

Some relations between ε -directional derivative and ε -generalized weak subdifferential

A. Mohebi^{a,*}, H. Mohebi^a

^aDepartment of Mathematics, Shahid Bahonar University of Kerman, Kerman, Islamic Republic of Iran, P.O.Box: 76169133

ARTICLE INFO

Article history: Received 10 July 2015 Accepted 30 August 2015 Available online September 2015 Communicated by M. A. Dehghan

Keywords:

Non-convex optimization, ε -directional derivative

2000 MSC: 26A24 28B99

Abstract

In this paper, we study ε -generalized weak subdifferential for vector valued functions defined on a real ordered topological vector space X. We give various characterizations of ε -generalized weak subdifferential for this class of functions. It is well known that if the function $f : X \to \mathbb{R}$ is subdifferentiable at $x_0 \in X$, then f has a global minimizer at x_0 if and only if $0 \in \partial f(x_0)$. We show that a similar result can be obtained for ε -generalized weak subdifferential. Finally, we investigate some relations between ε -directional derivative and ε -generalized weak subdifferential. In fact, in the classical subdifferential theory, it is well known that if the function $f : X \to \mathbb{R}$ is subdifferentiable at $x_0 \in X$ and it has directional derivative at x_0 in the direction $u \in X$, then the relation $f'(x_0, u) \ge \langle u, x^* \rangle, \forall x^* \in \partial f(x_0)$ is satisfied. We prove that a similar result can be obtained for ε generalized weak subdifferential.

© (1) (2015) Wavelets and Linear Algebra

*Corresponding author

Email addresses: at.mohebi@gmail.com (A. Mohebi), hmohebi@uk.ac.ir (H. Mohebi)

© (1) (2015) Wavelets and Linear Algebra

1. Introduction

The ε -subgradient which was defined by Zalinescu [9] plays an important role in Optimization Theory. In the literature, Gasimov was the first to suggest an algorithm to solve non-convex optimization problems [4]. Subgradient was also defined by Y. Kücük, L. Atasever and M. Kücük for non-convex functions. Also, generalized weak subgradient and generalized weak subdifferential were defined for non-convex functions with values in an ordered vector space (see [7]). Azimov and Gasimov gave optimality conditions for a non-convex vector optimization problem by using weak subdifferentials that depend on supporting conic surfaces (see [1, 2]). So, weak subdifferentials and conic surfaces have important roles in non-convex optimization. Subgradient was also defined for convex functions with values in an ordered vector space (see [3, 8, 9, 10]). In this paper, we first define ε -generalized weak subdifferential for vector valued functions defined on a real topological vector space X. Next, we give various characterizations for ε -generalized weak subdifferential of this class of functions. Finally, we investigate some relations between ε directional derivative and ε -generalized weak subdifferential. The paper is organized as follows: In Section 2, we recall some basic definitions. In Section 3, we give various characterizations for ε -generalized weak subdifferential of vector valued functions defined on a real ordered topological vector space X. Some properties of ε -generalized weak subdifferential are presented in Section 4. In Section 5, we examine some relations between ε -directional derivative and ε -generalized weak subdifferential.

2. Preliminaries

In this section, we give some basic definitions and results. Let *Y* be a real vector space and C_Y be a closed convex cone and pointed in *Y* (the later means that $C_Y \cap (-C_Y) = \{0\}$). The cone C_Y induces a relation \leq_{C_Y} on *Y* which is defined by

$$x \leq_{C_Y} y \Leftrightarrow y - x \in C_Y, \quad (x, y \in Y).$$

It is clear that \leq_{C_Y} is a partial order on *Y*, and so (Y, \leq_{C_Y}) is an ordered vector space. Moreover, if $intC_Y \neq \emptyset$, then we say that

$$x \ll y \iff y - x \in intC_Y, (x, y \in Y).$$

Definition 2.1. ([5, 6]). Let (Y, \leq_{C_Y}) be a real ordered topological vector space with $intC_Y \neq \emptyset$. (*i*) Let *C* be a subset of *Y*. A point $\bar{c} \in C$ is called a weakly maximal point of *C* if there is no $c \in C$ such that $\bar{c} \ll c$. The set of all weakly maximal points of *C* is called the weakly maximum of *C* and is denoted by *wmax C*.

(*ii*) Let C be a subset of Y. The supremum of C is defined as

$$SupC := wmax[cl(C - C_Y)],$$

where for a subset A of Y the cl(A) is called the closure of A in Y.

Definition 2.2. ([5, 6]). Let (Y, \leq_{C_Y}) be a real ordered topological vector space and *C* be a nonempty subset of *Y*.

(*i*) An element $x \in Y$ such that $x \leq_{C_Y} c$ for all $c \in C$ is called a lower bound of *C*. An infimum of *C*, denoted by inf *C*, is the greatest lower bound of *C*, that is, a lower bound *x* of *C* such that $z \leq_{C_Y} x$ for every other lower bound *z* of *C*.

(*ii*) An element $x \in Y$ such that $c \leq_{C_Y} x$ for all $c \in C$ is called an upper bound of *C*. A supremum of *C*, denoted by sup *C*, is the least upper bound of *C*, that is, an upper bound *x* of *C* such that $x \leq_{C_Y} z$ for every other upper bound *z* of *C*.

Definition 2.3. ([7]). Let *X* be a real vector space and (Y, \leq_{C_Y}) be a real ordered vector space. A function $||| \cdot ||| : X \to C_Y$ is called a vectorial norm on *X*, if for all $x, z \in X$ and all $\lambda \in \mathbb{R}$ the following assertions are satisfied:

 $\begin{array}{l} (i) |||x||| = 0_Y \Leftrightarrow x = 0_X. \\ (ii) |||x||| = |\lambda| |||x|||. \\ (iii) |||x + z||| \leq_{C_Y} |||x||| + |||z|||. \end{array}$

If $Y := \mathbb{R}$ and $C_Y := \mathbb{R}_+$, then |||.||| is called a norm on X and denoted by ||.||.

Let (Y, \leq_{C_Y}) be an ordered locally convex topological vector space. The topology that is induced by vectorial norm on X is the topology induced by the neighborhood base $\{X(a, U) : U \in B(0)\}$, where

$$X(a, U) := \{x \in X : |||x - a||| \in U\},\$$

with B(0) is a neighborhood base of the origin in Y and a running over X.

Definition 2.4. ([5, 6]). Let *X* be a real vector space and (Y, \leq_{C_Y}) be a real ordered vector space. Let *S* be a non-empty convex subset of *X*. A function $f : S \to Y$ is called C_Y -convex (or convex) if for all $x, y \in S$ and all $\lambda \in [0, 1]$

$$\lambda f(x) + (1 - \lambda)f(y) - f(\lambda x + (1 - \lambda)y) \in C_Y.$$

Definition 2.5. ([5, 6]). Let *X* be a real vector space and (Y, \leq_{C_Y}) be a real ordered vector space. Let *S* be a non-empty convex subset of *X*. Let the function $f : S \to Y$ be given. The set

$$epi(f) := \{(x, y) \in X \times Y : x \in S, f(x) \leq_{C_Y} y\}$$

is called the epigraph of f. The set

$$hypo(f) := \{(x, y) \in X \times Y : x \in S, y \leq_{C_Y} f(x)\}$$

is called the hypograph of f.

Definition 2.6. ([6]). Let *X* and *Y* be real topological vector spaces. Let *S* be an open subset of *X* and $f : S \to Y$ be a given function. If for $\bar{x} \in S$ and $u \in X$ the limit

$$f'(\bar{x}, u) := \lim_{t \to 0^+} \frac{f(\bar{x} + tu) - f(\bar{x})}{t}$$

exists, then $f'(\bar{x}, u)$ is called the directional derivative of f at \bar{x} in the direction u. If this limit exists for all $u \in X$, then, f is called directionally differentiable at \bar{x} .

Definition 2.7. Let *X* be a real topological vector space and (Y, \leq_{C_Y}) be a real ordered topological vector space with $intC_Y \neq \emptyset$. Let *S* be an open subset of *X*, $f : S \to Y$ be a given function and $\varepsilon \in \mathbb{R}_+$. If for $\bar{x} \in S$ and $u \in X$ the infimum

$$f_{\varepsilon}'(\bar{x}, u) := \inf_{t>0} \frac{f(\bar{x} + tu) - f(\bar{x}) + \varepsilon \mathbf{1}}{t}$$

exists in *Y*, then $f'_{\varepsilon}(\bar{x}, u)$ is called the ε -directional derivative of *f* at \bar{x} in the direction *u*. If this infimum exists in *Y* for each $u \in X$, then, *f* is called ε -directionally differentiable at \bar{x} . Note that $1 \in intC_Y$. See Definition 2.2.

Definition 2.8. ([5, 6]). Let *X* and *Y* be real normed spaces and *S* be a non-empty open subset of *X*. Let $f : S \to Y$ be a given function and $\bar{x} \in X$. If there exists a continuous linear function $T : X \to Y$ such that

$$\lim_{\|h\|\to 0} \frac{\|f(\bar{x}+h) - f(\bar{x}) - T(h)\|}{\|h\|} = 0,$$

then *T* is called the Fréchet derivative of *f* at \bar{x} and denoted by $f'(\bar{x}) := T$. In this case, *f* is called Fréchet differentiable at \bar{x} .

The proof of the following theorem can be found in [5, 6].

Theorem 2.9. Let X be a real normed space, (Y, \leq_{C_Y}) be a real ordered normed space and S be a non-empty open subset of X. Let $f : S \to Y$ be Fréchet differentiable at every point $x \in S$. Then, f is C_Y -convex if and only if

$$f'(y)(x-y) \leq_{C_Y} f(x) - f(y), \quad \forall x, y \in S.$$

3. ε-generalized weak subdifferential

In this section, we give various characterizations for ε -generalized weak subdifferential of a vector valued function f. Also, we present the definition of an ε -generalized lower locally Lipschitz function.

Definition 3.1. ([7]). Let *X* be a real topological vector space and (Y, \leq_{C_Y}) be a real ordered topological vector space. Assume that $f : X \to Y$ is a given function and $\bar{x} \in X$. Then a point $T \in B(X, Y)$ is called a subgradient of f at \bar{x} if

$$f(x) - f(\bar{x}) - T(x - \bar{x}) \in C_Y, \quad \forall x \in X.$$

The set of all subgradients of f at \bar{x} is called the subdifferential of f at \bar{x} and denoted by

$$\partial f(\bar{x}) := \{T \in B(X, Y) : T \text{ is a subgradient of } f \text{ at } \bar{x}\},\$$

where B(X, Y) is the vector space of all continuous linear functions from X to Y. Also, if $\partial f(\bar{x}) \neq \emptyset$, then, f is called subdifferentiable at \bar{x} . **Definition 3.2.** Let *X* be a real topological vector space and (Y, \leq_{C_Y}) be a real ordered topological vector space. Assume that $intC_Y \neq \emptyset$, $f : X \to Y$ is a function, $\bar{x} \in X$ and $\varepsilon \in \mathbb{R}_+$. Then a point $T \in B(X, Y)$ is called an ε -subgradient of f at \bar{x} if

$$f(x) - f(\bar{x}) - T(x - \bar{x}) + \varepsilon \mathbf{1} \in C_Y, \quad \forall x \in X.$$

The set of all ε -subgradients of f at \bar{x} is called the ε -subdifferential of f at \bar{x} and denoted by

$$\partial_{\varepsilon} f(\bar{x}) := \{T \in B(X, Y) : T \text{ is an } \varepsilon - subgradient of f at } \bar{x}\},\$$

where B(X, Y) is the vector space of all continuous linear functions from X to Y and $\mathbf{1} \in intC_Y$. Also, if $\partial_{\varepsilon} f(\bar{x}) \neq \emptyset$, then, f is called ε -subdifferentiable at \bar{x} .

Remark 3.3. Let *X* be a real topological vector space and (Y, \leq_{C_Y}) be a real ordered topological vector space. Assume that $intC_Y \neq \emptyset$, $f: X \to Y$ is a function and $\bar{x} \in X$. Suppose that $0 \leq \varepsilon_1 \leq \varepsilon_2$. Then, $\partial f(\bar{x}) = \partial_0 f(\bar{x}) \subseteq \partial_{\varepsilon_1} f(\bar{x}) \subseteq \partial_{\varepsilon_2} f(\bar{x})$, and for all $\varepsilon \in \mathbb{R}_+$ one has

$$\partial_{\varepsilon} f(\bar{x}) = \bigcap_{\delta > \varepsilon} \partial_{\delta} f(\bar{x}).$$

Definition 3.4. Let $(X, \|.\|)$ be a real normed space, $f : X \to \overline{\mathbb{R}}$ be a proper function, $\overline{x} \in X$ be such that $f(\overline{x}) \in \mathbb{R}$ and $\varepsilon \in \mathbb{R}_+$. Then, $(x^*, c) \in X^* \times \mathbb{R}_+$ is called an ε -weak subgradient of f at \overline{x} if

$$\langle x^*, x - \bar{x} \rangle - c ||x - \bar{x}|| \le f(x) - f(\bar{x}) + \varepsilon, \quad \forall x \in X.$$

The set of all ε -weak subgradients of f at \bar{x} is called the ε -weak subdifferential of f at \bar{x} and denoted by

$$\partial_{\varepsilon}^{w} f(\bar{x}) := \{ (x^{*}, c) \in X^{*} \times \mathbb{R}_{+} : (x^{*}, c) \text{ is an } \varepsilon - weak \text{ subgradient of } f \text{ at } \bar{x} \}.$$

Also, if $\partial_{\varepsilon}^{w} f(\bar{x}) \neq \emptyset$, then, f is called ε -weak subdifferentiable at \bar{x} .

Definition 3.5. Let X be a real topological vector space and (Y, \leq_{C_Y}) be a real ordered topological vector space with $intC_Y \neq \emptyset$. Let $f : X \to Y$ be a function and $|||.||| : X \to C_Y$ be a vectorial norm on X and let $\bar{x} \in X$ and $\varepsilon \in \mathbb{R}_+$ be arbitrary. A point $(T, c) \in B(X, Y) \times \mathbb{R}_+$ is called an ε -generalized weak subgradient of f at \bar{x} if

$$f(x) - f(\bar{x}) - T(x - \bar{x}) + c |||x - \bar{x}||| + \varepsilon \mathbf{1} \in C_Y, \quad \forall x \in X,$$

where $\mathbf{1} \in intC_Y$.

The set of all ε -generalized weak subgradients of f at \bar{x} is called the ε -generalized weak subdifferential of f at \bar{x} and denoted by

$$\partial_{\varepsilon}^{gw} f(\bar{x}) := \{(T,c) \in B(X,Y) \times \mathbb{R}_+ : (T,c) \text{ is an } \varepsilon - generalized weak subgradient of } f \text{ at } \bar{x}\}.$$

Also, if $\partial_{\varepsilon}^{gw} f(\bar{x}) \neq \emptyset$, then, f is called ε -generalized weak subdifferentiable at \bar{x} .

Remark 3.6. In view of Definition 3.2 and Definition 3.4 it is easy to see that

$$(T,c) \in \partial_{\varepsilon}^{gw} f(\bar{x}) \Leftrightarrow T \in \partial_{\varepsilon} (f+c|||\cdot -\bar{x}|||)(\bar{x}),$$

where $f: X \to Y$ is a function, $\|\|.\|\|: X \to C_Y$ is a vectorial norm on X and $\bar{x} \in X$.

Lemma 3.7. Let X be a real topological vector space and (Y, \leq_{C_Y}) be a real ordered topological vector space with $intC_Y \neq \emptyset$. Let $f : X \to Y$ be a function, $|||.||| : X \to C_Y$ be a vectorial norm on X and $\varepsilon \in \mathbb{R}_+$. If f is ε - subdifferentiable at $\bar{x} \in X$, then, f is ε -generalized weak subdifferentiable at \bar{x} .

Proof. Since $\partial_{\varepsilon} f(\bar{x}) \neq \emptyset$, then there exists $T \in \partial_{\varepsilon} f(\bar{x})$ such that

$$T(x - \bar{x}) \leq_{C_Y} f(x) - f(\bar{x}) + \varepsilon \mathbf{1}, \quad \forall x \in X,$$

where $\mathbf{1} \in intC_Y$. So

$$f(x) - f(\bar{x}) - T(x - \bar{x}) + \varepsilon \mathbf{1} \in C_Y, \quad \forall x \in X.$$

Since $c |||x - \bar{x}||| \in C_Y$ for all $c \in \mathbb{R}_+$ and C_Y is a convex cone, it follows that

$$f(x) - f(\bar{x}) - T(x - \bar{x}) + \varepsilon \mathbf{1} + c |||x - \bar{x}||| \in C_Y, \quad \forall x \in X.$$

That is

$$T(x-\bar{x}) - c|||x-\bar{x}||| \leq_{C_Y} f(x) - f(\bar{x}) + \varepsilon \mathbf{1}, \quad \forall x \in X.$$

Hence, $(T, c) \in \partial_{\varepsilon}^{gw} f(\bar{x})$ for all $c \in \mathbb{R}_+$. Therefore, $\partial_{\varepsilon}^{gw} f(\bar{x}) \neq \emptyset$.

The following example shows that the converse statement to Lemma 3.1 is not true.

Example 3.8. Let $X := \mathbb{R}$, $Y := \mathbb{R}^2$, $C_Y := \mathbb{R}^2_+$, $|||.||| : \mathbb{R} \to \mathbb{R}^2_+$ be defined by |||x||| = (|x|, |x|) for all $x \in \mathbb{R}$, and let $f : \mathbb{R} \to \mathbb{R}^{\nvDash}$ be defined by f(x) = (-|x|, -|x|) for all $x \in \mathbb{R}$. Let $\varepsilon \in \mathbb{R}_+$. It is easy to see that f is not ε -subdifferentiable at x = 0, but f is ε -generalized weak subdifferentiable at x = 0.

Remark 3.9. Let *X* be a real topological vector space, (Y, \leq_{C_Y}) be a real ordered topological vector space with *int* $C_Y \neq \emptyset$ and $|||.||| : X \to C_Y$ be a vectorial norm on *X*. Let $\varepsilon \in \mathbb{R}_+$. Then

$$\partial_{\varepsilon} |||\bar{x}||| = \{T \in B(X, Y) : T(\bar{x}) = |||\bar{x}|||, \ T(x) \leq_{C_Y} |||x||| + \varepsilon \mathbf{1}, \ \forall \ x \in X, \ \forall \ \varepsilon \in \mathbb{R}_+\},$$

where $\mathbf{1} \in intC_{Y}$.

Definition 3.10. Let *X* be a real topological vector space, (Y, \leq_{C_Y}) be a real ordered topological vector space with $intC_Y \neq \emptyset$ and $|||.||| : X \to C_Y$ be a vectorial norm on *X*. Let $\varepsilon \in \mathbb{R}_+$. A function $f : X \to Y$ is called ε -generalized lower locally Lipschitz at $\bar{x} \in X$ if there exists a non-negative real number *L* (Lipschitz constant) and a neighborhood $N(\bar{x})$ of \bar{x} such that

$$-L|||x - \bar{x}||| \le_{C_Y} f(x) - f(\bar{x}) + \varepsilon \mathbf{1}, \quad \forall \ x \in N(\bar{x}),$$

$$(3.1)$$

where $\mathbf{1} \in intC_Y$. If (3.1) holds for all $x \in X$, then, f is called ε -generalized lower Lipschitz at \bar{x} .

Theorem 3.11. Let X be a real topological vector space, (Y, \leq_{C_Y}) be a real ordered topological vector space with $intC_Y \neq \emptyset$ and $|||.||| : X \rightarrow C_Y$ be a vectorial norm on X. Let $f : X \rightarrow Y$ be a function and let $\bar{x} \in X$ and $\varepsilon \in \mathbb{R}_+$. If f is ε -generalized lower Lipschitz at \bar{x} , then, f is ε -generalized weak subdifferentiable at \bar{x} .

Proof. Suppose that f is ε -generalized lower Lipschitz at \bar{x} . Then there exists $L \ge 0$ such that

$$-L|||x - \bar{x}||| \le_{C_Y} f(x) - f(\bar{x}) + \varepsilon \mathbf{1}, \quad \forall \ x \in X,$$

where $\mathbf{1} \in intC_Y$. So, we have

$$0(x-\bar{x}) - L|||x-\bar{x}||| \le_{C_Y} f(x) - f(\bar{x}) + \varepsilon \mathbf{1}, \quad \forall x \in X.$$

Hence, $(0, L) \in \partial_{\varepsilon}^{gw} f(\bar{x})$, that is, f is ε -generalized weak subdifferentiable at \bar{x} .

Theorem 3.12. Under the hypotheses of Theorem 3.1 if f is ε -generalized lower Lipschitz at $\bar{x} \in X$, then there exists $p \ge 0$ and $q \in Y$ such that

$$q - p|||x||| \le_{C_Y} f(x) + \varepsilon \mathbf{1} \quad \forall \ x \in X,$$

where $\mathbf{1} \in intC_{Y}$.

Proof. Let f be ε -generalized lower Lipschitz at \bar{x} . Then there exists $L \ge 0$ such that

$$-L|||x - \bar{x}||| \le_{C_Y} f(x) - f(\bar{x}) + \varepsilon \mathbf{1}, \quad \forall x \in X.$$

So, one has

$$-L|||x||| - L|||\bar{x}||| \le_{C_Y} -L|||x - \bar{x}||| \le_{C_Y} f(x) - f(\bar{x}) + \varepsilon \mathbf{1}, \quad \forall \ x \in X.$$
(3.2)

Now, put $q := f(\bar{x}) - L|||x|||$ and p := L in (3.2). Thus it is clear that $p \ge 0, q \in Y$ and

$$q - p|||x||| \leq_{C_Y} f(x) + \varepsilon \mathbf{1},$$

for all $x \in X$.

4. Properties of ε -generalized weak subdifferential

In the classical subdifferential theory, it is well known that if the function $f: X \to \mathbb{R}$ is subdifferentiable at $x_0 \in X$, then f has a global minimizer at x_0 if and only if $0 \in \partial f(x_0)$. In this section, a similar result can be obtained for ε -generalized weak subdifferential (see Theorem 4.1, below).

Proposition 4.1. Let X be a real topological vector space, (Y, \leq_{C_Y}) be a real ordered topological vector space with $intC_Y \neq \emptyset$ and $|||.||| : X \rightarrow C_Y$ be a vectorial norm on X. Let $f : X \rightarrow Y$ be a function, $\bar{x} \in X$ and $\varepsilon \in \mathbb{R}_+$. Then, $\partial_{\varepsilon}^{gw} f(\bar{x})$ is a convex set.

Proof. Let $(T_1, c_1), (T_2, c_2) \in \partial_{\varepsilon}^{gw} f(\bar{x})$ be arbitrary and $0 \le \lambda \le 1$. Then we have

$$T_1(x-\bar{x}) - c_1 |||x-\bar{x}||| \le_{C_Y} f(x) - f(\bar{x}) + \varepsilon \mathbf{1}, \quad \forall \ x \in X,$$

and

$$T_2(x-\bar{x}) - c_2 |||x-\bar{x}||| \leq_{C_Y} f(x) - f(\bar{x}) + \varepsilon \mathbf{1}, \quad \forall x \in X,$$

where $\mathbf{1} \in intC_Y$. So, since C_Y is a cone, we have

$$\lambda f(x) - \lambda f(\bar{x}) + \lambda \varepsilon \mathbf{1} - \lambda T_1(x - \bar{x}) + \lambda c_1 |||x - \bar{x}||| \in C_Y, \quad \forall x \in X,$$

and

$$(1-\lambda)f(x) - (1-\lambda)f(\bar{x}) + (1-\lambda)\varepsilon\mathbf{1} - (1-\lambda)T_2(x-\bar{x}) + (1-\lambda)c_2|||x-\bar{x}||| \in C_Y,$$

for all $x \in X$. Since C_Y is a convex cone, it follows that

$$f(x) - f(\bar{x}) + \varepsilon \mathbf{1} - (\lambda T_1 + (1 - \lambda)T_2)(x - \bar{x}) + (\lambda c_1 + (1 - \lambda)c_2) |||x - \bar{x}||| \in C_Y,$$

for all $x \in X$. Hence

$$(\lambda T_1 + (1 - \lambda)T_2)(x - \bar{x}) - (\lambda c_1 + (1 - \lambda)c_2) |||x - \bar{x}||| \le_{C_Y} f(x) - f(\bar{x}) + \varepsilon \mathbf{1},$$

for all $x \in X$. So, one has

$$(\lambda T_1 + (1 - \lambda)T_2, \lambda c_1 + (1 - \lambda)c_2) \in \partial_{\varepsilon}^{gw} f(\bar{x}).$$

That is

$$\lambda(T_1, c_1) + (1 - \lambda)(T_2, c_2) \in \partial_{\varepsilon}^{gw} f(\bar{x}).$$

Proposition 4.2. Let X be a real normed space space, (Y, \leq_{C_Y}) be a real ordered normed space with $intC_Y \neq \emptyset$ and $|||.||| : X \to C_Y$ be a vectorial norm on X. Let $f : X \to Y$ be a function, $\bar{x} \in X$ and $\varepsilon \in \mathbb{R}_+$. Then, $\partial_{\varepsilon}^{gw} f(\bar{x})$ is a closed set in $B(X, Y) \times \mathbb{R}_+$.

Proof. If $\partial_{\varepsilon}^{gw} f(\bar{x}) = \emptyset$, then it is closed. Suppose that $\partial_{\varepsilon}^{gw} f(\bar{x}) \neq \emptyset$ and $(T, c) \in cl(\partial_{\varepsilon}^{gw} f(\bar{x}))$ is arbitrary. Then there exists a sequence $\{(T_n, c_n)\}_{n \ge 1} \subset \partial_{\varepsilon}^{gw} f(\bar{x})$ such that $||(T_n, c_n) - (T, c)|| \to 0$ as $n \to \infty$, where for an element $(S, c) \in B(X, Y) \times \mathbb{R}_+$ we define

$$||(S, c)|| := ||S|| + |c|.$$

Thus we conclude that $||T_n - T|| \to 0$ and $|c_n - c| \to 0$ as $n \to \infty$. This implies that

$$||T_n(x) - T(x)|| \to 0 \text{ for each } x \in X, \text{ and } |c_n - c| \to 0, \text{ as } n \to \infty.$$

$$(4.1)$$

Now, assume on the contrary that $(T, c) \notin \partial_{\varepsilon}^{gw} f(\bar{x})$. Then there exists $x_0 \in X$ such that

$$T(x_0 - \bar{x}) - c |||x_0 - \bar{x}||| \leq C_Y f(x_0) - f(\bar{x}) + \varepsilon \mathbf{1}.$$
(4.2)

Since $(T_n, c_n) \in \partial_{\varepsilon}^{gw} f(\bar{x})$ $(n = 1, 2, \dots)$, in view of Definition 3.4 we have

$$T_n(x-\bar{x}) - c_n |||x-\bar{x}||| \leq_{C_Y} f(x) - f(\bar{x}) + \varepsilon \mathbf{1}, \quad \forall x \in X, \ \forall n \ge 1,$$

where $\mathbf{1} \in intC_Y$. That is

$$f(x) - f(\bar{x}) + \varepsilon \mathbf{1} - T_n(x - \bar{x}) + c_n |||x_0 - \bar{x}||| \in C_Y, \quad \forall x \in X, \ \forall n \ge 1.$$

$$(4.3)$$

Put $x := x_0$ in (4.3), therefore one has

$$f(x_0) - f(\bar{x}) + \varepsilon \mathbf{1} - T_n(x_0 - \bar{x}) + c_n |||x_0 - \bar{x}||| \in C_Y, \quad \forall n \ge 1.$$
(4.4)

But we have

$$\begin{split} \| [f(x_0) - f(\bar{x}) + \varepsilon \mathbf{1} - T_n(x_0 - \bar{x}) + c_n \| \| x_0 - \bar{x} \| \|] \\ - [f(x_0) - f(\bar{x}) + \varepsilon \mathbf{1} - T(x_0 - \bar{x}) + c \| \| x_0 - \bar{x} \| \| \| \\ = \| [T_n(x_0 - \bar{x}) - T(x_0 - \bar{x})] + (c_n - c) \| \| x_0 - \bar{x} \| \| \| \\ \le \| T_n(x_0 - \bar{x}) - T(x_0 - \bar{x})\| + |c_n - c| \| \| x_0 - \bar{x} \| \|, \quad \forall n \ge 1. \end{split}$$
(4.5)

In view of (4.1) it follows from (4.5) that

$$\|[f(x_0) - f(\bar{x}) + \varepsilon \mathbf{1} - T_n(x_0 - \bar{x}) + c_n \| \|x_0 - \bar{x}\| \|] - [f(x_0) - f(\bar{x}) + \varepsilon \mathbf{1} - T(x_0 - \bar{x}) + c \| \|x_0 - \bar{x}\| \|] \| \to 0$$
(4.6)

whenever $n \to \infty$. Since C_Y is closed, so we conclude from (4.4) and (4.6) that

$$f(x_0) - f(\bar{x}) + \varepsilon \mathbf{1} - T(x_0 - \bar{x}) + c |||x_0 - \bar{x}||| \in C_Y.$$

That is

$$T(x_0 - \bar{x}) - c |||x_0 - \bar{x}||| \le_{C_Y} f(x_0) - f(\bar{x}) + \varepsilon \mathbf{1},$$

which contradicts (4.2). Hence $(T, c) \in \partial_{\varepsilon}^{gw} f(\bar{x})$, and the proof is complete.

Proposition 4.3. Let X be a real topological vector space, (Y, \leq_{C_Y}) be a real ordered topological vector space with $intC_Y \neq \emptyset$ and $|||.||| : X \to C_Y$ be a vectorial norm on X. Let $f : X \to Y$ be a function, $\bar{x} \in X$ and $\varepsilon \in \mathbb{R}_+$ be arbitrary. If f is $\frac{\varepsilon}{\lambda}$ -generalized weak subdifferentiable at $\bar{x} \in X$, then, $\partial_{\varepsilon}^{gw}(\lambda f)(\bar{x}) = \lambda \partial_{\varepsilon}^{gw} f(\bar{x})$ for each $\lambda > 0$.

Proof. Let $\lambda > 0$ be arbitrary. Since C_Y is a cone, it follows that $(T, c) \in \partial_{\varepsilon}^{gw}(\lambda f)(\bar{x})$ if and only if

$$\lambda f(x) - \lambda f(\bar{x}) + \varepsilon \mathbf{1} - T(x - \bar{x}) + |||x - \bar{x}||| \in C_Y, \quad \forall x \in X$$

if only and if

$$f(x) - f(\bar{x}) + \frac{\varepsilon}{\lambda} \mathbf{1} - \frac{T}{\lambda} (x - \bar{x}) + \frac{c}{\lambda} |||x - \bar{x}||| \in C_Y, \quad \forall x \in X$$

if and only if $(\frac{T}{\lambda}, \frac{c}{\lambda}) \in \partial_{\frac{c}{2}}^{gw} f(\bar{x})$ if and only if $(T, c) \in \lambda \partial_{\frac{c}{2}}^{gw} f(\bar{x})$.

Theorem 4.4. Let X be a real topological vector space, (Y, \leq_{C_Y}) be a real ordered normed space with $intC_Y \neq \emptyset$ and $|||.||| : X \to C_Y$ be a vectorial norm on X. Let $\varepsilon \in \mathbb{R}_+$ and $f : X \to Y$ be a function such that f is ε -generalized weak subdifferentiable at $\bar{x} \in X$. Then, f has a global minimizer at \bar{x} if and only if $(0,0) \in \partial_{\varepsilon}^{gw} f(\bar{x})$ for all $\varepsilon \in \mathbb{R}_+$.

Proof. Suppose that f has a global minimizer at \bar{x} . Then one has $f(\bar{x}) \leq_{C_Y} f(x)$ for all $x \in X$, and also we have $0_Y \leq_{C_Y} \varepsilon \mathbf{1}$. So $f(\bar{x}) \leq_{C_Y} f(x) + \varepsilon \mathbf{1}$ for all $x \in X$. Therefore

$$0(x-\bar{x}) - 0|||x-\bar{x}||| \le_{C_Y} f(x) - f(\bar{x}) + \varepsilon \mathbf{1}, \quad \forall x \in X.$$

Hence $(0,0) \in \partial_{\varepsilon}^{gw} f(\bar{x})$ for all $\varepsilon \in \mathbb{R}_+$. Conversely, assume that $(0,0) \in \partial_{\varepsilon}^{gw} f(\bar{x})$ for all $\varepsilon \in \mathbb{R}_+$. Thus

$$0 \leq_{C_Y} f(x) - f(\bar{x}) + \varepsilon \mathbf{1}, \quad \forall x \in X, \ \forall \varepsilon \in \mathbb{R}_+.$$

That is

$$f(x) - f(\bar{x}) + \varepsilon \mathbf{1} \in C_Y, \quad \forall \ x \in X, \ \forall \ \varepsilon \in \mathbb{R}_+.$$

$$(4.7)$$

Therefore

$$\lim_{\varepsilon \to 0^+} \|[f(x) - f(\bar{x}) + \varepsilon \mathbf{1}] - [f(x) - f(\bar{x})]\| = \lim_{\varepsilon \to 0^+} \|\varepsilon \mathbf{1}\| = \lim_{\varepsilon \to 0^+} \varepsilon = 0,$$
(4.8)

for each $x \in X$. Note that $||\mathbf{1}|| = 1$. Since C_Y is a closed set in Y, it follows from (4.7) and (4.8) that

$$f(x) - f(\bar{x}) \in C_Y, \quad \forall x \in X.$$

So

$$0 \leq_{C_Y} f(x) - f(\bar{x}), \quad \forall \ x \in X.$$

That is \bar{x} is a global minimizer of f at \bar{x} .

Theorem 4.5. Let X be a real normed space and $f : X \to \overline{\mathbb{R}}$ be a proper function. Let $\overline{x} \in dom f$ and $\varepsilon \in \mathbb{R}_+$ be given. Then

$$(x^*, c) \in \partial_{\varepsilon}^{w} f(\bar{x}) \Leftrightarrow f(\bar{x}) + (f + c ||. - \bar{x}||)^* (x^*) \le \langle x^*, \bar{x} \rangle + \varepsilon$$

Proof. We have

$$\begin{aligned} (x^*,c) \in \partial_{\varepsilon}^w f(\bar{x}) \Leftrightarrow \langle x^*, x - \bar{x} \rangle - c ||x - \bar{x}|| &\leq f(x) - f(\bar{x}) + \varepsilon, \quad \forall \ x \in X. \\ \Leftrightarrow \langle x^*, x \rangle - f(x) - c ||x - \bar{x}|| &\leq \langle x^*, \bar{x} \rangle - f(\bar{x}) + \varepsilon, \quad \forall \ x \in X. \\ \Leftrightarrow \sup_{x \in X} \{ \langle x^*, x \rangle - (f + c || \cdot - \bar{x} ||)(x) \} &\leq \langle x^*, \bar{x} \rangle - f(\bar{x}) + \varepsilon. \\ \Leftrightarrow (f + c || \cdot - \bar{x} ||)^* (x^*) &\leq \langle x^*, \bar{x} \rangle - f(\bar{x}) + \varepsilon. \\ \Leftrightarrow f(\bar{x}) + (f + c || \cdot - \bar{x} ||)^* (x^*) &\leq \langle x^*, \bar{x} \rangle + \varepsilon. \end{aligned}$$

Proposition 4.6. Let X be a real topological vector space, (Y, \leq_{C_Y}) be a real ordered topological vector space with $intC_Y \neq \emptyset$ and $|||.||| : X \to C_Y$ be a vectorial norm on X. Let $\varepsilon_1, \varepsilon_2 \in \mathbb{R}_+$ and $\bar{x} \in X$. Suppose that $f, g : X \to Y$ are functions such that f is ε_1 -generalized weak subdifferentiable at \bar{x} and g is ε_2 -generalized weak subdifferentiable at \bar{x} . Then

$$\partial_{\varepsilon_1}^{g_W} f(\bar{x}) + \partial_{\varepsilon_2}^{g_W} g(\bar{x}) \subseteq \partial_{\varepsilon_1 + \varepsilon_2}^{g_W} (f + g)(\bar{x}).$$

Proof. Let $(T_1, c_1) + (T_2, c_2) \in \partial_{\varepsilon_1}^{gw} f(\bar{x}) + \partial_{\varepsilon_2}^{gw} g(\bar{x})$, where $(T_1, c_1) \in \partial_{\varepsilon_1}^{gw} f(\bar{x})$ and $(T_2, c_2) \in \partial_{\varepsilon_2}^{gw} g(\bar{x})$. Then we have

$$f(x) - f(\bar{x}) + \varepsilon_1 \mathbf{1} - T_1(x - \bar{x}) + c_1 |||x - \bar{x}||| \in C_Y, \quad \forall x \in X,$$

and

$$g(x) - g(\bar{x}) + \varepsilon_2 \mathbf{1} - T_2(x - \bar{x}) + c_2 |||x - \bar{x}||| \in C_Y, \quad \forall x \in X.$$

Since C_Y is a convex cone, it follows that

$$(f+g)(x) - (f+g)(\bar{x}) + (\varepsilon_1 + \varepsilon_2)\mathbf{1} - (T_1 + T_2)(x - \bar{x}) + (c_1 + c_2)|||x - \bar{x}||| \in C_Y,$$

for all $x \in X$. That is

$$(T_1 + T_2)(x - \bar{x}) - (c_1 + c_2) |||x - \bar{x}||| \le_{C_Y} (f + g)(x) - (f + g)(\bar{x}) + (\varepsilon_1 + \varepsilon_2) \mathbf{1},$$

for all $x \in X$. So, one has $(T_1 + T_2, c_1 + c_2) \in \partial_{\varepsilon_1 + \varepsilon_2}^{gw}(f + g)(\bar{x})$. Hence $(T_1, c_1) + (T_2, c_2) \in \partial_{\varepsilon_1 + \varepsilon_2}^{gw}(f + g)(\bar{x})$.

5. Some relations between ε -directional derivative and ε -generalized weak subdifferential

In the classical subdifferential theory, it is well known that if the function $f : X \to \mathbb{R}$ is subdifferentiable at $x_0 \in X$ and it has directional derivative at x_0 in the direction $u \in X$, then the relation

$$f'(x_0, u) \ge \langle u, x^* \rangle, \quad \forall \ x^* \in \partial f(x_0)$$

is satisfied. In this section, a similar result can be obtained for ε -generalized weak subdifferential (see Theorem 5.2, below).

In the sequel, we give the following Definition (see [7]).

Definition 5.1. Let *X* be a real topological vector space and (Y, \leq_{C_Y}) be a real ordered topological vector space. Let $f : X \to Y$ be a function and $|||.||| : X \to C_Y$ be a vectorial norm on *X* and let $\bar{x} \in X$ be arbitrary. A point $(T, c) \in B(X, Y) \times \mathbb{R}_+$ is called a generalized weak subgradient of *f* at \bar{x} if

$$T(x-\bar{x})-c|||x-\bar{x}||| \leq_{C_Y} f(x)-f(\bar{x}), \quad \forall x \in X.$$

The set of all generalized weak subgradients of f at \bar{x} is called the generalized weak subdifferential of f at \bar{x} and denoted by

$$\partial^{gw} f(\bar{x}) := \{ (T, c) \in B(X, Y) \times \mathbb{R}_+ : (T, c) \text{ is a generalized weak subgradient of } f \text{ at } \bar{x} \}.$$

Also, if $\partial^{gw} f(\bar{x}) \neq \emptyset$, then, f is called generalized weak subdifferentiable at \bar{x} .

Theorem 5.2. Let X be a real topological vector space, (Y, \leq_{C_Y}) be a real ordered normed space with $intC_Y \neq \emptyset$, $|||.||| : X \to C_Y$ be a vectorial norm on X, $\bar{x} \in X$ and $\varepsilon \in \mathbb{R}_+$ be arbitrary. Let $f : X \to Y$ be a function such that f is generalized weak subdifferentiable and ε -directionally differentiable at \bar{x} . Then

$$\partial_{\varepsilon}^{g_{w}}f(\bar{x}) = \partial^{g_{w}}f_{\varepsilon}'(\bar{x},.)(0).$$

Proof. Let $(T, c) \in \partial_{\varepsilon}^{gw} f(\bar{x})$ be arbitrary. Then in view of Definition 3.4 one has

$$T(x - \bar{x}) - c|||x - \bar{x}||| \le_{C_Y} f(x) - f(\bar{x}) + \varepsilon \mathbf{1}, \quad \forall \ x \in X,$$

$$(5.1)$$

where $\mathbf{1} \in intC_Y$. Let $u \in X$ and t > 0 be arbitrary. Put $x := \bar{x} + tu$ in (5.1), thus we have

$$tT(u) - tc|||u||| \leq_{C_Y} f(\bar{x} + tu) - f(\bar{x}) + \varepsilon \mathbf{1}.$$

So

$$T(u) - c|||u||| \le_{C_Y} \frac{f(\bar{x} + tu) - f(\bar{x}) + \varepsilon \mathbf{1}}{t}, \quad \forall \ u \in X, \ \forall \ t > 0.$$
(5.2)

Therefore, by Definition 2.7 and (5.2) we obtain

$$T(u) - c|||u||| \le_{C_Y} \inf_{t>0} \frac{f(\bar{x} + tu) - f(\bar{x}) + \varepsilon \mathbf{1}}{t} = f_{\varepsilon}'(\bar{x}, u),$$
(5.3)

for all $u \in X$. Since $f'_{\varepsilon}(\bar{x}, 0) = 0$, it follows that

 $T(u)-c|||u||| \leq_{C_Y} f_{\varepsilon}'(\bar{x},u)-f_{\varepsilon}'(\bar{x},0), \quad \forall u \in X.$

That is, $(T, c) \in \partial^{gw} f'_{\varepsilon}(\bar{x}, \cdot)(0)$. Conversely, let $(T, c) \in \partial^{gw} f'_{\varepsilon}(\bar{x}, \cdot)(0)$ be arbitrary. Then by Definition 5.1 and Definition 2.7 we have

$$T(u-0) - c|||u-0||| \leq_{C_Y} f'_{\varepsilon}(\bar{x}, u) - f'_{\varepsilon}(\bar{x}, 0)$$
$$= f'_{\varepsilon}(\bar{x}, u) = \inf_{t>0} \frac{f(\bar{x}+tu) - f(\bar{x}) + \varepsilon \mathbf{1}}{t}$$
$$\leq_{C_Y} \frac{f(\bar{x}+tu) - f(\bar{x}) + \varepsilon \mathbf{1}}{t}, \quad \forall \ u \in X, \ \forall \ t > 0.$$

So one has

$$T(tu) - c|||tu||| \le_{C_Y} f(\bar{x} + tu) - f(\bar{x}) + \varepsilon \mathbf{1}, \quad \forall \ u \in X, \ \forall \ t > 0.$$

$$(5.4)$$

Let $x \in X$ be arbitrary. Then by putting $u := \frac{x - \bar{x}}{t}$ in (5.4), we conclude that

$$T(x-\bar{x}) - c|||x-\bar{x}||| \le_{C_Y} f(x) - f(\bar{x}) + \varepsilon \mathbf{1}, \quad \forall x \in X.$$

Hence $(T, c) \in \partial_{\varepsilon}^{gw} f(\bar{x})$, and the proof is complete.

Theorem 5.3. Let X be a real topological vector space, (Y, \leq_{C_Y}) be a real ordered normed space with $intC_Y \neq \emptyset$ and $|||.||| : X \to C_Y$ be a vectorial norm on X. Let $\varepsilon \in \mathbb{R}_+$ and $f : X \to Y$ be a function such that f is ε -generalized weak subdifferentiable at $\bar{x} \in X$ and ε -directionally differentiable at \bar{x} in the direction $u \in X$. Then

$$v \leq_{C_Y} f'_{\varepsilon}(\bar{x}, u), \quad \forall v \in D,$$

where

$$D := Sup\{T(u) - c |||u||| : (T, c) \in \partial_{\varepsilon}^{gw} f(\bar{x})\}$$

Also, see Definition 2.1.

Proof. We claim that

$$T(u) - c|||u||| \le_{C_Y} f'_{\varepsilon}(\bar{x}, u), \quad \forall (T, c) \in \partial_{\varepsilon}^{gw} f(\bar{x}).$$
(5.5)

Since by the hypothesis $f'_{\varepsilon}(\bar{x}, u)$ exists in *Y*, then in view of Definition 2.7 there exists a sequence $\{t_n\}_{n\geq 1}$ of positive real numbers such that

$$\lim_{n \to \infty} \left\| \frac{f(\bar{x} + t_n u) - f(\bar{x}) + \varepsilon \mathbf{1}}{t_n} - f'_{\varepsilon}(\bar{x}, u) \right\| = 0.$$
(5.6)

Now, let $(T, c) \in \partial_{\varepsilon}^{g_W} f(\bar{x})$ be arbitrary. Then one has

$$T(x-\bar{x}) - c|||x-\bar{x}||| \le_{C_Y} f(x) - f(\bar{x}) + \varepsilon \mathbf{1}, \quad \forall x \in X.$$
(5.7)

Put $x := \bar{x} + t_n u$ ($n = 1, 2, \dots$) in (5.7), it follows that

$$t_n T(u) - ct_n |||u||| \le_{C_Y} f(\bar{x} + t_n u) - f(\bar{x}) + \varepsilon \mathbf{1}, \quad n = 1, 2, \cdots.$$
 (5.8)

Since C_Y is a cone, we conclude from (5.8) that

$$\frac{f(\bar{x} + t_n u) - f(\bar{x}) + \varepsilon \mathbf{1}}{t_n} - (T(u) - c|||u|||) \in C_Y, \quad n = 1, 2, \cdots.$$
(5.9)

But it follows from (5.6) that

$$\lim_{n \to \infty} \| [\frac{f(\bar{x} + t_n u) - f(\bar{x}) + \varepsilon \mathbf{1}}{t_n} - (T(u) - c \| \| u \| \|)] - [f'_{\varepsilon}(\bar{x}, u) - (T(u) - c \| \| u \| \|)] \|$$
$$= \lim_{n \to \infty} \| \frac{f(\bar{x} + t_n u) - f(\bar{x}) + \varepsilon \mathbf{1}}{t_n} - f'_{\varepsilon}(\bar{x}, u) \|$$
$$= 0.$$

Because of C_Y is closed, in view of (5.9) and (5.10) one has

$$f_{\varepsilon}'(\bar{x}, u) - (T(u) - c|||u|||) \in C_Y$$

Hence (5.5) holds. Now, we show that

$$v \leq_{C_Y} f'_{\varepsilon}(\bar{x}, u), \quad \forall \ v \in cl(D_0 - C_Y),$$

where $D_0 := \{T(u) - c |||u||| : (T, c) \in \partial_{\varepsilon}^{g_W} f(\bar{x})\}.$

For this end, let $v \in cl(D_0 - C_Y)$ be arbitrary. Then there exist sequences $\{v_n\}_{n\geq 1} \subset D_0$ and $\{d_n\}_{n\geq 1} \subset C_Y$ such that

$$\lim_{n \to \infty} \|(v_n - d_n) - v\| = 0.$$
(5.10)

Since $v_n \in D_0$ $(n = 1, 2, \cdots)$, it follows that there exists a sequence $\{(T_n, c_n)\}_{n\geq 1} \subset \partial_{\varepsilon}^{gw} f(\bar{x})$ such that $v_n = T_n(u) - c_n |||u|||, n = 1, 2, \cdots$. Let $w_n := v_n - d_n = T_n(u) - c_n |||u||| - d_n, n = 1, 2, \cdots$. This implies that $T_n(u) - c_n |||u||| - w_n = d_n \in C_Y$ for all $n = 1, 2, \cdots$. Thus we deduce that

$$w_n \leq_{C_Y} T_n(u) - c_n |||u|||, \quad \forall \ n \ge 1.$$
 (5.11)

Since $(T_n, c_n) \in \partial_{\varepsilon}^{gw} f(\bar{x}), n = 1, 2, \cdots$, it follows from (5.5) and (5.12) that

 $w_n \leq_{C_Y} f'_{\varepsilon}(\bar{x}, u), \quad \forall n \ge 1.$

That is

$$f_{\varepsilon}'(\bar{x}, u) - w_n \in C_Y, \quad \forall \ n \ge 1.$$
(5.12)

But by (5.11) we have

$$\lim_{n \to \infty} \|[f'_{\varepsilon}(\bar{x}, u) - w_n] - [f'_{\varepsilon}(\bar{x}, u) - v]\| = \lim_{n \to \infty} \|w_n - v\| = 0.$$
(5.13)

Because of C_Y is closed, we conclude from (5.13) and (5.14) that $f'_{\varepsilon}(\bar{x}, u) - v \in C_Y$. That is

$$v \leq_{C_Y} f'_{\varepsilon}(\bar{x}, u), \quad \forall v \in cl(D_0 - C_Y).$$
(5.14)

But in view of Definition 2.1 one has

$$D = Sup\{T(u) - c|||u||| : (T, c) \in \partial_{\varepsilon}^{gw} f(\bar{x})\}$$
$$= wmax[cl(\{T(u) - c|||u||| : (T, c) \in \partial_{\varepsilon}^{gw} f(\bar{x})\} - C_{Y})]$$
$$\subseteq cl(D_{0} - C_{Y}).$$

Therefore in view of (5.15) and (5.16) we obtain

$$v \leq_{C_Y} f'_{\varepsilon}(\bar{x}, u), \quad \forall v \in D,$$

which completes the proof.

The following theorem gives a convexity characterization of a vector valued function which is Fréchet differentiable on its domain by using ε -generalized weak subdifferential.

Theorem 5.4. Let X be a real normed space and (Y, \leq_{C_Y}) be a real ordered normed space with $intC_Y \neq \emptyset$. Let $|||.||| : X \to C_Y$ be a vectorial norm on X and $f : X \to Y$ be Fréchet differentiable and ε -generalized weak subdifferentiable at every point $x \in X$. Then, f is C_Y -convex if and only if $(f'(\bar{x}), 0) \in \partial_{\varepsilon}^{gw} f(\bar{x})$ for all $\bar{x} \in X$ and all $\varepsilon \in \mathbb{R}_+$.

Proof. Suppose that f is C_Y -convex. Let $\bar{x} \in X$ and $\varepsilon \in \mathbb{R}_+$ be arbitrary. Then in view of Theorem 2.1 we have

$$f'(\bar{x})(x-\bar{x}) \leq_{C_Y} f(x) - f(\bar{x}), \quad \forall \ x \in X.$$

This implies that

$$f(x) - f(\bar{x}) - f'(\bar{x})(x - \bar{x}) \in C_Y, \quad \forall \ x \in X.$$
 (5.15)

Since $\varepsilon \mathbf{1} \in C_Y$ for all $\varepsilon \in \mathbb{R}$ and C_Y is a convex cone, it follows from (5.17) that

$$f'(\bar{x})(x-\bar{x}) - 0 |||x-\bar{x}||| \le_{C_Y} f(x) - f(\bar{x}) + \varepsilon \mathbf{1}, \quad \forall \ x \in X.$$
(5.16)

Since *f* is Fréchet differentiable on *X*, in view of Definitioc 2.8 one has $f'(\bar{x}) \in B(X, Y)$. So we conclude from (5.18) that $(f'(\bar{x}), 0) \in \partial_{\varepsilon}^{gw} f(\bar{x})$.

Conversely, assume that $(f'(\bar{x}), 0) \in \partial_{\varepsilon}^{g^w} f(\bar{x})$ for all $\bar{x} \in X$ and all $\varepsilon \in \mathbb{R}_+$. Thus

$$f'(\bar{x})(x-\bar{x}) - 0 |||x-\bar{x}||| \leq_{C_Y} f(x) - f(\bar{x}) + \varepsilon \mathbf{1}, \quad \forall x \in X, \ \forall \varepsilon \in \mathbb{R}_+,$$

where $\mathbf{1} \in intC_Y$. That is

$$f(x) - f(\bar{x}) + \varepsilon \mathbf{1} - f'(\bar{x})(x - \bar{x}) \in C_Y, \quad \forall \ x \in X, \ \forall \ \varepsilon \in \mathbb{R}_+.$$
(5.17)

Since $\|\mathbf{1}\| = 1$, it follows that

$$\begin{split} \lim_{\varepsilon \to 0^+} \| [f(x) - f(\bar{x}) + \varepsilon \mathbf{1} - f'(\bar{x})(x - \bar{x})] - [f(x) - f(\bar{x}) - f'(\bar{x})(x - \bar{x})] \| \\ &= \lim_{\varepsilon \to 0^+} \| \varepsilon \mathbf{1} \| \\ &= \lim_{\varepsilon \to 0^+} \varepsilon = 0, \quad \forall \ x \in X. \end{split}$$

Since C_Y is closed, it follows from (5.19) and (5.20) that

$$f(x) - f(\bar{x}) - f'(\bar{x})(x - \bar{x}) \in C_Y, \quad \forall x \in X.$$

That is

$$f'(\bar{x})(x-\bar{x}) \leq_{C_Y} f(x) - f(\bar{x}), \quad \forall x \in X.$$

Therefore in view of Theorem 2.1 one has f is C_Y -convex.

80

References

- [1] A.Y. Azimov and R.N. Gasmiov, *On weak conjugacy, weak subdifferentials and duality with zero gap in nonconvex optimization,* Int. J. Appl. Math., **1**(1999), 171-192.
- [2] A.Y. Azimov and R.N. Gasmiov, Stability and duality of nonconvex problems via augmented Lagrangian, Cybernet. Syst. Anal., 38(2002), 412-421.
- [3] J.M. Borwein, *Continuity and differentiability properties of convex operators*, Proc. London Math. Soc., **44**(1982), 420-444.
- [4] R.N. Gasimov, Augmented Lagrangian duality and nondifferentiable optimization methods in nonconvex programing, J. Global Optim., 24(2002), 187-203.
- [5] Guang-ya Chen, Xuexiang Huang and Xiaogi Yang, Vector optimization: Set-Valued and Variational Analysis, Springer, Berlin, 2005.
- [6] J. Jahn, Vector optimization, Springer, Berlin, 2004.
- [7] Y. Kücük, L. Ataserer and M. Kücük, Generalized weak subdifferentials, Optimization, 60(5)(2011), 537-552.
- [8] R.T. Rockafellar, *The theory of subgradients and its application to problems of optimization-convex and nonconvex functions*, Heldermann, Berlin, 1981.
- [9] C. Zalinescu, Convex analysis in general vector spaces, World Scientific Publishing, Singapore, 2002.
- [10] J. Zowe, Subdifferentiability of convex functions with values in an ordered vector space, Math. Scand., **34**(1974), 69-83.