≤CY f (x) + ε1,

for all x ∈ X.

4. Properties of ε-generalized weak subdifferential

In the classical subdifferential theory, it is well known that if the function f : X → R is
subdifferentiable at x0 ∈ X, then f has a global minimizer at x0 if and only if 0 ∈ ∂ f (x0). In this
section, a similar result can be obtained for ε-generalized weak subdifferential (see Theorem 4.1,
below).

Proposition 4.1. Let X be a real topological vector space, (Y,≤CY ) be a real ordered topological
vector space with intCY , ∅ and |||.||| : X → CY be a vectorial norm on X. Let f : X → Y be a
function, x̄ ∈ X and ε ∈ R+. Then, ∂gw

ε f (x̄) is a convex set.
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Proof. Let (T1, c1), (T2, c2) ∈ ∂gw
ε f (x̄) be arbitrary and 0 ≤ λ ≤ 1. Then we have

T1(x − x̄) − c1|||x − x̄||| ≤CY f (x) − f (x̄) + ε1, ∀ x ∈ X,

and
T2(x − x̄) − c2|||x − x̄||| ≤CY f (x) − f (x̄) + ε1, ∀ x ∈ X,

where 1 ∈ intCY . So, since CY is a cone, we have

λ f (x) − λ f (x̄) + λε1 − λT1(x − x̄) + λc1|||x − x̄||| ∈ CY , ∀x ∈ X,

and

(1 − λ) f (x) − (1 − λ) f (x̄) + (1 − λ)ε1 − (1 − λ)T2(x − x̄) + (1 − λ)c2|||x − x̄||| ∈ CY ,

for all x ∈ X. Since CY is a convex cone, it follows that

f (x) − f (x̄) + ε1 − (λT1 + (1 − λ)T2)(x − x̄) + (λc1 + (1 − λ)c2)|||x − x̄||| ∈ CY ,

for all x ∈ X. Hence

(λT1 + (1 − λ)T2)(x − x̄) − (λc1 + (1 − λ)c2)|||x − x̄||| ≤CY f (x) − f (x̄) + ε1,

for all x ∈ X. So, one has

(λT1 + (1 − λ)T2, λc1 + (1 − λ)c2) ∈ ∂gw
ε f (x̄).

That is
λ(T1, c1) + (1 − λ)(T2, c2) ∈ ∂gw

ε f (x̄).

Proposition 4.2. Let X be a real normed space space, (Y,≤CY ) be a real ordered normed space
with intCY , ∅ and |||.||| : X → CY be a vectorial norm on X. Let f : X → Y be a function, x̄ ∈ X
and ε ∈ R+. Then, ∂gw

ε f (x̄) is a closed set in B(X,Y) × R+.

Proof. If ∂gw
ε f (x̄) = ∅, then it is closed. Suppose that ∂gw

ε f (x̄) , ∅ and (T, c) ∈ cl(∂gw
ε f (x̄)) is

arbitrary. Then there exists a sequence {(Tn, cn)}n≥1 ⊂ ∂gw
ε f (x̄) such that ∥(Tn, cn) − (T, c)∥ → 0 as

n→ ∞, where for an element (S , c) ∈ B(X,Y) × R+ we define

∥(S , c)∥ := ∥S ∥ + |c|.

Thus we conclude that ∥Tn − T∥ → 0 and |cn − c| → 0 as n→ ∞. This implies that

∥Tn(x) − T (x)∥ → 0 f or each x ∈ X, and |cn − c| → 0, as n→ ∞. (4.1)

Now, assume on the contrary that (T, c) < ∂gw
ε f (x̄). Then there exists x0 ∈ X such that

T (x0 − x̄) − c|||x0 − x̄||| ⩽̸CY f (x0) − f (x̄) + ε1. (4.2)
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Since (Tn, cn) ∈ ∂gw
ε f (x̄) (n = 1, 2, · · · ), in view of Definition 3.4 we have

Tn(x − x̄) − cn|||x − x̄||| ≤CY f (x) − f (x̄) + ε1, ∀ x ∈ X, ∀ n ≥ 1,

where 1 ∈ intCY . That is

f (x) − f (x̄) + ε1 − Tn(x − x̄) + cn|||x0 − x̄||| ∈ CY , ∀ x ∈ X, ∀ n ≥ 1. (4.3)

Put x := x0 in (4.3), therefore one has

f (x0) − f (x̄) + ε1 − Tn(x0 − x̄) + cn|||x0 − x̄||| ∈ CY , ∀ n ≥ 1. (4.4)

But we have

∥[ f (x0) − f (x̄) + ε1 − Tn(x0 − x̄) + cn|||x0 − x̄|||]
−[ f (x0) − f (x̄) + ε1 − T (x0 − x̄) + c|||x0 − x̄|||]∥
= ∥[Tn(x0 − x̄) − T (x0 − x̄)] + (cn − c)|||x0 − x̄|||∥
≤ ∥Tn(x0 − x̄) − T (x0 − x̄)∥ + |cn − c||||x0 − x̄|||, ∀ n ≥ 1. (4.5)

In view of (4.1) it follows from (4.5) that

∥[ f (x0) − f (x̄) + ε1 − Tn(x0 − x̄) + cn|||x0 − x̄|||] − [ f (x0) − f (x̄) + ε1 − T (x0 − x̄) + c|||x0 − x̄|||]∥ → 0,
(4.6)

whenever n→ ∞. Since CY is closed, so we conclude from (4.4) and (4.6) that

f (x0) − f (x̄) + ε1 − T (x0 − x̄) + c|||x0 − x̄||| ∈ CY .

That is
T (x0 − x̄) − c|||x0 − x̄||| ≤CY f (x0) − f (x̄) + ε1,

which contradicts (4.2). Hence (T, c) ∈ ∂gw
ε f (x̄), and the proof is complete.

Proposition 4.3. Let X be a real topological vector space, (Y,≤CY ) be a real ordered topological
vector space with intCY , ∅ and |||.||| : X → CY be a vectorial norm on X. Let f : X → Y be a
function, x̄ ∈ X and ε ∈ R+ be arbitrary. If f is ε

λ
-generalized weak subdifferentiable at x̄ ∈ X,

then, ∂gw
ε (λ f )(x̄) = λ∂gw

ε
λ

f (x̄) for each λ > 0.

Proof. Let λ > 0 be arbitrary. Since CY is a cone, it follows that (T, c) ∈ ∂gw
ε (λ f )(x̄) if and only if

λ f (x) − λ f (x̄) + ε1 − T (x − x̄) + |||x − x̄||| ∈ CY , ∀ x ∈ X

if only and if

f (x) − f (x̄) +
ε

λ
1 − T
λ

(x − x̄) +
c
λ
|||x − x̄||| ∈ CY , ∀ x ∈ X

if and only if (T
λ
, c
λ
) ∈ ∂gw

ε
λ

f (x̄) if and only if (T, c) ∈ λ∂gw
ε
λ

f (x̄).
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Theorem 4.4. Let X be a real topological vector space, (Y,≤CY ) be a real ordered normed space
with intCY , ∅ and |||.||| : X → CY be a vectorial norm on X. Let ε ∈ R+ and f : X → Y be
a function such that f is ε-generalized weak subdifferentiable at x̄ ∈ X. Then, f has a global
minimizer at x̄ if and only if (0, 0) ∈ ∂gw

ε f (x̄) for all ε ∈ R+.
Proof. Suppose that f has a global minimizer at x̄. Then one has f (x̄) ≤CY f (x) for all x ∈ X, and
also we have 0Y ≤CY ε1. So f (x̄) ≤CY f (x) + ε1 for all x ∈ X. Therefore

0(x − x̄) − 0|||x − x̄||| ≤CY f (x) − f (x̄) + ε1, ∀ x ∈ X.

Hence (0, 0) ∈ ∂gw
ε f (x̄) for all ε ∈ R+.

Conversely, assume that (0, 0) ∈ ∂gw
ε f (x̄) for all ε ∈ R+. Thus

0 ≤CY f (x) − f (x̄) + ε1, ∀ x ∈ X, ∀ ε ∈ R+.

That is

f (x) − f (x̄) + ε1 ∈ CY , ∀ x ∈ X, ∀ ε ∈ R+. (4.7)

Therefore

lim
ε→0+
∥[ f (x) − f (x̄) + ε1] − [ f (x) − f (x̄)]∥ = lim

ε→0+
∥ε1∥ = lim

ε→0+
ε = 0, (4.8)

for each x ∈ X. Note that ∥1∥ = 1. Since CY is a closed set in Y, it follows from (4.7) and (4.8) that

f (x) − f (x̄) ∈ CY , ∀ x ∈ X.

So
0 ≤CY f (x) − f (x̄), ∀ x ∈ X.

That is x̄ is a global minimizer of f at x̄.

Theorem 4.5. Let X be a real normed space and f : X → R̄ be a proper function. Let x̄ ∈ dom f
and ε ∈ R+ be given. Then

(x∗, c) ∈ ∂w
ε f (x̄)⇔ f (x̄) + ( f + c||. − x̄||)∗(x∗) ≤ ⟨x∗, x̄⟩ + ε.

Proof. We have

(x∗, c) ∈ ∂w
ε f (x̄)⇔ ⟨x∗, x − x̄⟩ − c||x − x̄|| ≤ f (x) − f (x̄) + ε, ∀ x ∈ X.

⇔ ⟨x∗, x⟩ − f (x) − c||x − x̄|| ≤ ⟨x∗, x̄⟩ − f (x̄) + ε, ∀ x ∈ X.

⇔ sup
x∈X
{⟨x∗, x⟩ − ( f + c|| · −x̄||)(x)} ≤ ⟨x∗, x̄⟩ − f (x̄) + ε.

⇔ ( f + c|| · −x̄||)∗(x∗) ≤ ⟨x∗, x̄⟩ − f (x̄) + ε.

⇔ f (x̄) + ( f + c|| · −x̄||)∗(x∗) ≤ ⟨x∗, x̄⟩ + ε.
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Proposition 4.6. Let X be a real topological vector space, (Y,≤CY ) be a real ordered topological
vector space with intCY , ∅ and |||.||| : X → CY be a vectorial norm on X. Let ε1, ε2 ∈ R+ and
x̄ ∈ X. Suppose that f , g : X → Y are functions such that f is ε1-generalized weak subdifferentiable
at x̄ and g is ε2-generalized weak subdifferentiable at x̄. Then

∂gw
ε1

f (x̄) + ∂gw
ε2

g(x̄) ⊆ ∂gw
ε1+ε2( f + g)(x̄).

Proof. Let (T1, c1) + (T2, c2) ∈ ∂gw
ε1 f (x̄) + ∂gw

ε2 g(x̄), where (T1, c1) ∈ ∂gw
ε1 f (x̄) and (T2, c2) ∈ ∂gw

ε2 g(x̄).
Then we have

f (x) − f (x̄) + ε11 − T1(x − x̄) + c1|||x − x̄||| ∈ CY , ∀x ∈ X,

and
g(x) − g(x̄) + ε21 − T2(x − x̄) + c2|||x − x̄||| ∈ CY , ∀ x ∈ X.

Since CY is a convex cone, it follows that

( f + g)(x) − ( f + g)(x̄) + (ε1 + ε2)1 − (T1 + T2)(x − x̄) + (c1 + c2)|||x − x̄||| ∈ CY ,

for all x ∈ X. That is

(T1 + T2)(x − x̄) − (c1 + c2)|||x − x̄||| ≤CY ( f + g)(x) − ( f + g)(x̄) + (ε1 + ε2)1,

for all x ∈ X. So, one has (T1 + T2, c1 + c2) ∈ ∂gw
ε1+ε2( f + g)(x̄). Hence (T1, c1)+ (T2, c2) ∈ ∂gw

ε1+ε2( f +
g)(x̄).

5. Some relations between ε-directional derivative and ε-generalized weak subdifferential

In the classical subdifferential theory, it is well known that if the function f : X → R is
subdifferentiable at x0 ∈ X and it has directional derivative at x0 in the direction u ∈ X, then the
relation

f ′(x0, u) ≥ ⟨u, x∗⟩, ∀ x∗ ∈ ∂ f (x0)

is satisfied. In this section, a similar result can be obtained for ε-generalized weak subdifferential
(see Theorem 5.2, below).

In the sequel, we give the following Definition (see [7]).

Definition 5.1. Let X be a real topological vector space and (Y,≤CY ) be a real ordered topological
vector space. Let f : X → Y be a function and |||.||| : X → CY be a vectorial norm on X and let
x̄ ∈ X be arbitrary. A point (T, c) ∈ B(X,Y) × R+ is called a generalized weak subgradient of f at
x̄ if

T (x − x̄) − c|||x − x̄|||≤CY f (x) − f (x̄), ∀ x ∈ X.

The set of all generalized weak subgradients of f at x̄ is called the generalized weak subdifferential
of f at x̄ and denoted by

∂gw f (x̄) := {(T, c) ∈ B(X,Y) × R+ : (T, c) is a generalized weak subgradient o f f at x̄}.

Also, if ∂gw f (x̄) , ∅, then, f is called generalized weak subdifferentiable at x̄.
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Theorem 5.2. Let X be a real topological vector space, (Y,≤CY ) be a real ordered normed space
with intCY , ∅, |||.||| : X → CY be a vectorial norm on X, x̄ ∈ X and ε ∈ R+ be arbitrary. Let
f : X → Y be a function such that f is generalized weak subdifferentiable and ε-directionally
differentiable at x̄. Then

∂gw
ε f (x̄) = ∂gw f ′ε(x̄, .)(0).

Proof. Let (T, c) ∈ ∂gw
ε f (x̄) be arbitrary. Then in view of Definition 3.4 one has

T (x − x̄) − c|||x − x̄||| ≤CY f (x) − f (x̄) + ε1, ∀ x ∈ X, (5.1)

where 1 ∈ intCY . Let u ∈ X and t > 0 be arbitrary. Put x := x̄ + tu in (5.1), thus we have

tT (u) − tc|||u||| ≤CY f (x̄ + tu) − f (x̄) + ε1.

So

T (u) − c|||u||| ≤CY

f (x̄ + tu) − f (x̄) + ε1
t

, ∀ u ∈ X, ∀ t > 0. (5.2)

Therefore, by Definition 2.7 and (5.2) we obtain

T (u) − c|||u||| ≤CY inf
t>0

f (x̄ + tu) − f (x̄) + ε1
t

= f ′ε(x̄, u), (5.3)

for all u ∈ X. Since f ′ε(x̄, 0) = 0, it follows that

T (u) − c|||u||| ≤CY f ′ε(x̄, u) − f ′ε(x̄, 0), ∀u ∈ X.

That is, (T, c) ∈ ∂gw f ′ε(x̄, ·)(0). Conversely, let (T, c) ∈ ∂gw f ′ε(x̄, ·)(0) be arbitrary. Then by Defini-
tion 5.1 and Definition 2.7 we have

T (u − 0) − c|||u − 0||| ≤CY f ′ε(x̄, u) − f ′ε(x̄, 0)

= f ′ε(x̄, u) = inf
t>0

f (x̄+tu)− f (x̄)+ε1
t

≤CY
f (x̄+tu)− f (x̄)+ε1

t , ∀ u ∈ X, ∀ t > 0.

So one has

T (tu) − c|||tu||| ≤CY f (x̄ + tu) − f (x̄) + ε1, ∀ u ∈ X, ∀ t > 0. (5.4)

Let x ∈ X be arbitrary. Then by putting u := x−x̄
t in (5.4), we conclude that

T (x − x̄) − c|||x − x̄||| ≤CY f (x) − f (x̄) + ε1, ∀ x ∈ X.

Hence (T, c) ∈ ∂gw
ε f (x̄), and the proof is complete.
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Theorem 5.3. Let X be a real topological vector space, (Y,≤CY ) be a real ordered normed space
with intCY , ∅ and |||.||| : X → CY be a vectorial norm on X. Let ε ∈ R+ and f : X → Y
be a function such that f is ε-generalized weak subdifferentiable at x̄ ∈ X and ε-directionally
differentiable at x̄ in the direction u ∈ X. Then

v ≤CY f ′ε(x̄, u), ∀ v ∈ D,

where
D := S up{T (u) − c|||u||| : (T, c) ∈ ∂gw

ε f (x̄)}.
Also, see Definition 2.1.

Proof. We claim that

T (u) − c|||u||| ≤CY f ′ε(x̄, u), ∀ (T, c) ∈ ∂gw
ε f (x̄). (5.5)

Since by the hypothesis f ′ε(x̄, u) exists in Y, then in view of Definition 2.7 there exists a sequence
{tn}n≥1 of positive real numbers such that

lim
n→∞
∥ f (x̄ + tnu) − f (x̄) + ε1

tn
− f ′ε(x̄, u)∥ = 0. (5.6)

Now, let (T, c) ∈ ∂gw
ε f (x̄) be arbitrary. Then one has

T (x − x̄) − c|||x − x̄||| ≤CY f (x) − f (x̄) + ε1, ∀ x ∈ X. (5.7)

Put x := x̄ + tnu (n = 1, 2, · · · ) in (5.7), it follows that

tnT (u) − ctn|||u||| ≤CY f (x̄ + tnu) − f (x̄) + ε1, n = 1, 2, · · · . (5.8)

Since CY is a cone, we conclude from (5.8) that

f (x̄ + tnu) − f (x̄) + ε1
tn

− (T (u) − c|||u|||) ∈ CY , n = 1, 2, · · · . (5.9)

But it follows from (5.6) that

limn→∞ ∥[ f (x̄+tnu)− f (x̄)+ε1
tn

− (T (u) − c|||u|||)] − [ f ′ε(x̄, u) − (T (u) − c|||u|||)]∥

= limn→∞ ∥ f (x̄+tnu)− f (x̄)+ε1
tn

− f ′ε(x̄, u)∥

= 0.

Because of CY is closed, in view of (5.9) and (5.10) one has

f ′ε(x̄, u) − (T (u) − c|||u|||) ∈ CY .
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Hence (5.5) holds. Now, we show that

v ≤CY f ′ε(x̄, u), ∀ v ∈ cl(D0 −CY),

where D0 := {T (u) − c|||u||| : (T, c) ∈ ∂gw
ε f (x̄)}.

For this end, let v ∈ cl(D0 − CY) be arbitrary. Then there exist sequences {vn}n≥1 ⊂ D0 and
{dn}n≥1 ⊂ CY such that

lim
n→∞
∥(vn − dn) − v∥ = 0. (5.10)

Since vn ∈ D0 (n = 1, 2, · · · ), it follows that there exists a sequence {(Tn, cn)}n≥1 ⊂ ∂gw
ε f (x̄) such

that vn = Tn(u) − cn|||u|||, n = 1, 2, · · · . Let wn := vn − dn = Tn(u) − cn|||u||| − dn, n = 1, 2, · · · . This
implies that Tn(u) − cn|||u||| − wn = dn ∈ CY for all n = 1, 2, · · · . Thus we deduce that

wn ≤CY Tn(u) − cn|||u|||, ∀ n ≥ 1. (5.11)

Since (Tn, cn) ∈ ∂gw
ε f (x̄), n = 1, 2, · · · , it follows from (5.5) and (5.12) that

wn ≤CY f ′ε(x̄, u), ∀ n ≥ 1.

That is

f ′ε(x̄, u) − wn ∈ CY , ∀ n ≥ 1. (5.12)

But by (5.11) we have

lim
n→∞
∥[ f ′ε(x̄, u) − wn] − [ f ′ε(x̄, u) − v]∥ = lim

n→∞
∥wn − v∥ = 0. (5.13)

Because of CY is closed, we conclude from (5.13) and (5.14) that f ′ε(x̄, u) − v ∈ CY . That is

v ≤CY f ′ε(x̄, u), ∀ v ∈ cl(D0 −CY). (5.14)

But in view of Definition 2.1 one has

D = S up{T (u) − c|||u||| : (T, c) ∈ ∂gw
ε f (x̄)}

= wmax[cl({T (u) − c|||u||| : (T, c) ∈ ∂gw
ε f (x̄)} −CY)]

⊆ cl(D0 −CY).

Therefore in view of (5.15) and (5.16) we obtain

v ≤CY f ′ε(x̄, u), ∀ v ∈ D,

which completes the proof.

The following theorem gives a convexity characterization of a vector valued function which is
Fréchet differentiable on its domain by using ε-generalized weak subdifferential.
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Theorem 5.4. Let X be a real normed space and (Y,≤CY ) be a real ordered normed space with
intCY , ∅. Let |||.||| : X → CY be a vectorial norm on X and f : X → Y be Fréchet differentiable
and ε-generalized weak subdifferentiable at every point x ∈ X. Then, f is CY-convex if and only if
( f ′(x̄), 0) ∈ ∂gw

ε f (x̄) for all x̄ ∈ X and all ε ∈ R+.

Proof. Suppose that f is CY-convex. Let x̄ ∈ X and ε ∈ R+ be arbitrary. Then in view of Theorem
2.1 we have

f ′(x̄)(x − x̄) ≤CY f (x) − f (x̄), ∀ x ∈ X.

This implies that

f (x) − f (x̄) − f ′(x̄)(x − x̄) ∈ CY , ∀ x ∈ X. (5.15)

Since ε1 ∈ CY for all ε ∈ R and CY is a convex cone, it follows from (5.17) that

f ′(x̄)(x − x̄) − 0|||x − x̄||| ≤CY f (x) − f (x̄) + ε1, ∀ x ∈ X. (5.16)

Since f is Fréchet differentiable on X, in view of Definitioc 2.8 one has f ′(x̄) ∈ B(X, Y). So we
conclude from (5.18) that ( f ′(x̄), 0) ∈ ∂gw

ε f (x̄).
Conversely, assume that ( f ′(x̄), 0) ∈ ∂gw

ε f (x̄) for all x̄ ∈ X and all ε ∈ R+. Thus

f ′(x̄)(x − x̄) − 0|||x − x̄||| ≤CY f (x) − f (x̄) + ε1, ∀ x ∈ X, ∀ ε ∈ R+,

where 1 ∈ intCY . That is

f (x) − f (x̄) + ε1 − f ′(x̄)(x − x̄) ∈ CY , ∀ x ∈ X, ∀ ε ∈ R+. (5.17)

Since ∥1∥ = 1, it follows that

limε→0+ ∥[ f (x) − f (x̄) + ε1 − f ′(x̄)(x − x̄)] − [ f (x) − f (x̄) − f ′(x̄)(x − x̄)]∥

= limε→0+ ∥ε1∥

= limε→0+ ε = 0, ∀ x ∈ X.

Since CY is closed, it follows from (5.19) and (5.20) that

f (x) − f (x̄) − f ′(x̄)(x − x̄) ∈ CY , ∀ x ∈ X.

That is
f ′(x̄)(x − x̄) ≤CY f (x) − f (x̄), ∀ x ∈ X.

Therefore in view of Theorem 2.1 one has f is CY-convex.
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