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1. Introduction

The e-subgradient which was defined by Zalinescu [9] plays an important role in Optimization
Theory. In the literature, Gasimov was the first to suggest an algorithm to solve non-convex op-
timization problems [4]. Subgradient was also defined by Y. Kiiciik, L. Atasever and M. Kiiciik
for non-convex functions. Also, generalized weak subgradient and generalized weak subdiffer-
ential were defined for non-convex functions with values in an ordered vector space (see [7]).
Azimov and Gasimov gave optimality conditions for a non-convex vector optimization problem
by using weak subdifferentials that depend on supporting conic surfaces (see [1, 2]). So, weak
subdifferentials and conic surfaces have important roles in non-convex optimization. Subgradient
was also defined for convex functions with values in an ordered vector space (see [3, 8, 9, 10]). In
this paper, we first define e-generalized weak subdifferential for vector valued functions defined
on a real topological vector space X. Next, we give various characterizations for e-generalized
weak subdifferential of this class of functions. Finally, we investigate some relations between &-
directional derivative and e-generalized weak subdifferential. The paper is organized as follows:
In Section 2, we recall some basic definitions. In Section 3, we give various characterizations for
g-generalized weak subdifferential of vector valued functions defined on a real ordered topological
vector space X. Some properties of e-generalized weak subdifferential are presented in Section 4.
In Section 5, we examine some relations between e-directional derivative and e-generalized weak
subdifferential.

2. Preliminaries

In this section, we give some basic definitions and results. Let Y be a real vector space and Cy
be a closed convex cone and pointed in Y (the later means that Cy N (—=Cy) = {0}). The cone Cy
induces a relation <¢, on Y which is defined by

X<, yeoy—xely, (x,yeY).

It is clear that <, is a partial order on ¥, and so (¥, <, ) is an ordered vector space. Moreover, if
intCy # 0, then we say that

x<y<y—xeintCy,(x,y€Y).

Definition 2.1. ([5, 6]). Let (Y, <, ) be a real ordered topological vector space with intCy # 0.

(i) Let C be a subset of Y. A point ¢ € C is called a weakly maximal point of C if thereisno c € C
such that ¢ < ¢. The set of all weakly maximal points of C is called the weakly maximum of C
and is denoted by wmax C.

(if) Let C be a subset of Y. The supremum of C is defined as

SupC := wmax[cl(C — Cy)],

where for a subset A of Y the cl(A) is called the closure of A in Y.
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Definition 2.2. ([5, 6]). Let (¥, <¢,) be a real ordered topological vector space and C be a non-
empty subset of Y.

(1) An element x € Y such that x <., c forall ¢ € C is called a lower bound of C. An infimum of C,
denoted by inf C, is the greatest lower bound of C, that is, a lower bound x of C such that z <¢, x
for every other lower bound z of C.

(ii) An element x € Y such that ¢ <¢, x for all ¢ € C is called an upper bound of C. A supremum of
C, denoted by sup C, is the least upper bound of C, that is, an upper bound x of C such that x <., z
for every other upper bound z of C.

Definition 2.3. ([7]). Let X be a real vector space and (Y, <c,) be a real ordered vector space.
A function |||.]|| : X — Cy is called a vectorial norm on X, if for all x,z € X and all 4 € R the
following assertions are satisfied:

@ lllxlll = 0y & x = Ox.

@) (Ml = 1AL [11xdll-

@) lllx + zlll <, Xl + Nzlll.

If Y :=Rand Cy := R, then [||.||| is called a norm on X and denoted by ||.|.
Let (Y, <¢,) be an ordered locally convex topological vector space. The topology that is induced
by vectorial norm on X is the topology induced by the neighborhood base {X(a, U) : U € B(0)},
where
X, U):={xeX:|l|x—adall €U},

with B(0) is a neighborhood base of the origin in Y and a running over X.

Definition 2.4. ([5, 6]). Let X be a real vector space and (¥, <,) be a real ordered vector space.
Let S be a non-empty convex subset of X. A function f : § — Y is called Cy-convex (or convex)
if for all x,y € § and all 1 € [0, 1]

Af(x) + (1 =D f(y) = fAx + (1 = y) € Cy.

Definition 2.5. ([5, 6]). Let X be a real vector space and (Y, <,) be a real ordered vector space.
Let S be a non-empty convex subset of X. Let the function f : § — Y be given. The set

epi(f) ={(x,y) e X XY :x€S, f(x)<c, ¥}

is called the epigraph of f.
The set

hypo(f) :={(x,y) e XXY :x €S, y <¢, f(x)}
is called the hypograph of f.

Definition 2.6. ([6]). Let X and Y be real topological vector spaces. Let S be an open subset of X
and f : § — Y be a given function. If for X € § and u € X the limit

J(&X+ ) - f(X)
t

f'(X,u) := lim
t—0+

exists, then f’(x, u) is called the directional derivative of f at X in the direction u. If this limit exists
for all u € X, then, f is called directionally differentiable at x.
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Definition 2.7. Let X be a real topological vector space and (Y, <, ) be a real ordered topological
vector space with intCy # (. Let S be an open subset of X, f : S — Y be a given function and
ceR,. If for x € S and u € X the infimum

(X +tu) — f(X) + &l
t

fo(%,u) = inf
>0

exists in ¥, then f/(x,u) is called the e-directional derivative of f at X in the direction u. If this
infimum exists in Y for each u € X, then, f is called e-directionally differentiable at x. Note that
1 € intCy. See Definition 2.2.

Definition 2.8. ([5, 6]). Let X and Y be real normed spaces and S be a non-empty open subset
of X. Let f : S — Y be a given function and x € X. If there exists a continuous linear function

T : X — Y such that _ _
i WE+D) - & -TMI _
im =
lI7ll—0 ||A|

then 7 is called the Fréchet derivative of f at X and denoted by f’(¥) := T. In this case, f is called
Fréchet differentiable at x.

0,

The proof of the following theorem can be found in [5, 6].

Theorem 2.9. Let X be a real normed space, (Y, <¢,) be a real ordered normed space and S be a
non-empty open subset of X. Let f : S — Y be Fréchet differentiable at every point x € S. Then, f
is Cy-convex if and only if

FO)x—-y) <¢, f(X) - fO), VYx,yeS.

3. g-generalized weak subdifferential

In this section, we give various characterizations for e-generalized weak subdifferential of a
vector valued function f. Also, we present the definition of an e-generalized lower locally Lips-
chitz function.

Definition 3.1. ([7]). Let X be a real topological vector space and (Y, <¢,) be a real ordered
topological vector space. Assume that f : X — Y is a given function and ¥ € X. Then a point
T € B(X,Y) is called a subgradient of f at X if

fX)—f(xX)-T(x-x)eCy, VxeX
The set of all subgradients of f at x is called the subdifferential of f at X and denoted by
0f(x) :={T € B(X,Y) : T is a subgradient of f at X},

where B(X, Y) is the vector space of all continuous linear functions from X to Y.
Also, if df(X) # 0, then, f is called subdifferentiable at X.
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Definition 3.2. Let X be a real topological vector space and (Y, <, ) be a real ordered topological
vector space. Assume that intCy # 0, f : X — Y is a function, X € X and € € R,. Then a point
T € B(X,Y) is called an e-subgradient of f at x if

fX)—f(xX)—-Tx-X)+eleCy, VxelX
The set of all e-subgradients of f at X is called the e-subdifferential of f at X and denoted by
0.f(%):={T € B(X,Y) : T is an € — subgradient of f at X},

where B(X, Y) is the vector space of all continuous linear functions from X to ¥ and 1 € intCy.
Also, if 0. f(X) # 0, then, f is called e-subdifferentiable at x.

Remark 3.3. Let X be a real topological vector space and (¥, <c,) be a real ordered topological
vector space. Assume that intCy # 0, f : X — Y is a function and X € X. Suppose that 0 < g; < &,.
Then, df(x) = 0y f(X) C 0, f(X) C O, f(X), and for all € € R, one has

e f(®) = (| 0sf ().

(]

Definition 3.4. Let (X, ||.||) be a real normed space, f : X — R be a proper function, ¥ € X be such
that f(X) € R and € € R,.. Then, (x*,c) € X* X R, is called an e-weak subgradient of f at x if

<xx—=-x>-clx- < fX)-f(X)+e, VxeX

The set of all e-weak subgradients of f at x is called the e-weak subdifferential of f at X and
denoted by

00 f(X) :={(x",¢c) e X" xR, : (x%,¢) is an € — weak subgradient of f at X}.
Also, if 0% f(X) # 0, then, f is called e-weak subdifferentiable at x.

Definition 3.5. Let X be a real topological vector space and (Y, <(,) be a real ordered topological
vector space with infCy # (. Let f : X — Y be a function and |||.]|| : X — Cy be a vectorial
norm on X and let X € X and € € R, be arbitrary. A point (7,c) € B(X,Y) X R, is called an
e-generalized weak subgradient of f at X if

O —fX)-Tx-X)+clllx—xl|+eleCy, VxelX,

where 1 € intCy.
The set of all e-generalized weak subgradients of f at X is called the &-generalized weak sub-
differential of f at x and denoted by

V(%) :={(T,c) e BX,Y) xR, : (T,c) is an € — generalized weak subgradient of f at X}.

Also, if 85" f(x) # 0, then, f is called e-generalized weak subdifferentiable at .
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Remark 3.6. In view of Definition 3.2 and Definition 3.4 it is easy to see that
(T,0) € 02" f(X) & T € 9(f + clll - =xlID(),
where f : X — Y is a function, [||.]|| : X — Cy is a vectorial norm on X and X € X.

Lemma 3.7. Let X be a real topological vector space and (Y, <c,) be a real ordered topological
vector space with intCy # (. Let f : X — Y be a function, |||.||| : X — Cy be a vectorial norm on
X and € € R.. If f is e- subdifferentiable at x € X, then, f is e-generalized weak subdifferentiable
at x.

Proof. Since 0, f(X) # 0, then there exists T € d, f(X) such that
T(x—-X)<c, f(x)—-f(X)+el, VxeX,

where 1 € intCy. So
) - f(xX)—-Tx-x)+eleCy, VxelX

Since c|||x — X||| € Cy for all ¢ € R, and Cy is a convex cone, it follows that
) - fx)-Tx-X)+el+|lx-xl|eCy, VxelX

That is
T(x—=X%) —clllx = xllI<c, f(x) = f(X)+el, VxeX

Hence, (T, c) € 85" f(x) for all ¢ € R,. Therefore, 85" f(x) # 0. O
The following example shows that the converse statement to Lemma 3.1 is not true.

Example 3.8. Let X :=R, Y := R, Cy := R2, |||.ll : R —> R2 be defined by [||x||| = (|x], |x]) for all
x € R, and let f : R — R” be defined by f(x) = (—|x|, —|x|) for all x € R. Let & € R,. It is easy
to see that f is not e-subdifferentiable at x = 0, but f is e-generalized weak subdifferentiable at
x=0.

Remark 3.9. Let X be a real topological vector space, (Y, <¢,) be a real ordered topological vector
space with intCy # @ and |||.||| : X — Cy be a vectorial norm on X. Let € € R,. Then

OelllXlll ={T € BX, Y) : T(x) = lIXlll, T(x) <c, lllxlll + €1, Y x € X, Y e € R,},
where 1 € intCy.

Definition 3.10. Let X be a real topological vector space, (Y, <¢,) be a real ordered topological
vector space with intCy # @ and |||.||| : X — Cy be a vectorial norm on X. Let € € R,. A function
f : X — Y is called e-generalized lower locally Lipschitz at X € X if there exists a non-negative
real number L (Lipschitz constant) and a neighborhood N(X) of x such that

= Llllx = Xl <¢, f(x) = f(®) +&l, ¥ xeNQX), (3.1

where 1 € intCy. If (3.1) holds for all x € X, then, f is called e-generalized lower Lipschitz at x.
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Theorem 3.11. Let X be a real topological vector space, (Y,<c,) be a real ordered topological
vector space with intCy # 0 and |||.||| : X — Cy be a vectorial norm on X. Let f : X — Y
be a function and let x € X and € € R,. If f is e-generalized lower Lipschitz at X, then, f is
g-generalized weak subdifferentiable at x.

Proof. Suppose that f is e-generalized lower Lipschitz at x. Then there exists L > 0 such that
—Llllx = Xl <¢, f(0) - f(X) +el, YxeX,
where 1 € intCy. So, we have
O(x=Xx) = Llllx = xlll <¢, f(x) = f(X)+el, VxeX
Hence, (0, L) € 85" f(X), that is, f is e-generalized weak subdifferentiable at X. O

Theorem 3.12. Under the hypotheses of Theorem 3.1 if f is &- generalized lower Lipschitz at
X € X, then there exists p > 0 and g € Y such that

g = plixlll <¢, f() +&l VxeX,
where 1 € intCy.
Proof. Let f be e-generalized lower Lipschitz at x. Then there exists L > 0 such that
—Lllx = &l <¢, f(x) - f(®) +&l, VxeX.
So, one has
—LlIxlll = Llllxlll <c, —Llllx = &lll <¢, f(0) - f(D) +el, YxeX (3.2)
Now, put g := f(x) — L|||x[|| and p := L in (3.2). Thus it is clear that p > 0, g € Y and

g — plixll <¢, f(x) + &1,

for all x € X. L]

4. Properties of e-generalized weak subdifferential

In the classical subdifferential theory, it is well known that if the function f : X — R is
subdifferentiable at x, € X, then f has a global minimizer at x, if and only if O € df(xo). In this
section, a similar result can be obtained for e-generalized weak subdifferential (see Theorem 4.1,
below).

Proposition 4.1. Let X be a real topological vector space, (Y,<c,) be a real ordered topological
vector space with intCy # 0 and |||.||| : X — Cy be a vectorial norm on X. Let f : X — Y be a
function, X € X and € € R,. Then, 65" f(X) is a convex set.
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Proof. Let (Ty,cy), (T2, c3) € 85" f(X) be arbitrary and 0 < A < 1. Then we have
T(x=Xx) —cilllx = xlll <¢, f(x) = f(X) +el, VxeX,

and
To(x = X) = colllx = &l <¢, f(x) = f(X)+el, VxeX,

where 1 € intCy. So, since Cy is a cone, we have
Af(x) = Af(X) + Ael — AT (x — X) + Acy|llx — X||| € Cy, VxeX,
and
A-Df)-A-DfD)+ (1 -Del = (1 - DTa(x — %) + (1 - Deolllx - Il € Cy,
for all x € X. Since Cy is a convex cone, it follows that
JX) = f®) +el = AT, + (1 - DT)(x — %) + (Aey + (1 = De)lllx — Xl € Cy,
for all x € X. Hence
ATy + (1 = DT2)(x — %) = (Aey + (1 = Deo)lllx = X ¢, f(0) — f(X) + €1,
for all x € X. So, one has
AT, + (1 = )T, Acy + (1 = D)cy) € 38" f(X).

That is
ATy, cr)+ (1 = AT, cr) € 35 f(5).

]

Proposition 4.2. Let X be a real normed space space, (Y,<c,) be a real ordered normed space
with intCy # O and |||.]|| : X — Cy be a vectorial norm on X. Let f : X — Y be a function, x € X
and g € R,. Then, 85" f(X) is a closed set in B(X,Y) X R,.

Proof. If 85" f(X) = 0, then it is closed. Suppose that 85" f(¥) # 0 and (T,c) € cl(85" (%)) is
arbitrary. Then there exists a sequence {(T,, ¢,)}us1 C 05" f(X) such that |[(T,, c,) — (T, c)|| = 0 as
n — oo, where for an element (S, c) € B(X,Y) X R, we define

IS, Ol == IS + lc].
Thus we conclude that ||7,, — T'|| — 0 and |c,, — ¢| = 0 as n — oo. This implies that
|T,(x) = T(X)| = O for each x € X, and |c, — c| = 0, as n — 0. 4.1)
Now, assume on the contrary that (7, c) ¢ 85" f(X). Then there exists xy € X such that

T(xo = %) = clllxo = Xl £c, f(x0) = f(3) + &l. 4.2)



A. Mohebi and H. Mohebi/ Wavelets and Linear Algebra 2 (1) (2015) 65 - 80 73
Since (T, c,) € 05" f(¥) (n = 1,2,--+), in view of Definition 3.4 we have
T,(x=X%) —culllx=X|[| <¢, f(X)=f(X)+el, VxeX, Vn>1,
where 1 € intCy. That is
) —f)+el-T,(x—X)+c,lllxo— x|l €eCy, VxeX, Vn=>1. 4.3)
Put x := xj in (4.3), therefore one has
f(xo) = f(X) + €l = Ty (xo — %) + cylllxo — Xl € Cy, Vn2>1. (4.4)
But we have

ILf (x0) — f(X) + €1 = Ty(x0 — X) + calllxo — XlI[]
—[f(x0) = f(X) + el = T(xo — %) + cll|lxo — x||[]l
= [T (x0 — X) = T'(x0 — X)] + (¢, = O)lllxo — Xlll|
< Tu(xo — X) = T(xo — Xl + |c, — cllllxo — Xlll, ¥Yn=>1. 4.5)

In view of (4.1) it follows from (4.5) that

ILf(x0) = f(%) + €1 = Ty (xo — X) + culllxo — X1 = [f (x0) = f(X) + €1 = T'(xo — X) + clllxo — X[|II| = O,

(4.6)
whenever n — oo. Since Cy is closed, so we conclude from (4.4) and (4.6) that
Sf(xo) = f(X) + el = T(xo — %) + clllxo — X[l € Cy.
That is
T(xo — x) = clllxo — xlll <¢, f(x0) — f(X) + €1,
which contradicts (4.2). Hence (T, c¢) € 65" f(X), and the proof is complete. O

Proposition 4.3. Let X be a real topological vector space, (Y, <c,) be a real ordered topological
vector space with intCy # 0 and |||.||| : X — Cy be a vectorial normon X. Let f : X — Y be a
function, X € X and & € R, be arbitrary. If f is 2-generalized weak subdifferentiable at % € X,
then, 85" (Af)(X) = /18‘? f(X) for each A > 0.

Proof. Let A > 0 be arbitrary. Since Cy is a cone, it follows that (T, ¢) € 65" (Af)(¥) if and only if
Af(x) —Af(xX)+el —-T(x—x)+|lx— x| € Cy, VxeX

if only and if
T
£ = F®) + 31 - S-P+ %mx— flleCy, VxeX

T

if and only if (£, <) € 8°" f(%) if and only if (T, ¢) € 105" f(%). O
A A
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Theorem 4.4. Let X be a real topological vector space, (Y,<c,) be a real ordered normed space
with intCy # 0 and |||.||l| : X — Cy be a vectorial norm on X. Let ¢ € R, and f : X — Y be
a function such that f is e-generalized weak subdifferentiable at X € X. Then, f has a global
minimizer at X if and only if (0,0) € 85" f(X) for all € € R,.

Proof. Suppose that f has a global minimizer at X. Then one has f(x) <¢, f(x) for all x € X, and
also we have Oy <¢, 1. So f(X) <¢, f(x) + 1 for all x € X. Therefore

0(x=X)=0lllx = x|l <¢, f(x)=f(x)+el, VxeX

Hence (0,0) € 85" f(x) for all € € R,.
Conversely, assume that (0, 0) € 8" f(x) for all £ € R,. Thus

0<¢c, f)—f(X)+el, VxeX VeeR,.

That is
fX)—f()+eleCy, VxeX Veek,. “4.7)
Therefore
Lim [ILf (0 = f(3) + el] = [f(x) = f(DIll = lim [le1]| = lim & =0, (4.8)

for each x € X. Note that [[1]| = 1. Since Cy is a closed set in Y, it follows from (4.7) and (4.8) that
f()-f(X)eCy, YxeX

So
0<c, f(x) - f(X), VxeX

That is X is a global minimizer of f at X. [

Theorem 4.5. Let X be a real normed space and f : X — R be a proper function. Let ¥ € domf
and € € R, be given. Then

(", 0) €0 f(X) & f(X)+ (f +cll. = XID"(x) < (x7, X) + &
Proof. We have
(x0)edlf(X) o (x,x—X)—cllx=X|| < f(x) - f(X)+e, VxeX

SXxX)—f)—cllx—=x|| < x5 —-f(XH)+e, VxelX

& sup{(x", x) = (f +cl|l - =xID(x)} < {x*, %) — f(%) + &

xeX
& (f +cll - =xlD)"(x") < (x", %) — f(%) + &

& f(X)+(f +cll- =xID)"(x") < (x", X) + &.
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Proposition 4.6. Let X be a real topological vector space, (Y,<c,) be a real ordered topological
vector space with intCy # 0 and |||.||| : X — Cy be a vectorial norm on X. Let €|,&, € R, and
X € X. Suppose that f,g : X — Y are functions such that f is €,-generalized weak subdifferentiable
at x and g is &,-generalized weak subdifferentiable at X. Then

8 f(X) + 35 g(%) C 05, (f + 8)(R).

Proof. Let (Ty,c1) + (T, ¢2) € 05" f(X) + 85 g(X), where (T, ¢;) € 8%, f(X) and (T, ¢3) € 95, g(%).
Then we have
fO-fO+el1-T(x-X%) +clllx-xl[€ Cy, VxeX,

and
gx)—g)+el-T(x—X)+cllx—xl||e Cy, VxelX

Since Cy is a convex cone, it follows that

(f+8)0) = (f+ X)) + (61 + &)1 = (T1 + T2)(x = X) + (1 + ¢o)lllx — Xll| € Cy,

for all x € X. That is

(T1 + To)(x = %) = (c1 + )lllx = Xl ¢, (f +8)(X) = (f + &)(X) + (&1 + &)1,

for all x € X. So, one has (T + T, ¢1 + ¢2) € 854, (f + g)(%). Hence (T, ¢1) + (T2, ¢2) € 5, (f +
8)(X). O

5. Some relations between g-directional derivative and g-generalized weak subdifferential

In the classical subdifferential theory, it is well known that if the function f : X — R is
subdifferentiable at x, € X and it has directional derivative at x; in the direction u € X, then the
relation

f(xo,u) > (u,x™), YV x"€0f(x)

is satisfied. In this section, a similar result can be obtained for e-generalized weak subdifferential
(see Theorem 5.2, below).
In the sequel, we give the following Definition (see [7]).

Definition 5.1. Let X be a real topological vector space and (Y, <,) be a real ordered topological
vector space. Let f : X — Y be a function and [||.||| : X — Cy be a vectorial norm on X and let
X € X be arbitrary. A point (7, c) € B(X,Y) X R, is called a generalized weak subgradient of f at
xif

T(x— %) —clllx - xlll<c, f(x) — f(%), YxeX
The set of all generalized weak subgradients of f at X is called the generalized weak subdifferential
of f at X and denoted by

" f(x):={(T,c) € BX,Y) xR, : (T,c) is a generalized weak subgradient of f at x}.

Also, if 8 f(X) # 0, then, f is called generalized weak subdifferentiable at x.
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Theorem 5.2. Let X be a real topological vector space, (Y,<c,) be a real ordered normed space
with intCy # 0, |||.]l : X — Cy be a vectorial norm on X, x € X and € € R, be arbitrary. Let
f : X — Y be a function such that f is generalized weak subdifferentiable and e-directionally
differentiable at x. Then

95" f(x) = " f,(%, )(0).
Proof. Let (T, c) € 85" f(x) be arbitrary. Then in view of Definition 3.4 one has
T(x—=X%) —clllx=xlll <¢, f(x)= f(X)+el, VxeX, 5.1
where 1 € intCy. Let u € X and t > 0O be arbitrary. Put x := X + tu in (5.1), thus we have
tT (u) — telllull] <¢, f(X+tu) — f(X) + €l.
So

T - cllull] <¢, L1 - JOrel yex viso. (5.2)

Therefore, by Definition 2.7 and (5.2) we obtain

f(E+tu) — f(F) + el
t

T() = clllulll <c, inf = fo(%, u), (5.3)
for all u € X. Since f](x,0) = 0, it follows that
T(u) = clllulll <¢, fr(%,u) — fi(X,0), YueX

That is, (T, c) € 0%" f.(x,-)(0). Conversely, let (T, c) € 08" f.(x,-)(0) be arbitrary. Then by Defini-
tion 5.1 and Definition 2.7 we have

T(u—0) = clllu = Olll <¢, fi(x,u) = fi(X,0)

— 7 x’ uw) = inf f(.)_C+l’Ll)—f()_C)+81
Je(Xou) >0 t

<, LIy e X, V1> 0.
So one has
T(tu) — cllltulll <c, f(x+1tu)— f(X)+el, YueX, Vit>0. (5.4)
Let x € X be arbitrary. Then by putting u := ";tx in (5.4), we conclude that
T(x—X) —clllx=xlll <¢, f(x) = f(X)+el, VxeX

Hence (T, c) € 6" f(X), and the proof is complete. ]
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Theorem 5.3. Let X be a real topological vector space, (Y,<c,) be a real ordered normed space
with intCy # 0 and |||.|]|| : X — Cy be a vectorial norm on X. Let ¢ € R, and f : X — Y
be a function such that f is e-generalized weak subdifferentiable at X € X and e-directionally
differentiable at x in the direction u € X. Then

v <¢, fi(X,u), VYveD,

where
D := Sup{T () — clllulll : (T,c) € 65" f(¥)}.

Also, see Definition 2.1.
Proof. We claim that
T(w) - clllulll <¢, fi(x,u), VY (T,c)e€ d"f(X). (5.5)

Since by the hypothesis f;(x, u) exists in ¥, then in view of Definition 2.7 there exists a sequence
{t,},>1 of positive real numbers such that

lim ”f()_c + t,u) — f(%) + €1

lim - - f&wl = 0. (5.6)
Now, let (T, ¢) € 85" f(¥) be arbitrary. Then one has
T(x—x) —clllx=xlll <¢, f(x) = f(X)+el, VxeX 5.7)
Putx:=x+tum=1,2,---)in (5.7), it follows that
t,T () — ctylllulll <¢c, f(X+t,u)— f(X)+el, n=1,2,---. (5.8)
Since Cy is a cone, we conclude from (5.8) that
SO+ ) 2SO+l iy e €y n= 1,2, (5.9)

In

But it follows from (5.6) that
lim, II[M (T (u) = clllulD] = L (X, w) = (T () — clllulIDIII
= lim, o || FE LEE — (5, )
=0.
Because of Cy is closed, in view of (5.9) and (5.10) one has

Jo(u) = (T'(w) = clljulll) € Cy.



A. Mohebi and H. Mohebi/ Wavelets and Linear Algebra 2 (1) (2015) 65 - 80 78

Hence (5.5) holds. Now, we show that
v <¢, fi(X,u), VYveclDy—-Cy),

where Dy := {T'(u) — c|llulll : (T, ¢) € 3" f(%)}.
For this end, let v € cl(Dy — Cy) be arbitrary. Then there exist sequences {v,},»1 € Dy and
{dn}nzl - CY such that

lim [|(v, — d,) — V|| = 0. (5.10)

Since v, € Dy (n = 1,2,--+), it follows that there exists a sequence {(T,, c,)},=1 C 05" f(X) such
thatv, = T,(w) — c,l|lull,n=1,2,--- . Letw, :=v,—d, = T,(w) —c,l||lull| - d,, n=1,2,--- . This
implies that T,(«) — c,|||ull| = w, = d, € Cy foralln = 1,2, --- . Thus we deduce that

Wn <¢, To(u) = colllulll, Vn=>1. (5.11)
Since (T, c,) € 85" f(X),n =1,2,--- , it follows from (5.5) and (5.12) that
wy <¢, fo(X,u), Vn>1.
That is
fix,u)—w,€Cy, Vnxl. (5.12)
But by (5.11) we have
Tim [IL£2(%, 1) = wa] = [f(F, w) = vl = Tim [lw, = vi] = 0. (5.13)
Because of Cy is closed, we conclude from (5.13) and (5.14) that f/(x,u) — v € Cy. That is
v <¢c, fi(X,u), VYveclDy—-Cy). (5.14)
But in view of Definition 2.1 one has
D = Sup{T(u) = clllulll : (T, c) € 3" f()}
= wmax[cl({T w) — clllulll : (T, ) € " f(D)} = Cy)]
C cl(Dy — Cy).
Therefore in view of (5.15) and (5.16) we obtain
v <¢, fi(X,u), VYveD,
which completes the proof. L

The following theorem gives a convexity characterization of a vector valued function which is
Fréchet differentiable on its domain by using e-generalized weak subdifferential.
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Theorem 5.4. Let X be a real normed space and (Y,<c,) be a real ordered normed space with
intCy # 0. Let |||.|]| : X — Cy be a vectorial norm on X and f : X — Y be Fréchet differentiable
and e-generalized weak subdifferentiable at every point x € X. Then, f is Cy-convex if and only if
(f"(x),0) € 85" f(X) forall X € X and all € € R,.

Proof. Suppose that f is Cy-convex. Let X € X and € € R, be arbitrary. Then in view of Theorem
2.1 we have

fEx =X <Zc, f(x) - f(X), YxeX
This implies that

fX)—fX) - f(X)(x—-x)eCy, YxeX (5.15)
Since €1 € Cy for all € € R and Cy is a convex cone, it follows from (5.17) that
@ —-%-0lllx— x|l <¢, f(x) - f(X)+€l, YxeX (5.16)

Since f is Fréchet differentiable on X, in view of Definitioc 2.8 one has f'(x) € B(X,Y). So we
conclude from (5.18) that (f(x),0) € 85" f(X).
Conversely, assume that (f7(x),0) € 85" f(X) for all x € X and all € € R,. Thus

S (D(x =% = 0lllx = Xl <¢, f(0) - f(X)+el, VxeX YeeR,,
where 1 € intCy. That is
f) - f® +el— f(D(x-F)eCy, YrxeX, VeecR,. (5.17)
Since |[1]] = 1, it follows that
lim, o+ [ILf(x) = f(X) + &l = f/(X)(x = )] = [f (x) = f(X) = f/ (D) (x = O]l

= limgo+ [lel]|

=lim,p-£=0, YxeX
Since Cy is closed, it follows from (5.19) and (5.20) that

f) - f@ - f(Dx-%eCy, YxekX

That is
X -% <¢, f(x) - f(X), VxeX

Therefore in view of Theorem 2.1 one has f is Cy-convex. ]
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